
The Indicator Lights Interface 33

These nine indicators appear in a small window that measures about 1” x 2” on the user’s
display. These indicators require a modest amount of screen real estate, a resource that is
precious to users, during normal operation. Because the expected benefit of the indicators
outweighs its cost in screen real estate, I expect the user will keep this indicator window
visible at all times. Note, however, that while the user investigates a problem indicated by
the interface, the screen real estate requirements increase. This change in resource
consumption is appropriate during periods when the user is actively engaged with the
interface [8].

Each indicator light can signal one of four states about the subsystem it monitors:

x Operating normally

x Developing a problem or experiencing a noncritical problem

x Experiencing a critical problem

x Indicator not operational or status unknown

The first three of these states are color coded to one of three urgency levels: normal,
warning, and critical. By default, the colors associated with these urgency levels are
green, yellow, and red. I chose this color scheme to make it easy for users to remember
since green, yellow, and red correspond to the colors used to signify similar meanings in
many situations in the United States—most notably traffic signs and signals. This color
scheme is not without its own difficulties. For instance, some users may be using a
monochrome monitor, others may be color blind, and not all cultures use green, yellow,
and red for these meanings. For these reasons, the user can easily customize the color
scheme used to represent these three urgency levels. In fact, the user can forego the use
of color and instead use different grayscale levels to signify the different urgency levels.
Figure 4.1 shows two views of the indicator window: one in the default green-yellow-red
color scheme and one in a monochrome scheme.8

(a) Color Scheme (b) Monochrome Scheme

Figure 4.1: Indicator Lights
This figure shows two views of the indicator lights. The indicator lights give users a
peripheral awareness of system state. View (a) shows the default green-yellow-red color
scheme. View (b) shows a monochrome scheme. In both views, the Tokens and
Network indicators are shown with a warning urgency level and the Space and Task
indicators are shown with a critical urgency level. All other indicators are normal.

8 A color supplement to this thesis is available at http://www.cs.cmu.edu/Reports

Control Panel 35

(a) Event Configuration Tab (b) Urgency Colors Tab

(c) Physical Connectivity Tab (d) Logical Connectivity Tab

(e) Behavior Tab

Figure 4.2: The Tabs of the Control Panel
This figure shows the supporting windows that appear when the Control Panel indicator
is double-clicked. From these windows, the user can control various aspects of the
interface. The Event Configuration tab, view (a), allows the user to control the way
events are notified. The Urgency Colors tab, view (b), allows the user to customize the
color scheme used to indicate the three levels of urgency. The Physical Connectivity
tab, view (c), allows the user to control connectivity to each Coda server. The Logical
Connectivity tab, view (d), allows the user to control the servicing of cache misses and
the propagation of updates while remaining fully connected to the network. The
Behavior tab, view (e), allows the user to disable confirmation dialogue boxes.

40 Interacting with the User

(a) All Systems Normal (b) Local Disk is Filling Up

(c) RVM Space Almost Full (d) Help Window for (c)

Figure 4.4: Space Information Window
This figure shows three views of the Space Information window as well as its help
window. View (a) shows the Space Information window when all three areas are within
normal limits. The three gauges in this view are all green. View (b) shows the window
when the local disk is beginning to fill up. Because there is still space available, the
local disk gauge is yellow (as would be the Space indicator light). View (c) shows the
window when the RVM space is almost full. Because there is almost no RVM space
available, its gauge (and the indicator light) would be red. View (d) shows the help
window that would appear if the user were to click on the Help button of view (c). This
window explains that the user should contact their system administrator to resolve this
problem.

Currently, this window shows one gauge for each server of which the client is aware. As
the number of Coda servers increases, the content of this window becomes lost to the
user. This window should be modified to list only those servers the user is actively
accessing. If the user is accessing more servers than can fit on the window, the interface
should allow them to be scrolled. Neither of these extensions would be difficult. Further,
the gauge shows the network bandwidth as a percentage of the maximum Ethernet
bandwidth, a metric that is not meaningful to the user. Rather than showing the relative
percentage of Ethernet bandwidth (e.g., 3%), the interface could show the absolute
bandwidth estimate (350 Kb/s). Neither of these modifications to the interface would be
difficult.

Network 41

(a) Client operating weakly connected (b) Client operating disconnected

Figure 4.5: Network Information Window
This figure shows two views of the Network Information window. View (a) shows that
this client is operating weakly connected to haydn and wagner, but strongly
connected to all the other Coda servers. The gauges for haydn and wagner are
yellow; those for the other servers are green. The Network indicator light would be
yellow in this situation. View (b) shows that this client is operating disconnected to all
servers. The gauges show a thin sliver of red. The Network indicator would also be red.

The distinction between strong and weak connectivity is made based upon comparing the
current network bandwidth estimate to a threshold. If the current bandwidth is above the
threshold, the system considers itself to be strongly connected; if it is below, the system
considers itself weakly connected. Ideally, users should have the ability to control the
value of this threshold, though novice users should not be required to manipulate it. Such
an extension is discussed in Section 9.2.2.1.

The behavior of this indicator, as described here, is probably not what I would design
today. The problem is that the indicator changes state before it is really appropriate to do
so. For example, as soon as the system realizes that a server has crashed, the indicator
turns red. However, because most Coda files are replicated, the fact that a single server
has crashed is not terribly important to the user. It would be more appropriate to change
the state of the indicator when a volume has transitioned into the disconnected state (of
Figure 2.1). The informational window would then need to expose the pathnames of
volumes operating disconnected (and weakly-connected) as well.

42 Interacting with the User

4.6 Advice

The fourth indicator light, labeled Advice, alerts the user to pending requests for advice
from Venus and of hoard hints. At critical decision points during operation, Venus may
request advice from the user. These requests frequently relate to network usage. At other
times, Venus may notice anomalies in the user’s hoard database and may alert the user to
them by way of a hint.

When the user double-clicks on this indicator light, the window shown in Figure 4.6
appears. It has two sections. The top section, labeled Advice Needed, contains a list of
advice requests. The bottom section, labeled Advice Offered, contains a list of hoard
hints. Each type of request and each type of hint are marked with either a warning or
critical urgency level. By default, requests are marked as critical only when a thread is
blocked waiting for a response. All other requests and all hints are alerted at the warning
level. The color of the indicator light is red if any critical requests are pending user
attention, and yellow if any noncritical requests or hints are pending attention. It is green
if there are no requests or hints outstanding.

Figure 4.6: Advice Information Window
This figure shows the Advice Information window. It is displayed whenever the user
double-clicks on the Advice indicator light. The top portion of the window, labeled
Advice Needed, contains queries posed by Venus. By answering these questions, the
user may influence the behavior of Venus. The bottom portion of the window, labeled
Advice Offered, contains hints offered to the user regarding the content of the cache
and of the hoard database. The circles to the left of each entry indicate the urgency of
the request.

Advice 47

(a) Initial View

(b) Expanded View

Figure 4.10: Hoard Walk Advice
This figure shows a hoard walk advice request. View (a) is displayed initially. The
upper left corner shows the status of the cache: the percentage of cache container files
and cache blocks dedicated to hoarded objects. The upper right corner shows the current
average bandwidth to the servers. The expected time to complete the hoard walk is
shown below the network status. The main area of the window shows a list of the tasks
that need data to be fetched. Initially, only the “All Tasks Needing Data” task is shown.
If the user expands this task as well as the tasks one level below it (by clicking on the
“+” signs or double-clicking their names) and then selects the sosp16 task, the
window shown in view (b) will be displayed. Italicized text names indicate a task that is
contained in more than one task definition. For each element of this hierarchical list,
the expected cost (currently shown only in units of time) is listed to the right of the task
name. Further to the right are two checkboxes. The left checkbox allows the user to
select the item to be fetched. The one to the right allows the user to instruct the system
to not fetch the item during the current hoard walk and, furthermore, to not ask about
this item in future hoard walks during this weakly connected session.

54 Interacting with the User

(a) Task Information Window (b) Task Definition Window

(c) Data Definition Window (d) Program Definition Window

Figure 4.15: The Windows Associated with the Task Indicator
This figure shows the four primary windows associated with the Task indicator light.
View (a) shows the window displayed after clicking on the indicator. The top section of
this window shows the status of the cache; the middle section shows a list of all defined
tasks; and the bottom section shows those tasks that have been hoarded, their priorities,
and their availability. View (b) shows the definition for the “writing thesis” task. This
definition contains the “writing” task, the programs for “ScreenCapture”, and the
“thesis” user data set. View (c) shows the definition for the “thesis” user data. This
definition includes the /coda/usr/mre/thesis directory and all its descendants as
well as the /coda/usr/mre/bib directory and its immediate children. View (d)
shows the definition for the “ScreenCapture” programs, including xpr, xv,
xwdtopnm, and ppmtogif.

58 Implementation

RPC

Venus

RPC

Advice
Monitor

User
Interface

Control Panel
Tokens
Space
Network
Advice
Hoard Walk
Reintegration
Repair
Task

CodaConsole

Translucent Caching API

Figure 5.1: Architecture
This diagram shows the architecture of the system. The CodaConsole consists of two
parts: the user interface and the Advice Monitor. The user interface implements the
graphical interface described in the previous chapter. The Advice Monitor acts as a
liaison between Venus and this interface. Venus notifies the Advice Monitor of various
events via the RPC interface implementing the Translucent Caching API.

These three pieces communicate using two different mechanisms. The user interface
communicates with the Advice Monitor via a pair of unidirectional pipes, as shown in the
figure. The Advice Monitor communicates with Venus via a pair of RPC2 connections,
also shown in the figure.

5.2 Details of Implementation

This section describes the implementation of each of the three components described
above. I begin by describing the implementation of the user interface, focusing on the
finite state machines that drive the indicator lights. I then present a brief description of the
Advice Monitor. I conclude with a summary of the modifications necessary to implement
the Translucent Caching API within Venus.

Details of Implementation 59

5.2.1 User Interface

Chapter 1 described the design of the user interface component of the CodaConsole. The
user interface, which is implemented in Tcl/Tk [39, 56] using the Tix widget library [29],
assumes the user is running a windowing system14. It is entirely event driven. As events
arrive, the interface notifies the user via the indicator lights. As the user requests
information, it displays the appropriate information windows. If it needs data from Venus,
it contacts the Advice Monitor to request that data.

The interface presented to the user contains a set of indicator lights. These indicator lights
are implemented as small, event-driven, finite state machines. The arrival of an event
potentially causes a transition from one state to another. These state changes may then
cause the appearance of the indicator lights to change. I will now describe three of these
state machines. The remaining ones are similar in spirit, though the details differ.

5.2.1.1 Tokens Indicator

The finite state machine for the Tokens indicator has three states: Valid, Invalid, and
Expired&Pending. The user is required to have tokens before the advice monitor begins
executing so the finite state machine will start in the Valid state. When the interface
receives notification that the user’s tokens have expired, the machine transitions into the
Invalid state. If the interface then receives a notification that an activity, a reintegration
for example, is pending tokens, the machine transitions into the Expired&Pending state.
The machine transitions to the Valid state from either of the other two states upon
receiving notification that the user has obtained valid tokens. These states and the
transitions between them are shown in Figure 5.2.

Expired & Pending

InvalidValid

TokenExpiryEvent

TokensAcquiredEvent

ActivityPendingTokensEventTokensAcquiredEvent

Figure 5.2: State Machine of the Tokens Indicator

14 Currently, the system works under X windows, though it does not require that windowing system.

Details of Implementation 61

Suspend

Stalled

Inactive Active

AdviceComplete

OnEvent

OffEvent

RequestAdvice

BeginWalk

EndWalk

WalkStatus

Figure 5.3: State Machine of the Hoard Walk Indicator

All Tasks
Available

At Least One
Task Unavailable

Task Available

Task Unavailable

Task Unavailable

Figure 5.4: State Machine of the Task Indicator

Reflections 141

Figure 7.33: Finding Originations
This figure shows where evidence for each
finding of Appendix F originated. The four
top-level nodes correspond to the tutorial (T),
exercises (E), questionnaire (Q), and
transcripts of verbal protocol (V). Each leaf in
the tree represents a single finding. The color
of the leaves represents the severity rating of
the given finding. Red indicates a Level 1
severity rating; yellow represents a Level 2
finding; green represents a Level 3 finding;
and, blue represents a Level 4 finding. The
size of the leaf represents the scope of the
finding. Wide leaves correspond to global
findings; narrow leaves correspond to local
findings.

V
Q

E
T

Reflections 143

X X X X X X X X X X X

X X X X X X X X X X X

X X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X

X X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

Figure 7.34: Frequency of Reporting
This matrix indicates which users contributed
evidence to which findings. Each box indicates that
the given user contributed evidence to the given
finding. The color of the box indicates the severity
of the finding: red represents level 1 problems,
yellow represents level 2, green represents level 3,
and blue represents level 4. The matrix has been
sorted so that more productive users appear in the
rightmost columns and more frequently reported
problems appear towards the top. The order of users
from left to right is: P2, S1, N4, P3, P5, C1, N1, E2,
P4, T1, N2, E1, E3.

Participants

Fi
nd

in
gs

144 Evaluating the Interface

y = 0.3165Ln(x) + 0.1853

R2 = 0.9801

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Participants

P
er

ce
nt

ag
e

of
 F

in
di

ng
s

R
ep

or
te

d

 (a) Severity Level 1

y = 0.375Ln(x) + 0.1188

R2 = 0.97

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Participants

P
er

ce
nt

ag
e

of
 F

in
di

ng
s

(c) Severity Level 3

y = 0.3565Ln(x) + 0.0958

R2 = 0.9613

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Participants

P
er

ce
nt

ag
e

of
 F

in
di

ng
s

(e) Severity Levels 1 and 2

y = 0.4006Ln(x) - 0.0027

R2 = 0.918

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13

Numbers of Participants

P
er

ce
nt

ag
e

of
 F

in
di

ng
s

(b) Severity Level 2

y = 0.0873x - 0.0499

R2 = 0.9783

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Participants

P
er

ce
nt

ag
e

of
 F

in
di

ng
s

(d) Severity Level 4

y = 0.3883Ln(x) + 0.0179

R2 = 0.987

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Participants

P
er

ce
nt

ag
e

of
 F

in
di

ng
s

(f) All Severity Levels

Figure 7.35: Number Users Required to Cover Most Severe Findings
This figure shows the number of participants necessary to cover the usability findings.
In Views (a)-(d), I show just the findings with severity levels 1-4 respectively. In View
(e), I show the most critical findings, those with a severity level of 1 or 2. In View (f), I
show all findings. In each view, I show the closest function that approximates the data.
All but one graph is most closely approximated by a log function. View (d), however, is
more closely approximated by a linear function.

168 Conclusion

Figure 9.1: Repairing Objects in Conflict
This figure shows the preliminary design of the repair module for the CodaConsole
interface. Windows similar to these would appear when the user double-clicks on the
name of an object in conflict in the Repair Information window of Figure 4.14. View
(a) shows the screen that would allow users to manually repair a directory with a
remove/update conflict. In this case, the file exists on rossini, but not on puccini
or scarlatti—perhaps one user deleted it while communicating with puccini and
scarlatti but another user updated it while communicating only with rossini.
View (b) shows the screen that would allow users to repair an update/update conflict
manually. In this case, users who were operating partitioned from one or more servers
both updated the file. Thus, the version of it stored on puccini and scarlatti
differs from the one on rossini. In these drawings, objects whose names appear in
red are in conflict, those whose names appear in black have fixes pending, and those
whose names appear in gray are not in conflict. Servers whose names appear in blue
represent hyperlinks that allow the user to examine the content of individual replicas.
The next and previous object buttons take the user to the next or previous object in
conflict. The done button begins the actual repair.

(a) remove/update conflict
(b) update/update conflict

