A Simple, Comprehensive Type System

for Java Bytecode Subroutines
Robert O’Callahan

Carnegie Mellon University
500 Forbes Avenue
Pittsburgh, PA
1412 2685728

roc+@cs.cmu.edu

ABSTRACT

A type system with proven soundness is a prerequisite for the
safe and efficient execution of Java bytecode programs. So far,
efforts to construct such a type system have followed a "forward
datatflow” approach, in the spirit of the original Java Virtual
Machine bytecode verifier. We present an alternative type
system, based on conventional ideas of type constraints,
polymorphic recursion and continuations. We compare it to Stata
and Abadi's JVML-0 type system for bytecode subroutines, and
demonstrate that our system is simpler and able to type strictly
more programs, including code that could be produced by Java
compilers and cannot be typed in JVML-0. Examination of real
Java programs shows that such code is rare but does occur. We
explain some of the apparently arbitrary constraints imposed by
previous approaches by showing that they are consequences of
our simpler type rules, or actually unnecessary.

Keywords

Java, bytecode, types, subroutines, continuations, polymorphic
recursion.

1. INTRODUCTION

The Java bytecode language (referred to hereafter as JVML), as
implemented by the Java Virtual Machine [5], has become a
widely used medium for distributing platform-independent
programs. It attempts to enforce safety properties for these
programs, using a mixture of static and dynamic checking. This
is particularly important because the programs may be untrusted.
For example, if a program can access memory in undisciplined
ways, then it may be able to steal private information.

However, people [e.g., 1] have found a number of weaknesses in
the JVM’s checks that have caused it to accept programs with
unsafe and possibly insecure behavior. Therefore it seems
desirable to formalize the Java bytecode language and its type
system and to prove safety. Researchers [8, 7, 2] have formulated
type systems for subsets of the Java bytecode language and
proven their soundness.

Copyright © 1998 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Publications Dept, ACM Inc., fax
+1 (212) 869-0481, or permissions@acm.org.

The goal of these alternative systems was to formalize, explain
and correct the JVM verifier. Thus they are similar to the JVM
verifier in spirit. However, we found it instructive to construct a
type system from scratch based on conventional ideas such as
continuations and polymorphic recursion, and compare it to the
JVM verifier and the aforementioned type systems. To facilitate
direct comparison, we have constructed a language JVML-0-C
which is practically identical to Stata and Abadi’s JVML-0 in
syntax and dynamic semantics, but which has an entirely
different static semantics. JVML-0-C satisfies the same
soundness theorem as JVML-0.

The type system of JVML-0-C is similar to the Stack-based
Typed Assembly Language of Morrisett et al. [6] (hereafter
referred to as “STAL”). By targeting the JVML-0 bytecode
language, we demonstrate that this approach leads to type rules
that are somewhat simpler than the corresponding rules of the
JVM-like systems. Furthermore, JVML-0-C is able to type
strictly more programs. In particular, it admits programs that
perform “non-local returns”, which occur when a bytecode
subroutine returns to code that was not its immediate caller,
skipping some frames on the hypothetical subroutine call stack.
Such programs are not typable in JVML-0, but can be accepted
by the JVM. This is important because such code can be
generated by the Java compiler. As we describe below, examples
are very rare but do occur in real Java code. The difficulty of
typing these programs is due to JVML-0’s need to label
instructions with the subroutine they belong to, which is not
required in JVML-0-C.

A significant benefit of studying JVML-0-C is that it illuminates
some of the design choices made in the JVM-like type systems.
Hitherto, the type constraints in those systems have been
evaluated according to three criteria: they match the “expected”
behavior of bytecode programs, they are together sufficient to
prove soundness, and they admit code generated by the Java
compiler. This gives great latitude in designing the constraints,
but this latitude can obscure the motivation and consequences of
the design choices. In contrast, each type constraint in JVML-0-C
has its own individual, clear rationale. We therefore use
JVML-0-C as a basis for evaluating the rules of JVML-0 (and by
analogy, the rules of other JVM-like type systems):

e Some properties described by others as “needed for type
safety”, such as a LIFO discipline for subroutine calls, can
in fact be violated by well-typed JVML-0-C programs, and
thus are not fundamentally necessary for type safety.

instruction = inc increment the integer on top of the stack
| pop discard the top value from the stack
| pushO push the integer zero onto the stack
| loadx push the value of variable x onto the stack
| storex pop from the stack and store the value into variable x
| ifL pop from the stack and branch to L if non-zero
| jsrlL jump to L, push the next instruction address onto the stack
| retx jump to the address in variable x
| halt stop, returning the integer on top of the stack

Figure 1: JVML-0/JVML-0-C Syntax

e JVML-0 is more restrictive than necessary in several other
ways. In particular, the need to label instructions with the
subroutine they belong to is a key source of complexity and
inflexibility, and is done away with in JVML-0-C by typing
return addresses as continuations (hence the “C” in
“JVML-0-C™).

e An interesting property enforced by JVM-like systems is
that a return address can only be “used” once. It turns out
that this property is a direct consequence of disallowing
recursive return address types in JVML-0-C.

e Most of the JVML-0 constraints are implied by the
JVML-0-C constraints, and therefore obtain the same
justifications.

2. OVERVIEW OF THE LANGUAGE AND
TYPE SYSTEM

2.1 The language

Except for the type system, our language JVML-0-C is almost
identical to JVML-0 — a bytecode-like language with an
operand stack, simple arithmetic, conditional branches, local
variable loads and stores, and subroutine calls and returns (see
Figure 1). A program includes the code for only a single method
— there are no objects, nor a heap. The syntax and dynamic
semantics are unchanged. We prove the same soundness theorem
as for JVML-0, slightly strengthened to guarantee that an integer
is returned !

2.2 JVML-0-C types

As in JVML-0, a type is an abstraction of the state on entry to an
instruction. We define state types, stack types and local variable
types that are very similar to JVML-0. The key differences are
the handling of return address types and the introduction of type
variables into JVML-0-C.

The program type P is a map from instruction addresses to state
types.

A state-type X is a pair of a stack-type 6 and a locals-type T. It
gives the types that hold on entry to a bytecode instruction.

z = 0,T)

! We require methods to return integers, whereas JVML-0 leaves
the return type unspecified.

A stack-type 0 is either a stack type variable ¢, an application of
a constructor taking the type of the top of the stack and the type
of the rest of the stack, or NI, the type of the empty stack. As in
STAL, the introduction of polymorphic stack type variables
enables recursive subroutines. It’s also necessary for translating
JVML-0 types to JVML-0-C types; see Section 9.

0 = 7-0

| ¢
| N

A locals-type T is a finite map from local variables to their types.
T : VAR — element-type

The type T of an element of the stack or of a local variable (an
element-type) is one of the integer type INT, the type of all values
Top, a type of a return address (continuation) “Cont™, or an
element type variable a.

A return address type gives a state-type X that must hold for the
program state whenever the return address is returned to. This
allows us to write rules for the subroutine call and return
instructions that are “local”, referring only to the types of the
caller instruction, the called instruction, and the returned-to
instruction. We also avoid any need to explicitly name
subroutines or label instructions as belonging to particular
subroutines. In addition, the combination of type variables with
continuations allows a flexible polymorphism in subroutines in a
natural way.

T i= InT
| Top
| Cont(X)
| o

The scope of a type variable is the instruction type in which it
appears. In effect, the type of an instruction universally
quantifies over all the type variables that appear within it. In the
type rules, whenever we refer to the type of an instruction, we
instantiate it with fresh bindings for the type variables.

The type rules are given in Section 3.

2.3 Example

Figure 2 is an example of a JVML-0-C program with a valid type
assignment. It pushes zero and an unusable value onto the stack,
calls a subroutine to swap them, and then halts with the zero on
top of the stack. The subroutine is polymorphic in the types of
the stack values that it swaps. This kind of polymorphism is not
available in either the JVM or JVML-0; subroutines in these

load 2 (NI, [0: atp, 1: Cont(ats - o - NI, [0 atg, 1: Top, 2: aa, 3: as]), 2: o, 3: as])

load 3 (ot - N1, [0: atg, 1: Cont(ats - o - NI, [0: atg, 1: Top, 2: a, 3: as]), 2: o, 3: as])

i Pli] A

0 pushO (NI, [0: atg, 11 oy, 2: 0g, 3: a3])

1 load 0 (INT - N1, [0: atg, 1: oy, 2: 0tg, 3: a3])

2 jsr 4 (o - INT - N1, [0 atg, 1: o4y, 20 02, 3: a3))

3 halt (INT - o - N1, [0: g, 1: o4, 20 oo, 3: INT])

4 store 1 (Cont(as - oug - NIL, [0: oy, 1: TOP, 2: ata, 3: ats]) - o - as - NIL, [0: g, 1: g, 20 ct, 30 03])
5 store 2 (o - as - NI, [0: a, 1: Cont(ois - aa - NI, [0: ag, 1: Top, 2: o, 3: as]), 2: oo, 3: as))
6 store 3 (ous - NIL, [0: o, 1: Cont(ats - o - NI, [0: o, 1: TOP, 2: aua, 3: as]), 2: ata, 3: 03])

7

8

9

ret 1 (o5 - aa - NI, [0: ag, 1: Cont(os - aa - NIL, [0: atg, 1: Top, 2: o, 3: as]), 2: o, 3: as])

Figure 2: A polymorphic swap subroutine

systems are only polymorphic over local variables that they do
not touch in any way.

The type for instruction O indicates that on entry, it expects an
empty stack, and the local variables can each have any type.

The type for instruction 4 indicates that on entry, the local
variables can have any type, but the stack must contain three
elements. The top element must be a return address, the next
element has some arbitrary type ou, and the last element has
some arbitrary type as. The returned-to instruction must accept a
state where the stack has two elements, the top having type os
and the next having type c. It must also accept local variable 0
having the same type it has on entry (o), local variable 1 being
unusable (Top), local variable 2 having type o and local variable
3 having type as. (Local variable 1 becomes unusable on return
because it holds the return address when the subroutine returns
at instruction 9; see Section 3.4 for why this is so.)

Note that instruction 3 is a valid return address for the subroutine
because its type “matches” the return address type. In type for
instruction 3, o can be any type, so we can substitute Top for it.
Similarly, we can substitute g for a4, and INT for as. The
resulting “instantiation” is precisely the return address type,
which shows that whatever state the subroutine returns in will be
acceptable at instruction 3.

2.4 Overview of the rest of the paper
Section 3 gives the type rules for JVML-0-C.

Section 4 compares JVML-0-C with JVML-0 and the JVM. In
Sections 5.1 and 5.2 we discuss how JVML-0-C admits certain
programs that are accepted by the JVM but not by JVML-0. In
Section 5.3 we mention some features that are typable in
JVML-0-C but not by the JVM. Then in Section 5.4 we analyze
aspects of the design of the JVM verifier, as captured by JVML-
0.

Section 6 presents some empirical data indicating that
subroutines are rarely used in real Java code, and the kinds of
situations that JVML-0 has trouble with are rarer still. However,
they do occur and must be handled.

Section 4 presents the dynamic semantics of JVML-0-C, which
are identical to those of JVML-0.

Section 7 introduces JVML-0-CB, a restriction of JVML-0-C to
programs for which the stack size at each instruction is known.

In Section 8 we establish the properties identified as important
by Stata and Abadi:

o Type safety. An instruction will never be given an operand
stack with too few values on it, or with values of the wrong

type.

o Program counter safety. Execution will not jump to
undefined addresses.

e Bounded operand stack. The size of the operand stack will
never grow beyond a static bound.

The first two properties hold for all JVML-0-C programs, but the
third property holds only for JVML-0-CB programs. In
JVML-0-C, with an unbounded operand stack, it is possible to
write bytecode programs that use recursive subroutines in
interesting ways, although such programs would never be
generated by a standard Java compiler. We distinguish the two
languages to demonstrate that the bound on the stack size is
separable from the rest of the type system.

In Section 9 we show that a program’s JVML-0 typing can be
translated into a JVML-0-CB typing, implying that every JVML-
0 program is also in JVML-0-CB.

3. STATIC SEMANTICS OF JVML-0-C
3.1 Preamble

We define substitutions S to map stack type variables to stack
types and element type variables to element types in the natural
way. The set of stack type variables and the set of element type
variables are disjoint.

We define “X; <X;” to mean instantiation, that is, “3 a
substitution S. S(X;) = X,”. The idea is that if a state can be
given a type X1, then it can also be given a type X, obtained from
% by instantiating the type variables. (Comparing this to STAL,
where the scope of a type variable is a basic block of
instructions, our approach is analogous to treating each
instruction as a block of length one, with an explicit transfer
from each instruction to its successor(s). This removes any need
to explicitly identify or reason about blocks, which would require
some overhead since JVML programs are simply a vector of
instructions, and not naturally block-structured as in STAL.)

A program P is an array of instructions, i.e. a partial map from
addresses to instructions. Addresses are isomorphic to integers,

but distinguished from them. We use + and the constant 1 for
addresses as well as integers. ADDR is the set of all addresses.

3.2 Typing programs

A program P is well-typed if there exists a partial function A
mapping instruction addresses to types, satisfying the judgement
A + P, for which we have one rule:

Vx € dom Var. g[x] = Top
A1 £(NIL, €)
ViedomA A i+ P
dom A ¢ dom P
A+P

The first and second hypotheses establish the initial conditions:
the state-type for the first instruction must admit the type that has
an empty stack and Top types for all the local variables. (In other
words, the local variables cannot be used in any meaningful
way.) The third hypothesis ensures that types are checked at each
program point using the rules below: A, i + P means that the
program type A is correct for P at instruction i. The fourth
hypothesis ensures that addresses outside the program are not
given types; thus, any instruction that could branch outside the
program will not be typable, because each instruction’s type rule
has hypotheses which depend on the types of each of the
successor instructions. We do not require every instruction to be
typable; unreachable instructions need not have types. Of course,
every constraint that mentions A; implicitly requires i to be in the
domain of A.

3.3 Widening

The widening operator < is defined by the rules in Figure 4. It
allows the type of any stack element or variable to be replaced
with Top. (Types inside a Cont do not change — allowing them
to be widened would violate soundness, because the state
accepted by the Cont might no longer be acceptable to the
returned-to code.) This operator is used to “erase” some type
information in the typing rule for ret, as discussed below.

0 < Oy
T< Ty
(0, T) < (OBw, T)

Vx € Var. Tx] < Tu[x]
T< Ty

T < Ty
0 < Ow
7.0 < 1Ty Ow

6<0
T<1

T < Top

Figure 4: Widening rules

Pli]=halt
Pli]=1if L

(InT- 0, T) = A
(INT- 0, T)=A; AiLP
A1 £(0,T) i
AL£(6,T) Pli] = pop
AitP (1-6,T)=A
o A1 £(0,T)
Pli]=1inc AibP
(InT- 0, T) = A
A £(InT- 0, T) P[i] = push0
AitP 0, T)= A
- . A £(InT- 0, T)
Plil=3sr L AiLP
0. D=A ’

A < (Cont(X)-0,T) Pli]=1loadx
Ai+1 <X (9, T) = A,‘
Ait+P A £ (T[x]- 6, T)
. Ait+P

Pli]=retx
®,TH)=A Pli] = storex
T[x] = Cont(Oyw, Tw) (1-0,T)=A
(0, T) < (Ow, Tw) Aw1 (8, Tx = 1))
Ait+P Ait+P

Widening extends pointwise over state, stack and local variable
types. Widening is reflexive. The last rule makes Top an upper

Figure 3: JVML-0-C Type Rules

bound for element types.

3.4 Typing instructions

For each kind of instruction, one of the rules in Figure 3 applies.

Each rule has a simple motivation: the type on entry to an
instruction 7 must satisfy the immediate operational requirements
of the instruction, and the types of i’s successor(s) must be
satisfied by the type of i’s “after” state. The same reasoning even
applies to j sr, where the “after” state contains a return address
whose type encodes the requirements of the returned-to
instruction. It also applies to ret, which introduces widening

only to avoid a need for recursive types.

For example, the second hypothesis of the inc rule can be read
“the state-type for instruction / implies that the top of the stack is
an InT, that the rest of the stack has type 6, and that the local
variables have types T”. The third hypothesis of the inc rule can
be read “the state-type for instruction /+1 admits a stack with an
INT top element and tail of type O, and local variables of types
T

The rule for halt ensures that an integer is left on top of the
stack as the return value for the method.

The rule for jsr ensures that whenever the subroutine returns to
i+1, it returns in state X, which will be acceptable at i+1.

The rule for ret ensures that the state on return is the state
expected by the return address. The third hypothesis ensures that
the type of variable x is a return address, and the fourth

Plpc] = inc

Pr<pe,fin-s>—><pc+1,f,(n+1) s>

Plpc] = pop

Pr<pe,fiv-s>—><pct+]1,f s>

Plpc] = push0

Ptr<pe,f,s>—><pct+1,f0-s>

Plpc]l=1loadx

Pt <pe,f,s>—<pc+1,f flx] - s>

Plpc]l = storex

Pr<pce,fiv-s>—><pct+1, flx = v], s>

Plpc]=1if L

Pr<pe,f,0-5>—><pc+1,f, s>

Plpc]=1if L

v£0

Pr<pe,fiv-s>—><L,f s>

Plpcl=jsr L

Pr<pe,f,s>—><L,f,(pc+1)- s>

Plpc] = retx

P+ <pe, f, s> — <f|x]. f. s>

Figure S: Dynamic Semantics for
JVML-0/JVML-0-C

hypothesis ensures that the current state type matches the type
expected on return.

Instead of these two hypotheses, it would be more natural to
simply write “T[x] = Cont(0, T)”. However, this would require
T[x] to be a recursive type. Introducing recursive types would
complicate the type system, and the extra programs that could be
typed by such a system may not be practically interesting.
Therefore, we avoid recursive types by allowing type information
to be erased using the widening operator. This allows us to type
Tw[x] as Top, effectively preventing the returned-to code from
having access to its own address in x. Other variables or stack
locations can also be erased, as in the JVM and JVML-0.

STAL solves the problem in a similar way; the register holding
the return address is never given a type by the code that is
returned to. In fact, giving a value type Top is always analogous
to simply omitting it from the STAL type signature.

Note that allowing generalization in any of the hypotheses for
ret (e.g. “(0, T) < (Bw, Tw)”) leads to unsoundness. Intuitively,
constant code can be polymorphic, and therefore instantiated at
different types by different predecessors, but a return address
value is not polymorphic, because the type variables in the type

of the returned-to code have already been bound in the type
environment of the caller.

4. DYNAMIC SEMANTICS OF JVML-0-C

The rules presented in this section are identical to those of
JTVML-0.

Execution starts at address 1; if 1 ¢ dom P, then no transitions
can occur and the program cannot typecheck. The initial state is
<1, f, > for some arbitrary f, where € is the empty stack.

The small-step transition rules are given in Figure 5.

5. COMPARING JVML-0-C WITH JVML-0
AND THE JVM

5.1 Typing subroutines with “abnormal”

behavior

Bytecode subroutines are used by Java compilers to compile try-
finally statements. The statement “try S finally F” executes S and
then F, no matter how control leaves S; if S throws an exception
or returns from the method, F will still be executed “on the way
out”. Typically the code for F is placed in a subroutine, and
called on each of the exit paths for S.

i Pli] A

0 pushO (NI, [0: atp, 11 ay, 2: 0g])

1 store 0 (InT - N1, [0: 0o, 1: 01, 20 at2])

2 pushO (N, [0: InT, 1: oy, 2: aa])

3 store 1 (InT - N1, [0: INT, 1: 011, 2: 02])

4 load 1 (N, [0: InT, 1: INT, 2: ap])

5 inc (INT - N1, [0: InT, 1: oy, 2: ap])

6 store 1 (InT - N1, [0: INT, 1: 011, 2: 02])

7 load 0 (N, [0: InT, 1: INT, 2: ap])

8 if 12 (INT - N1, [0: InT, 1: INT, 2: 0p])

9 jsr 14 (N1, [0: InT, 1: INT, 2: 02])

10 | load 1 (NI, [0: atg, 1: INT, 2: ap])

11 | halt (INT - NI, [0: at, 11 o, 2: 0g])

12 | jsr 14 (N1, [0: InT, 1: INT, 2: 02])

13 | goto 4° (N1, [0: InT, 1: INT, 2: 02])

14 | store 2 (Cont(NiL, [0: InT, 1: INT, 2: Topr]) - N, [0: INT, 1: INT, 2: 0i2])
15 | load 0 (N, [0: InT, 1: InT, 2: Cont(N1L, [0: InT, 1: INT, 2: ToP])])

16 | if4 (InT - N1, [0: InT, 1: INT, 2: Cont(NIL, [0: INT, 1: INT, 2: ToP])])
17 | ret2 (N1, [0: InT, 1: InT, 2: Cont(N1L, [0: INT, 1: INT, 2: TOP])])

Figure 7: A bytecode program with an “abnormal” subroutine

The question arises, “what happens if control does not leave F
‘normally””? Consider the code in Figure 6. This program would
loop forever, but one could replace “done” and “!done” with
more complicated boolean conditions yielding various results.
Sun’s Java compiler (supplied with JDK 1.1) produces bytecode
similar to the JVML-0-C code in Figure 7 (shown with one
possible JVML-0-C typing). Notice how the return address type
in local variable 2 is widened to Top on return so that the return
address type need not be recursive. The local variable 0
corresponds to done, and local variable 1 corresponds to x.

The “finally’ subroutine at 14 may not return; instead, it exits by
simply jumping out! A similar “‘exit without returning” can occur
when a subroutine throws an exception that is caught in the
method. These abnormal exits can make a subroutine appear to
be invoked recursively, or a subroutine can appear to return to
code that was not its immediate caller. JVML-0 cannot type such
programs, because it relies on control leaving a subroutine only
through a ret instruction. In JVML-0-C, because we do not
maintain a notion of the “current subroutine”, there is no need to
know when the subroutine is exited. The return address value is
simply discarded if it will not be used.

5.2 Typing control-flow merges

In the JVM, if there is a control flow merge where two
predecessors have incompatible types for a particular stack
element, the program is rejected. However, merging of two
incompatible types for a local variable yields Top. If the value of

? Unfortunately JVML-0 is so simple that it cannot faithfully
encode “goto” (an unconditional branch that does not depend
on the type of the following instruction). We take a little
license by using it here; the type rule for “goto” would simply
reqllire Atarget S Asource-

the local variable is dead at the merge point, then the program
can pass verification.

In JVML-0-C, this is achieved by typing a local variable with an
arbitrary type variable if the local variable is dead at the
instruction. This type variable can be instantiated in a different
way by each predecessor of the instruction; i.e. incompatible
types can be merged if the variable or stack element is dead at
the merge point.

5.3 Beyond the JVM

JVML-0-C is more flexible than the JVM in some ways. A
bytecode verifier based on JVML-0-C would allow constructs
that could be useful to advanced compilers for Java or other
languages.

JVML-0-C allows a subroutine to have multiple entry and/or exit
points (JVML-0 requires a single entry point, and the JVM
requires a single entry and a single exit). In some situations this

boolean done = false;
int x = 0;
while (true) {
try {
X++;
if (done) return x;
} finally {
if (!'done) continue;

}
}

Figure 6: A Java program with an “abnormal”
subroutine

i Pli] A

0 pushO (NI, [0: at, 1: a]) x =0,

1 store 0 (InT - N1, [0: 01, 1: 011])

2 jsr 5 (N, [0: InT, 1: a4]) call subroutine;
3 load 0 (N, [0: InT, 1: a4]) return x;

4 halt (INT - N1, [0: atg, 1: ou4])

5 load 0 (Cont(¢, [0: InT, 1: Tor]) - ¢, [0: INT, 1: oy]) subroutine: {

6 inc (InT - Cont(¢, [0: InT, 1: Tor]) - ¢, [0: INT, 1: o4]) x=x+1;

7 store 0 (InT - Cont(¢, [0: InT, 1: Tor]) - ¢, [0: INT, 1: o4])

8 load 0 (Cont(¢, [0: InT, 1: Tor]) - ¢, [0: INT, 1: oy]) if (x==0) {
9 if 11 (InT - Cont(¢, [0: InT, 1: Tor]) - ¢, [0: INT, 1: o4])

10 | jsr5 (Cont(¢, [0: InT, 1: Tor]) - ¢, [0: INT, 1: oy]) call subroutine;
11 | store 1 (Cont(¢, [0: InT, 1: Tor]) - ¢, [0: INT, 1: oy]) }

12 | retl (¢, [0: InT, 1: Cont(¢, [0: INT, 1: Tor])]) H

Figure 8: A recursive subroutine

would reduce duplication of code.

Our type system allows more polymorphism in subroutines than
the JVM-like systems. In those systems a subroutine is
polymorphic in the types of the local variables it does not touch.
In our type system, polymorphic values (including values on the
operand stack) can be manipulated by a subroutine, as long as
the operations do not constrain the value’s type. For example, the
program in Figure 2 contains a subroutine that swaps the values
of two stack elements regardless of their type.

JVML-0-C allows subroutines to be truly recursive. If a static
bound on the stack size is required for implementation reasons,
i.e., programs are restricted to JVML-0-CB, then recursive
subroutines are not very useful. If such a bound is not required,
then potentially useful recursive subroutines can be typed: see
Figure 8. This program calls the subroutine at 5 recursively,
incrementing local variable 0 each time, until the value reaches
zero. (Of course this never actually happens, but the type system
is oblivious to that fact.*)

5.4 Assessing subroutine constraints in the

JVM verifier

Because the JVM-like systems try to build an explicit model of
the subroutine call stack, they impose a LIFO discipline on
subroutine calls and returns. This necessitates subroutines being
named and associated with instructions — the purpose of the
“labeling rules” in JVML-0. These rules can reject programs if
no consistent labeling can be found (examples are programs that
jump out of subroutines as mentioned above). JVML-0 also uses
“strong labeling” rules to construct an abstraction of the call
stack at each program point. These rules reject all programs with
recursive subroutine calls. JVML-0-C shows that explicit
modeling of a subroutine call stack, and all the associated
machinery, is not necessary for a sound type system.

In order to maintain the LIFO behavior of subroutines, the JVM-
like systems must also carefully restrict the use of return address

3 Unfortunately JVML-0 cannot encode subtraction or a
comparison with nonzero.

values. In JVML-0, the type of a return address value is of the
form ret-from L. An instruction “jsr L” pushes a value of
type ret-from L into the stack, and a “ret” instruction
requires its argument to be of type ret-from L’ where L’ is the
first instruction of the current subroutine. In contrast, in
JVML-0-C the return address type simply specifies the state
expected by the returned-to code, and is not bound to any
particular subroutine. Because the JVML-0 type does not encode
the type of the return state, an extra nonlocal constraint in their
type rule for ret is used to ensure that the state on return is
acceptable to the returned-to code. The constraint is “nonlocal”
in the sense that it quantifies over all instructions in the program.
JVML-0-C does not require such nonlocal constraints.

Without additional constraints in JVML-0, there remains the
possibility that a subroutine I could return to an address
generated by a call to L that was not the most recently executed
call to L. Therefore their rule for jsr L prohibits any stack
element or local variable from being given the type ret—-from
L on entry to . — ensuring that only the most recently generated
return address is available for use.' In JVML-0-C nothing
prevents a subroutine from returning to an “old” address, but it is
still guaranteed to be safe. In other words, LIFO subroutine
behavior is not necessary for a sound type system.

JVML-0 and the JVM have explicit constraints preventing a
return address value from being used by a ret instruction more
than once. Interestingly, this property is also enforced indirectly
by JVML-0-C: it is a direct consequence of the absence of
recursive types in JVML-0-C. We could probably remove this
restriction by adding recursive types, but there is no justification
for the extra complexity.

* In a similar way, the constraints in Freund and Mitchell’s type
system for object initialization [FM98] ensure that only one
object of a particular type is available for initialization.

6. EMPIRICAL DATA ON THE USE OF

SUBROUTINES

We examined all the code in the standard JDK 1.1.4
classes.zip library. There are about 2.2 MB of bytecode
instructions, corresponding to 10986 method bodies. Of these,
175 contain at least one subroutine. Seven of these contain code
that would not typecheck with naive labeling rules based on
those of JVML-0. All these examples consist of subroutines
inside exception catch blocks: if an exception is thrown inside
the subroutine, control passes to the exception handling block
and the subroutine is deemed to have “returned”, although no
ret instruction has been executed.

In retrospect, it seems that adding subroutines to the bytecode
language may have been a poor design choice. In the 1-2% of
methods that use them, the compiler could have generated
explicit flags recording the caller and used conditional branches
to simulate a return. The need for polymorphism could be
avoided by duplicating more code and/or using more local
variables. It seems likely that the extra code size and runtime
costs would have been minimal overall, and bytecode verification
would have been greatly simplified. Of course, the need to
support legacy code means that we are stuck with the language as
it stands.

7. BOUNDING THE STACK SIZE IN

JVML-0-CB

The JVM requires that a static bound on the size of the stack be
known, and that the height of the stack be known at each
program point. This may simplify language implementations.

7.1 Additional type rule
We can enforce this constraint by using the following rule for
AP

Vx € dom VaR. g(x) = Top
A1 £(NIL, €)
ViedomA A i+ P
dom A c dom P
ViedomA In, 1, ..., T, T Ai=(t1- ... - T,- NI, T))
A+P

The extra fifth hypothesis forces each stack type to be a finite
string of element types.

We call the language of programs that satisfy this rule
JVML-0-CB. Clearly JVML-0-C is a superset of [VML-0-CB.

8. SOUNDNESS

The main result is practically identical to that of Stata and Abadi,
and establishes the type safety and program counter safety
properties. Their theorem statement mentions a type judgement
relating a dynamic stack to a stack type. To avoid introducing
such judgements for our theorem statement, we assume that the
method is supposed to return InT. (In this language, the only
alternative is to not return anything.)

Theorem 1 (Soundness). Given A + P, execution of P only stops
if a halt instruction is reached, and when it stops there is an
integer on top of the stack.

Ype, fo, 1, 8. .

(Pr<1,fo,e>—> <pc,f, s>

Adpe' [, s P+ <pc,f. s> — <pc' [, $>)
= Plpc]=halt Adn,s". s=n-s"

For the proof, we define an extended dynamic semantics for
typed programs that carries around some type information at
runtime. We show that the soundness result holds for this
semantics, and then show that standard dynamic semantics
corresponds to the extended semantics with the type information
erased.

The proof machinery also enables a demonstration that, in the
extended dynamic semantics, a given return address value can be
used by a ret at most once. Because we show that the extended
dynamic semantics bisimulates the standard dynamic semantics,
the result extends immediately to the standard dynamic
semantics.

9. TRANSLATING JVML-0 TYPES
JVML-0-CB is a superset of JVML-0. We show this by
translating a program’s JVML-0 type assignment into a valid
JVML-0-CB type assignment for the same program. The details
of this translation are given in Appendix B.

The correctness of the translation depends on the fact that
JVML-0 subroutines cannot use “nonlocal returns”, which
suggests that extending JVML-0 to handle nonlocal returns
would be nontrivial. The key problem with JVML-0 is that the
Cp; abstraction of the call stack at instruction i does not encode
enough information to determine, statically, whether a nonlocal
return should be allowed. For example, if Cp; = L - L; - Lo, then
we know that subroutine L is active, but we do not know if L; is
active. (This abstraction could be generated when 1; and L, each
call L.) Therefore a nonlocal return at / using a value of type
ret-from L; may or may not be valid.

10. IMPLEMENTATION ISSUES

The complete verification process must first generate the type
information, and then check it. Only the type checking phase
needs to be trusted.

10.1 Type checking

Checking types is straightforward, given the type assignment A
and for each jsr instruction, the “return to” type X used in its
type rule. With these in hand, all terms occurring in the type
rules are known. The equality and widening constraints are
easily checked by structural induction. The instantiation
constraints are checked by trying to unify the two terms while
treating the variables of the right hand side as constants.

We have implemented the typechecker in C, totaling about 350
lines of code, and used it to check the examples in this paper.

10.2 Type inference

The type system is closely related to type systems incorporating
polymorphic recursion [3]. Full type inference for polymorphic
recursion has been shown to be undecidable in the general case
[3]. In practice one would obtain types by applying some less
general algorithm, such as an algorithm analogous to the JVM’s
own verifier, and translate the types into JVML-0-C to be
checked for safety.

11. RELATED WORK

The type system is very similar to that of the Stack-based Typed
Assembly Language of Morrisett et al. [6]. They both rely on
polymorphic recursion to handle loops, and they both type code
addresses with the type of the state that the code expects on
entry. STAL’s existential types for closures are unnecessary
since JVML does not support closures. (Java does support “inner
classes”, a limited kind of closures, but they are translated to
JVML objects.)

Freund and Mitchell [2] investigated adding object initialization
constraints to JVML-0. It does not appear to be difficult to adapt
their approach to JVML-0-C.

Qian has formulated type checking and inference for a very rich
subset of JVML [7]. However, his machinery to handle
subroutines that do not exit cleanly is rather complex [Section
10.6 of [7]]. For example, for each instruction it constructs a
mapping from pairs of subroutine addresses to sets of local
variables.

Hagiya and Towaza [4] have proposed another method for
checking bytecode subroutines. Although it can handle some
kinds of nonlocal returns, it relies on constructing the set of all
possible “call stacks™ at each instruction, and therefore cannot
type programs with an infinite number of possible subroutine call
stacks (such as the valid Java program in Section 5.1).

12. CONCLUSIONS

We have developed a type checker for bytecode subroutines by
applying familiar concepts long known to the programming
language community — continuations and polymorphic recursion
— rather than creating ad-hoc structures based on the JVM’s
intuitive approach to approximating run-time behavior. This
enables a direct comparison between the two general approaches,
and we believe that the results show this “constraint based” type
checking is fundamentally simpler and more powerful.

We see no reason why this approach should be any more difficult
than other approaches to extend to full JVML. In particular, since
the set of VML object types and the subtype relation between
them is known a priori by the bytecode verifier, we would not
expect particular difficulties integrating a treatment of objects
into JVML-0-C.

Our work has several practical implications. In general it seems
that the design of “low level” typed languages such as bytecode
would benefit from experiences with the type systems of “high
level” languages. For JVML itself, our approach might lead to a
design for a simple checking engine whose implementation

would be easier to trust than that obtained by other approaches.
Furthermore, if such an engine were widely used, then the extra
programs it admits could be useful. For example, an optimizing
compiler could better compact bytecodes by using subroutines
with multiple entries and exits, or by collapsing similar code
sequences into a polymorphic subroutine and making use of the
extra polymorphism we provide. Compilers for other languages
that target Java bytecode might also be able to exploit the extra
flexibility.

13. ACKNOWLEDGEMENTS

T am supported by a Microsoft graduate fellowship. I would like
to thank the CMU POP group for constantly bombarding me with
types, and especially Robert Harper for his help and advice.

14. REFERENCES

[1] D. Dean, E. Felten and D. Wallach. Java Security: From
HotJava to Netscape and beyond. 1996 IEEE Symposium on
Security and Privacy, May 1996.

[2] S. Freund and J. Mitchell. A type system for object
initialization in the Java bytecode language. Proceedings of
the ACM SIGPLAN '98 Conference on Object-Oriented
Programming Systems, Languages and Applications,
October 1998.

[3] F. Henglein. Type inference with polymorphic recursion.
TOPLAS, Volume 15, No. 2, 1993.

[4] M. Hagiya and A. Towaza. On a new method for datatlow
analysis of Java Virtual Machine subroutines. Proceedings
of the Fifth International Static Analysis Symposium,
Springer-Verlag LNCS, 1998.

[5] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley.

[6] G. Morrisett, K. Crary, N. Glew and D. Walker. Stack-
Based Typed Assembly Language. 1998 Workshop on Types
in Compilation.

[7] Z. Qian. A formal specification of Java virtual machine
instructions. Formal Syntax and Semantics of Java,
Springer-Verlag LNCS, 1998.

[8] R. Stata and M. Abadi. A type system for Java bytecode
subroutines. Proceedings of the 25th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, January 1998.

