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Resource Conservation
in a Mobile Transaction System
Qi Lu and Mahadev Satyanarayanan, Senior Member, IEEE

Abstract —This paper addresses the problem of providing transactional support for improved data consistency in mobile file access,
while paying careful attention to the resource constraints of mobile clients. We present data on resource consumption from an
implementation of the isolation-only transaction (IOT) mechanism of the Coda File System. The data shows that the resource
conservation techniques used by the IOT mechanism do indeed result in modest demands on the three critical resources on a
mobile client: CPU and I/O usage, disk space, and RVM space. Overall, our measurements confirm that even a severely resource-
constrained mobile client can benefit from the improved consistency offered by the IOT mechanism.

Index Terms —Mobile computing, transaction, resource management, distributed file systems, disconnected operation, performance
evaluation, Coda File System.

——————————   ✦   ——————————

1 INTRODUCTION

AN mobile clients in a distributed file system preserve
a high degree of data consistency in spite of the mea-

ger processing and storage resources available to them? If a
mechanism to attain this goal is feasible, is it sufficiently
frugal in resource consumption to enable a mobile client to
operate fully disconnected for extended periods lasting
many days? Two factors make a positive answer to these
and related questions important.

First, mobile clients face wide variance in network qual-
ity, including frequent periods of disconnection. This
makes it a challenge to provide users with satisfactory per-
formance and availability while preserving an acceptable
level of consistency for shared data. Second, mobility as a
requirement generates relentless pressure on clients to be
lighter, smaller, and consume less power. Though resource-
rich mobile clients can be built, they will always be at a
competitive disadvantage with respect to smaller and
lighter rivals. Hence, any viable solution to the problem of
mobile data consistency must strive to keep its resource
costs low.

In this paper, we report on experimental data from the
isolation-only transaction (IOT) mechanism [9], [10] of the
Coda File System. This mechanism is an extension of the
original Coda design [7], [15] and improves the data con-
sistency of disconnected operation in three ways. First, the
IOT mechanism permits sequences of file operations from a
process tree to be grouped together for mutual consistency.
Second, it detects read-write consistency violations, not just
write-write violations as in the original Coda design. Third,
it supports a number of flexible resolution strategies to re-
cover from consistency violations. To the best of our
knowledge, this is the first paper to present detailed meas-

urements of resource consumption in a transaction system
for mobile computing.

Conceptual simplicity is the keystone of the techniques
for resource conservation in IOT. But in spite of their sim-
plicity, our measurements confirm that these techniques are
highly effective in keeping resource demands modest. For
instance, executing a typical Unix application as an IOT on
a disconnected client only increases its elapsed time by 3%.
As another example, the average disk space overhead of
supporting an entire week of active disconnected IOT ac-
tivities is only about 5MB—well within the capacity of even
the humblest mobile client today.

Since performance measurements and analysis are the
central focus of this paper, we only provide a minimal
overview of the IOT abstraction and implementation in
Section 2. More background material and a broader discus-
sion of IOT-related issues can be found elsewhere [9]. We
identify the key resources impacted by the IOT implemen-
tation in Section 3, and then devote an entire section to each
resource. These sections (4 through 6) are identical in
structure: a discussion of how the IOT mechanism impacts
a particular resource, a description of the techniques we use
to minimize this impact, and the presentation of measure-
ments confirming that these techniques are indeed success-
ful. We conclude the paper with a brief review of related
work and a summary of the results.

2 BACKGROUND

2.1 Coda File System
Coda is an experimental distributed Unix file system pro-
viding a single location-transparent name space to a large
collection of clients. Support for disconnected operation [6],
[7], [16] is primarily the responsibility of the user-level
cache manager, Venus, at each client. Venus allows applica-
tions to continue accessing cached data during periods of
disconnection; it also records updates performed while dis-
connected and replays them upon reconnection to servers
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in a process known as reintegration. Disconnected operation
is fully transparent to applications unless one of two events
occur: Uncached data is referenced while disconnected, or
write-write conflicts are detected upon reintegration. Since
Coda is intended for a usage environment dominated by
educational, research, software development, and docu-
ment processing workloads, its design goals specifically
exclude database workloads with high degrees of write-
sharing across users.

2.2 IOT Motivation and Rationale
The need for IOTs can be seen from a simple example. Sup-
pose an executive, who is disconnected, is writing a busi-
ness forecast in report.doc  based on data in a spread-
sheet budget.xls . Concurrently, his subordinate updates
the server copy of budget.xls . When the executive re-
integrates, Coda will transparently propagate his edits to
report.doc  since there are no write-write conflicts. But
there is clearly a consistency problem because the forecast
is now obsolete with respect to the new budget figures. This
is an instance of a read-write conflict, and epitomizes the
kind of situations that IOTs are intended to handle. Con-
ceptually, IOTs can be viewed as a realization of Kung and
Robinson’s optimistic concurrency control (OCC) model [8],
customized for a mobile computing environment and ap-
plied to a distributed Unix file system rather than a data-
base system.

The name “IOT” stems from the fact that the IOT model
focuses only on the isolation aspect of the classical ACID
transactional properties [3], [4]. This restriction of scope is
made for two reasons. First, the resource constraints of mo-
bile clients are likely to render support for full ACID prop-
erties too expensive. Second, it is inappropriate to offer
atomicity and durability guarantees on individual files
stronger than those provided by a client’s local Unix file
system in which Coda stores the contents of cached files.

Although IOT intrafile guarantees are only those of a local
Unix file, an IOT does provide stronger guarantees for its
metadata. This implies, for example, that the identity of files
involved in an IOT are robustly preserved across client
crashes even if updates to the contents of those files are lost
due to Unix’s write-behind policy. To provide these stronger
guarantees, IOT stores all its persistent meta-data using Re-
coverable Virtual Memory (RVM) [17], a software package that
endows regions of Venus’s address space with transactional
atomicity and durability properties. To benefit from these
properties, updates to recoverable memory must be per-
formed within the scope of an RVM transaction. When such a
transaction is committed, RVM flushes data pertinent to the
updates to a write-ahead log on disk. The log is asynchro-
nously truncated by RVM to reclaim disk space.

2.3 IOT Implementation
A working IOT extension to Coda has been implemented
and operational since early 1995. From a user’s viewpoint,
an IOT is just a flat sequence of file system calls bracketed
by the begin_iot() and end_iot() calls of the IOT
API. A new transaction1 is started whenever a nonnested

1. We will use the terms transaction and IOT interchangeably in the rest of
this paper as long as there is no ambiguity in the context.

begin_iot() call is issued by an application. All opera-
tions on Coda objects performed by the process that initi-
ated the transaction or its descendant processes are in-
cluded in the scope of the transaction; operations on non-
Coda objects are outside its scope. A special Unix shell,
called an IOT shell, allows shrink-wrapped applications to
be executed within IOTs.

IOT execution occurs entirely on the client. Execution re-
sults are held within the client cache, and are not visible on
the servers until the execution finishes. A completed trans-
action remains in the pending state until the client is recon-
nected to servers. Upon reconnection, pending transactions
are propagated to the servers one at a time, in a serial order
consistent with their local read-write dependencies. The
first step in transaction propagation is consistency validation,
which verifies that the local results of a pending transaction
are consistent with the current global server state using
serializability-based criteria. The transaction will be imme-
diately committed if it passes such consistency validation.
Otherwise, it is called an invalidated transaction and must be
resolved to restore data consistency. The objects involved in
the loss of data consistency are referred to as inconsistent
objects.

The IOT mechanism provides four options for resolving
an invalidated transaction: automatic reexecution, auto-
matic invocation of an application-specific resolver (ASR)
supplied by the user, automatic abort, and manual repair
using an interactive tool. To assist in resolution and manual
repair, the IOT mechanism uses a dual-replica representation
(DRR) mechanism to provide simultaneous access to both
the local (i.e., client) and global (i.e., server) states of objects
involved in the invalidated transaction. A local replica rep-
resents the object value that was last seen by the transac-
tion. By comparing this value with that of the global replica,
a resolver can construct an appropriate compensating ac-
tion. In the earlier example, when the read-write conflict
between budget.xls  and report.doc  is detected, the
DRR mechanism will enable the executive to compare the
client and server contents of these files, and to devise an
appropriate fix.

The IOT implementation has three major components in
Venus: the execution monitor, which keeps track of every file
operation and maintains data structures such as the read-
sets and writesets of IOTs; the concurrency controller, which
performs optimistic concurrency control across clients and
two phase locking (2PL) within a client; and the consistency
maintainer, which is responsible for validating pending
transactions and resolving invalidated transactions.

3 CRITICAL RESOURCES ON A DISCONNECTED
CODA CLIENT

Since the focus of this paper is resource conservation, we
restrict our attention to disconnected clients. While resource
consumption by the IOT mechanism on servers and con-
nected clients is relevant, it is far less critical. Enhancing the
CPU, memory, or disk resources on a server is usually a
much simpler proposition than on a client whose design
has been optimized for mobility. Further, a connected client
has the option of reclaiming disk space by flushing part of
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its cache; if necessary, it can also offload computation to
servers. In contrast, a disconnected client cannot resort to
these strategies. Flushing the cache may eliminate data that
is needed later in the disconnected session; it may also
cause loss of work if modified files are flushed before they
are propagated to servers. While disconnected, a client ob-
viously has no accessible server to which it can offload
computation—it has to rely entirely on its own resources.

In effect, disconnected clients offer a worst-case scenario
for the IOT mechanism. The longer the period of isolation,
the more critical resource conservation becomes. Empirical
data from Coda indicates that voluntary disconnections of
hours or days are common [13]. Hence, a key design goal of
the IOT mechanism is to be able to support extended peri-
ods of disconnection, lasting up to a week.

The IOT mechanism consumes three kinds of client re-
sources: CPU cycles and I/O operations togther contribut-
ing to increased elapsed time for applications, disk space,
and RVM space. The extra CPU cycles are needed to per-
form the housekeeping activities for IOT management. The
increased I/O operations arise from the recording of IOT
information in persistent storage. Disk space is mostly used
by the transaction system to record data needed by the DRR
mechanism. This overhead has to be paid for each IOT,
even though the infrequency of IOT invalidation means
that most of this data is discarded without being used. As
mentioned earlier, RVM space is primarily used by the IOT
mechanism for storing its metadata in a persistent and
fault-tolerant manner.

Each of the next three sections is devoted to one of these
three resources. For each resource, we first examine its use
in greater detail. We then describe the conservation strate-
gies for that resource in the current IOT implementation.
Finally, we present measurements from controlled experi-
ments, trace-driven simulation, or symbolic analysis to con-
firm that these techniques are indeed effective in keeping
resource consumption low.

Conspicuous by its absence from our discussion is an-
other important resource on a disconnected mobile client:
battery power. Minimizing its usage should indeed be a
goal relevant to the IOT mechanism. Unfortunately, only
crude tools are available to us to instrument client software
and hardware for measuring and analyzing power con-
sumption. We are therefore forced to exclude this impor-
tant resource from our purview. We are also unable to pro-
vide any data on the power savings possible by using stor-
age media such as flash or NVRAM rather than disk to
store persistent IOT data structures. Incorporating consid-
erations of power consumption would certainly be a valu-
able extension of the work presented here.

4 CPU AND I/O USAGE

In this section, CPU and I/O usage refer to the extra CPU and
I/O resources spent on IOT-incurred internal activities. We
use the term performance overhead to refer to the increase in
elapsed time caused by such CPU and I/O usage in exe-
cuting a particular task. Performance overhead is the metric
we use to characterize IOT-incurred CPU and I/O usage.

4.1 Sources of CPU and I/O Usage
IOT-incurred internal activities vary over a broad range
from simple bookkeeping to synchronizing concurrent
transactions. However, transaction management and file ac-
cess monitoring stand out as the primary sources of CPU and
I/O usage.

Transaction Management. Three kinds of activities are per-
formed by the transaction system on behalf of a transaction.
The first kind of activity is maintaining internal transaction
representations, particularly the transaction readset and
writeset. Whenever an object is read or written by an on-
going transaction, it needs to be immediately inserted into
that transaction’s readset or writeset. Information in an
element of the readset or writeset includes the internal
identifier of the object and its local version number. The
second kind of activity is maintaining dependencies on a
client among its live transactions (that is, those ongoing or
pending), using a data structure called a serialization graph
(SG). Each node in SG corresponds to a live transaction; an
edge between two nodes means that the corresponding two
transactions performed a pair of conflicting operations on a
common object. Note that transaction propagation must
follow the partial order dictated by the edges of SG. The
third kind of activity is performing local concurrency con-
trol using 2PL and maintaining a wait-for graph for periodic
deadlock detection [1].

File Access Monitoring. The CPU and I/O overheads de-
scribed in the previous section only occur on transactional
file operations (that is, those within the scope of some ongo-
ing transaction). But even normal file operations (that is, those
outside the scope of any transaction) incur some CPU over-
head due to the IOT mechanism. This is because the trans-
action system needs to determine, for every file operation,
whether it has been issued within the scope of an IOT. We
use the term file access monitoring to refer to the two main
steps necessary for distinguishing transactional file opera-
tions from normal file operations. For a file operation, op , the
kernel-resident part of the Coda client must obtain informa-
tion (such as process group id) specific to the process that
issued op . This information is passed to the user-level Venus,
which then uses it to determine whether op  belongs to an
ongoing transaction. Although these steps are simple and
cheap, the cumulative impact on CPU usage can be signifi-
cant because the cost is incurred on every file operation.

4.2 Reducing Performance Overhead
Transaction Management. Because the current IOT imple-
mentation represents sets and graphs using simple linked
lists, the predominant transaction management activities are
searching and updating linked lists stored in RVM. Although
list-searching is far more frequent, and though its cost grows
quadratically, RVM disk flushes triggered by updates to per-
sistent memory are orders of magnitude slower. Only when
the size of linked lists becomes extremely large will the quad-
ratic growth be able to outweigh persistent updates. Thus,
our efforts focus on minimizing the negative impact of per-
sistent updates on performance overhead.

We adopt the asynchronous update strategy that has
proven effective in a variety of contexts such as buffered
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I/O in Unix file systems. The basic idea is to defer updates
to persistent transaction data structures, at the risk of ex-
posing a small window of vulnerability for losing persistent
data. This offers two major performance benefits. First,
since RVM disk flushes are now asynchronous with respect
to updates, the flush latency is no longer directly borne by
the process that triggers those updates. Second, updates to
identical or overlapping ranges of RVM addresses can be
coalesced to reduce total RVM log traffic.

This strategy is used in two ways in the current IOT im-
plementation. First, we use RVM in the asynchronous flush
mode. In this mode, a separate daemon thread is dedicated
to performing asynchronous disk flushes for buffered RVM
updates, with a maximum delay bound of 30 seconds [6].
The second technique applies the same principle at a higher
level: Deferring updates to the persistent data structures of
SG in such a manner that a clean SG can still be recon-
structed upon restart after a crash.

File Access Monitoring. Minimizing the performance over-
head of file access monitoring is crucial because any signifi-
cant slowdown when IOTs are not being used will seriously
undermine the usefulness of the system. Most of the per-
formance cost here comes from gathering and passing the
process-specific information from the kernel to the user-level
Venus. There is no simple way to avoid this overhead.

Another source of overhead is searching through the
data structures of ongoing transactions. Since we do not
anticipate a large number of concurrent transactions on a
client, this overhead is likely to be small. We use a simple
scheme to completely avoid this search when possible: A
flag indicates whether there is any transaction currently
active in the system. If this flag is off, the IOT system can
immediately conclude that it is servicing a normal file op-
eration rather than a transactional file operation.

4.3 Evaluating Performance Overhead
Our evaluation of IOT-incurred CPU and I/O usage ad-
dresses the following questions. What is the performance
overhead of executing a typical Unix application as a trans-
action on a disconnected client? What is the corresponding
overhead without transactional encapsulation? What are the
dominant factors in transaction management performance?

4.3.1 Methodology
We rely on controlled experiments in which a broad range
of workloads are executed on a disconnected client. The

client is a DEC 425sl laptop with a 25MHz Intel 486 proces-
sor and a 400MB disk, running the Mach 2.6 operating sys-
tem. The workloads include the Andrew Benchmark [5],
replay of file reference traces [12], and four typical software
development and document processing tasks. To measure
the performance overhead of transaction management, we
compare the elapsed times of executing the selected work-
load with and without transactional encapsulation. To
measure the performance overhead of file access monitor-
ing, the comparison is between the elapsed time of execut-
ing the workloads as a normal application using a Venus
with the IOT extension (denoted IOT-Venus) and that using
a Venus without the IOT extension (denoted plain-Venus).

4.3.2 Performance Overhead of Transaction
Management

Andrew Benchmark. The Andrew Benchmark is widely
used for comparing file system performance. It has five
phases: MakeDir, which creates a few directories in a test
area; Copy, which copies files from a source tree into the
test area; ScanDir, which examines all the directories and
files in the test tree; ReadAll, which reads all the files; and
Make, which compiles a number of C programs. Fig. 1 pres-
ents the measurement results of executing the benchmark
as a single transaction as well as one transaction per phase.

The performance overhead of the entire benchmark is
about 10%, but the degradation across different phases
varies considerably. For example, the performance over-
head of the Copy phase is quite high, while that of the
Make phase is rather low. This is because the Copy phase is
very I/O intensive while the Make phase is not. I/O inten-
sity, defined as the frequency of file operations on Coda
objects, proves to be the dominant factor in determining
IOT performance overhead. The more I/O intensive a
transaction, the more frequent the need to extend its readset
or writeset. This, in turn, implies more persistent updates
within a given time period. As a result, there are fewer op-
portunities for RVM disk flushes to overlap with transac-
tion computation, thus leading to higher performance
overhead.

Trace Replay. Our experiments using trace replay work-
loads further confirm the negative impact of I/O intensity
on transaction performance. The workloads involve re-
playing four segments of file reference traces, each captur-
ing 30 minutes of heavy user activity. Characteristics of
these trace segments and more details of their use in replay

Objects Objects Single Transaction Transaction per Phase
Phase Read Updated Elapsed Time Overhead Elapsed Time Overhead

(seconds) (%) (seconds) (%)
MakeDir 8 4 1.6 (0.5) 23.1 1.7 (0.7) 30.8
Copy 150 74 17.9 (1.0) 34.6 19.5 (1.1) 46.6
ScanDir 23 0 17.3 (0.8) 10.9 18.5 (0.8) 18.6
ReadAll 169 0 27.5 (1.3) 11.8 28.2 (0.9) 14.6
Make 76 23 87.7 (1.6) 2.7 87.9 (2.3) 2.9
Total 426 101 152.0 (2.2) 8.4 155.8 (2.8) 11.13

This table displays the elapsed time of executing the Andrew Benchmark both as a single transaction and with each phase encapsulated in its own transaction.
The time values represent the mean over ten runs, and the numbers in parentheses are standard deviations. The listed performance overhead is with respect to
the elapsed time of executing the benchmark as a normal application using an IOT-Venus shown in the table in Fig. 4.

Fig. 1. Transaction performance for Andrew Benchmark.
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experiments have been described by Mummert [11]. The
I/O intensity of a trace replay experiment can be adjusted
by a parameter, l, referred to as think threshold. Delays less
than l seconds in the original trace are suppressed during
replay. When l = 1, most of the original delays are pre-
served so that replay proceeds at a speed close to that of the
original trace. When l = 60, few delays are preserved, thus
resulting in much higher I/O intensity.

The measurement results in Fig. 2 clearly demonstrate
the strong negative effect of I/O intensity on transaction
performance. For each of the four trace segments, the per-
formance overhead of transactional replay is less than 2%
when l is 1, but rises to between 10% to 20% when l is 60.
The overhead is still significantly lower than that of the first
two phases of the Andrew Benchmark. This is because of
longer execution duration, making RVM disk flushes less
influential on total performance. However, the overhead is
higher than that of the entire Andrew Benchmark due to
the higher overall I/O intensity.

Typical Tasks. To obtain another data point on the per-
formance overhead of IOT, we examine four software de-
velopment and document processing tasks representative
of common workloads in our environment. As shown in
Fig. 3, the observed performance overhead for these tasks
ranges between 1.5% and 4.5%. The two compilation tasks
have lower performance overhead mainly due to their
much longer execution duration. This offers transaction-
triggered RVM disk flushes more opportunities to overlap
with computation.

4.3.3 Performance Overhead of File Access Monitoring
We measured the performance overhead of file access
monitoring by comparing the elapsed time of executing the
set of workloads described in the previous section as nor-
mal applications using plain-Venus and IOT-Venus. The
results shown in Figs. 4, 5, and 6 indicate that the perform-

ance overhead is well under 1% most of the time. This
matches our qualitative experience that there is no notice-
able performance degradation when transactions are not
being used.

4.3.4 Summary
Our decision to focus on transaction-triggered RVM disk
flushes turns out to be well justified. The strategy of defer-
ring persistent updates is effective in keeping IOT perform-
ance overhead acceptable in most circumstances. Generally
speaking, given the same volume of I/O activity, the longer
it takes to run a transaction, the less the performance pen-
alty it suffers. Since normal Unix applications interleave file
access operations with computation and/or user think time,
observed performance degradation for transaction execu-
tion is typically around 3%.

Careful engineering and the simple optimization em-
ployed in file access monitoring are adequate to render its
performance overhead negligible under most circum-
stances. It should be noted that our evaluation does not
include concurrent transaction executions, where transac-
tion performance can vary widely depending on the pat-
terns of read-write sharing. A meaningful performance
study of concurrent transactions needs to wait until a sig-
nificant amount of empirical data on IOT usage has been
gathered.

5 DISK SPACE USAGE

5.1 Sources of Disk Space Usage
There are two forms of disk space overhead in the IOT
mechanism, both arising from the need to support conflict
resolution. First, in preparation for resolution, shadow files
have to be preserved in the cache between the time a trans-
action is completed locally and the time it is validated at a
server. Second, when resolution occurs, the DRR represen-
tation requires additional disk space to support multiple

I/O Intensive (l = 60) Non-I/O Intensive (l = 1)
Traces Normal Transactional Over- Normal Transactional Over-

Replay Replay head Replay Replay head
(seconds) (seconds) (%) (seconds) (seconds) (%)

Segment #1 225.0 (8.3) 250.0 (10.8) 11.1 1,659.8 (16.5) 1,687.4 (20.8) 1.7
Segment #2 278.6 (8.7) 309.4 (7.4) 11.1 1,572.4 (5.4) 1,597.8 (9.0) 1.6
Segment #3 125.4 (4.7) 149.6 (2.9) 19.3 1,537.4 (8.8) 1,564.0 (19.5) 1.7
Segment #4 24.8 (0.8) 29.2 (1.6) 17.7 1,570.2 (3.9) 1,575.4 (5.0) 0.3

This table shows the elapsed time of running trace replay both as a normal application and as a transaction. The time values represent the mean over five runs,
and the numbers in parentheses are standard deviations.

Fig. 2. Transaction performance overhead for trace replay.

Typical Normal Execution Transactional Execution Overhead
Tasks (seconds) (seconds) (%)
Compile a Coda Client 3,679.2 (50.7) 3,738.8 (34.5) 1.6
Compile a Coda Server 998.6 (6.3) 1,018.6 (3.6) 2.0
Typeset a PhD Dissertation 146.0 (1.9) 150.8 (1.5) 3.3
Typeset a Thesis Proposal 34.2 (0.5) 35.6 (0.6) 4.1

This table shows the elapsed time of executing four typical tasks in the Coda environment as transactions and as normal applications: compiling a Coda client,
compiling a Coda server, typesetting a 204-page PhD dissertation, and typesetting a 52-page thesis proposal. The time values represent the mean over five runs,
and the numbers in parentheses are standard deviations.

Fig. 3. Transaction performance overhead for common tasks.
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views of inconsistent objects. It should be noted that al-
though RVM indirectly uses disk space, we treat this usage
as a distinct resource and discuss it separately in Section 6.

Shadow Cache Files. The need to maintain shadow cache
files arises because the IOT mechanism presents a last-
access-snapshot view to resolvers. This view provides a
resolver with the access to the state of objects as seen by the
invalidated transaction at the end of its execution. Since
these last-access values may be locally updated by subse-
quent transactions, the IOT mechanism has to preserve
shadow copies in the cache. These shadow copies are cre-
ated lazily.

When an object obj is about to be updated and the current
value of obj was last accessed by at least one pending trans-
action, T, the transaction system will immediately create a
shadow cache file for obj and T, denoted shd(T,obj), and
use it to record the current value of obj. In case T fails con-
sistency validation, the value recorded in shd(obj,T) will
be used to present the last-access-snapshot view of obj to
T’s resolver. shd(T,obj) will be garbage collected as soon
as T is committed or resolved. We use the term shadow space
to refer to the disk space consumed by shadow cache files.

Conflict Representation. The second major source of disk
space usage is the DRR representation of inconsistent ob-
jects. Since an inconsistent object can be a directory, the

local or global replica of an inconsistent object is, in the
most general case, a subtree of objects rooted at that direc-
tory and representing its local or global state respectively.
The disk space for the subtree corresponding to the local
replica is supplied by the shadow cache files discussed in
the previous section. But additional disk space is required
for the global replica. It should be noted that this additional
disk usage occurs only infrequently, because conflicts are
rare. Further, this space is only used for a short period of
time since conflicts are typically resolved soon after their
detection.

5.2 Reducing Disk Space Usage
Shadow Cache Files. Our approach to keeping shadow
space consumption low involves a technique called transac-
tion cancellation. The intuition behind this technique is that
file updates are often repetitive. For example, the same set
of object files are often repeatedly regenerated in a typical
edit-compile-debug cycle. If each compilation is executed as
a transaction, a later transaction will completely wipe out
the results of the previous one. Therefore, there is no need
to retain the results of the redundant older transaction, be-
cause it no longer has any impact on the file system state.
Once a transaction has been declared redundant, its persis-
tent resources such as shadow cache files can be reclaimed
immediately.

Plain-Venus IOT-Venus Overhead
(seconds) (seconds) (%)

MakeDir 1.3 (0.5) 1.3 (0.5) 0.0
Copy 12.8 (0.9) 13.3 (0.9) 3.9
ScanDir 14.7 (0.7) 15.6 (0.7) 6.1
ReadAll 23.6 (0.8) 24.6 (0.8) 4.2
Make 85.0 (1.2) 85.4 (1.0) 0.5
Total 137.4 (0.7) 140.2 (0.9) 2.0

This table shows the elapsed time of executing the Andrew Benchmark as a normal application using both plain-Venus and IOT-Venus. The time values repre-
sent the mean over ten runs, and the numbers in parentheses are standard deviations.

Fig. 4. Nontransactional performance for Andrew Benchmark.

I/O Intensive (l = 60) Non-I/O Intensive (l = 1)
Traces Plain IOT Over- Plain IOT Over-

Venus Venus head Venus Venus head
(seconds) (seconds) (%) (seconds) (seconds) (%)

Segment #1 224.2 (9.0) 225.0 (8.3) 0.4 1,655.8 (5.3) 1,659.8 (16.5) 0.2
segment #2 277.2 (5.0) 278.6 (8.7) 0.5 1,564.8 (7.8) 1,572.4 (5.4) 0.5
Segment #3 125.0 (1.6) 125.4 (4.7) 0.3 1,523.4 (8.1) 1,537.4 (8.8) 0.9
Segment #4 24.6 (0.6) 24.8 (0.8) 0.8 1,564.6 (5.1) 1,570.2 (3.9) 0.4

This table shows the elapsed time of running trace replay as a normal application using both plain-Venus and IOT-Venus. The time values represent the mean
over five runs, and the numbers in parentheses are standard deviations.

Fig. 5. Nontransactional performance overhead for trace replay.

Typical Tasks Plain-Venus IOT-Venus Overhead
(seconds) (seconds) (%)

Compile a Coda Client 3,662.0 (37.0) 3,679.2 (50.7) 0.5
Compile a Coda Server 992.0 (8.3) 998.6 (6.3) 0.6
Typeset a PhD Dissertation 145.4 (0.6) 146.0 (1.9) 0.4
Typeset a Thesis Proposal 33.8 (0.5) 34.2 (0.5) 1.2

This table shows the elapsed time of executing the workloads described in Fig. 3 as normal applications using both plain-Venus and IOT-Venus. The time values
represent the mean over five runs, and the numbers in parentheses are standard deviations.

Fig. 6. Nontransactional performance overhead for typical tasks.
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In practice, detecting redundant transactions is more
complex than implied by the simple example above. The
transaction cancellation algorithm has to ensure that the
cancellation of a transaction, T, preserves strong semantic
equivalence. Our algorithm consists of three parts. First, we
maintain a transaction mutation log and use log-record
tagging to detect whether all the mutations performed by T
have been completely overwritten or offset2 by subsequent
transactions. This guarantees that T no longer has any di-
rect effect on the file system state. Second, we traverse SG
and analyze transaction read-write dependencies to ensure
that the elimination of T will not affect the consistency vali-
dation outcome of any other live transactions. Third, we
employ a graph-based method to make sure that all redun-
dant transactions containing offsetting mutations are can-
celed together. Further details of the transaction cancella-
tion algorithm can be found elsewhere [9].

Conflict Representation. Since resolution is usually of
short duration, its transient disk space usage is far less criti-
cal than the long-term space usage by shadow files. Rather
than striving for minimal disk space consumption, we have
therefore chosen to bias the DRR representation toward
greater flexibility and effectiveness from the viewpoint of
writing resolvers. The ideal DRR representation would
provide a mutable workspace replica in addition to read-
only local and global replicas. However, concerns of im-
plementation complexity as well as space overhead have
led to the current design which has a read-only local replica
and a mutable global replica. Our experience with writing
resolvers confirms that this is indeed a good compromise,

2. For example, rmdir foo/bar offsets a previous mkdir foo/bar.

striking the right balance between conserving disk space
and enhancing usability.

5.3 Evaluating Disk Space Usage
For shadow space, our evaluation concentrates on measur-
ing long term accumulated cost. For conflict representation,
the focus is on typical cases. Specifically, we address two
questions. What is the amount of shadow space needed for
disconnected transaction processing over an extended pe-
riod of time, up to a week? When a transaction is invali-
dated, what is the amount of disk space typically needed by
the DRR representation of an inconsistent object?

5.3.1 Shadow Space Cost
Methodology. We use trace-driven simulation to obtain a
realistic estimate of how much shadow space is needed to
support a full week of disconnected transaction processing.
Our analysis is based on five week-long file reference traces
from our environment, carefully screened to ensure sus-
tained high levels of activity. Fig. 7 displays salient charac-
teristics of these traces.

We have developed a transaction simulator that reads a
sequence of trace records, emulates disconnected transac-
tion processing activities, and records resource usage. A list
of pathnames representing applications to be executed as
transactions are provided as input to the simulator. Based
on manual examination of the traces, we have chosen the 13
frequently encountered applications shown in Fig. 8 as
candidates for transactional execution.

Results. Fig. 9a shows the high-water marks of shadow
space cost for the five traces. The highest cost is less than
9MB and the average cost is about 5MB. This is quite small

Trace Identifier Machine Name Machine Type Simulation Start Records
Full-Week #1 concord.nectar.cs.cmu.edu Sun 4/330 26-Jul-91, 11:41 4,008,084
Full-Week #2 holst.coda.cs.cmu.edu DEC station 3100 18-Aug-91, 23:31 2,303,306
Full-Week #3 ives.coda.cs.cmu.edu DEC station 3100 03-May-91, 23:21 4,233,151
Full-Week #4 messiaen.coda.cs.cmu.edu DEC station 3100 27-Sep-91, 00:15 1,634,789
Full-Week #5 purcell.coda.cs.cmu.edu DEC station 3100 21-Aug-91, 14:47 2,193,320

This table shows key characteristics of the five week-long traces used in the trace-driven simulations reported in Section 5.3.1. The Records column refers to
the number of trace records that are actually processed by the trace simulator during the simulated period of 168 hours. These traces have been used previously
by Kistler [6] and Mummert [11] for analyses of other aspects of Coda.

Fig. 7. Characteristics of file reference traces.

Application Executable Pathname Frequency
awk /bin/awk 9.16%
cc /usr/cs/bin/cc 5.31%
cp /bin/cp 1.48%
cpp /usr/cs/lib/cpp 0.02%
emacs /usr/cs/bin/emacs 0.77%
find /usr/cs/bin/find 1.45%
make /usr/cs/bin/make 6.25%
rcsci /usr/misc/bin/rcsci 0.01%
rcsco /usr/misc/bin/rcsco 0.30%
scribe /usr/misc/bin/scribe 0.02%
sed /bin/sed 8.40%
sh /bin/sh 66.00%
vi /usr/ucb/vi 0.83%

This table displays the name and pathname of the applications that are simulated as transactions. The Frequency column shows the percentage of each appli-
cation among the total number of simulated transactions.

Fig. 8. Transactional applications in trace-driven simulation.
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considering the growth of disk capacity on mobile clients, the
long duration of disconnection, and the large volume of
transaction activities shown in Fig. 10. On average, about 680
transactions are executed during a week, and over 37% of the
file operations occur within the scope of some transaction.

The effectiveness of transaction cancellation in keeping
shadow space cost low is evident from Fig. 10, which shows

that more than 55% of the transactions are redundant.
Fig. 9b shows what shadow space cost would have been,
had transaction cancellation been turned off. This graph
shows that the highest shadow space cost for a week would
have been close to 115 MB, and the average cost over 40 MB.
The reduction in shadow space cost by transaction cancel-
lation is thus about one order of magnitude!

(a)

(b)

The graph in part (a) shows the high-water marks of shadow space cost recorded by the transaction simulator for the five week-long traces shown
in Fig. 7. The graph in part (b) shows the same results except that transaction cancellation is not performed during the simulation. Note that the
scales of the Y axis are different in the two graphs.

Fig. 9. High-water marks of shadow space cost.

Total Live Read Canceled Total Transactional
Trace Tran. Transaction Only Transaction File File

Count Count Transaction Count Reference Reference
Count Count Count

#1 1,028 51 (5.0%) 277 (26.9%) 700 (68.1%) 4,008,084 2,596,980 (64.8%)
#2 781 86 (11.0%) 182 (23.3%) 513 (65.7%) 2,303,306 1,267,155 (55.0%)
#3 495 57 (11.5%) 231 (46.7%) 207 (41.8%) 4,233,151 396,427 (9.4%)
#4 142 40 (28.2%) 21 (14.8%) 81 (57.0%) 1,634,789 442,855 (27.1%)
#5 952 63 (6.6%) 514 (54.0%) 375 (39.4%) 2,193,320 642,647 (29.3%)

Avg 679.6 59.4 (8.7%) 245 (36.1%) 375.2 (55.2%) 2,874,530 1,069,212.8 (37.2%)

This table presents transaction and file reference statistics of the trace-driven simulations discussed in Section 5.3.1.

Fig. 10. Transaction statistics in trace-driven simulation.
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5.3.2 Disk Space Cost for Conflict Representation
Methodology. The amount of disk space consumed by the
DRR of an inconsistent object is given by the sum of the
sizes of the cache representations of the objects in the global
replica subtree of the DRR.3 The ideal way to obtain this
quantity would be to collect empirical data from resolutions
in a large-scale deployment of the IOT system. In the ab-
sence of such a deployment, we provide an estimate ob-
tained by a combination of trace-driven and symbolic
analysis. As input to this analysis, we use the file and di-
rectory characteristics from AFS [5] shown in Fig. 11. The

3. For brevity, we refer to “global replica subtree” as “replica subtree” in
the rest of this paper.

similarity in workloads and user populations of Coda and
AFS make this a reasonable extrapolation.

The first step in this evaluation is to estimate the height
of a typical replica subtree using trace analysis. Every rep-
lica subtree corresponds to a conflict, and every conflict
involves at least one update. By examining all the mutation
operations in a set of file reference traces, we can determine
the distribution of locations within the hierarchical file
name space referenced by those mutations. From this, we
can obtain the distribution of the heights of the replica sub-
trees rooted at the mutated locations.

The next step is to use symbolic analysis to deduce the
number of files in a typical replica subtree. This analysis is

Volume Type
Characteristic User Project System BBoard All
Total Number of Volumes 786 121 72 71 1,050
Total Number of Directories 13,955 33,642 9,150 2,286 59,033
Total Number of Files 152,111 313,890 113,029 144,525 723,555
Total Size of File Data (MB) 1,700 7,000 1,500 560 11,000
File Size (KB) 10.3 (65.0) 24.0 (145.7) 16.4 (72.6) 2.6 (7.0) 19.1 (118.0)
Directories/Directory 3.6 (13.4) 3.0. (4.5) 3.6 (10.4) 6.8 (19.4) 3.2 (8.3)
Files/Directory 14.6 (30.6) 16.2 (35.6) 15.9 (36.9) 66.9 (142.4) 15.7 (34.5)
Hard Links/Directory 3.7 (12.4) 2.0 (1.5) 4.0 (3.9) 0.0 (0.0) 3.4 (5.7)
Symbolic Links/Directory 4.1 (10.1) 3.4 (7.5) 13.6 (45.3) 6.0 (25.9) 6.3 (24.9)

This table summarizes various characteristics of system, user, project, and bulletin board volumes in AFS at Carnegie Mellon University in early 1990. The
data was obtained via static analysis by Ebling [2]. The numbers in parentheses are standard deviations.

Fig. 11. File and directory characteristics of AFS.

The table and graph in this figure show the distribution of replica subtree height over mutation operations obtained via trace-driven analysis on the
traces listed in Fig. 7.

Fig. 12. Height distribution for replica subtree.
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based on the height distribution obtained from the previous
step, and the file system statistics shown in Fig. 11. Finally,
an estimate of disk space usage for a typical replica subtree
can be obtained by multiplying the number of files in the
subtree and their average size.

Results and Analysis. The results of trace-driven analysis
of the week-long traces listed in Fig. 7 are shown in Fig. 12.
They confirm our intuition that most mutations are per-
formed close to the leaves of a hierarchical file name space:
A typical replica subtree has a height of two.

To obtain the relationship between the height of a sub-
tree and the number of files in that subtree, we need to
solve the following recurrences:

P(1) = 0 (1)

P(H) = F + D * P(H - 1)  (2)

where P(H) is the number of files in a subtree of height H, F
is the number of files per directory, and D is the number of
directories per directory. The solution to the above equa-
tions is:

P H F D DHa f e j a f= * - --1 1 1

Using the numbers from Fig. 11, we have:

P H Ha f e j= * --15 7 3 2 1 2 21. . .

Therefore, a typical replica subtree of height 2 will have
16 files in it. Since the average file size is 19.1 KB from
Fig. 11, a typical replica subtree costs 306 KB in disk space.
In other words, each inconsistent object involved in an in-
validated transaction will require roughly 300 KB for its
DRR representation during resolution. Even if the transac-
tion involves 100 inconsistent objects, the space cost still
remains a modest 30 MB—entirely acceptable as short-term
space usage.

6 RVM SPACE USAGE

The persistent, fault-tolerant virtual memory abstration
provided by RVM is a key element in keeping the imple-
mentation complexity of the IOT mechanism tractable.
However, this benefit of RVM comes at a price: Since RVM
is not integrated with the virtual memory component of the
operating system, its performance degrades rapidly with
the onset of paging [17]. To avoid paging, it is necessary to
keep the portion of Venus’ address space backed by RVM
to a small fraction of available physical memory. On to-
day’s laptops with 20 MB or so of memory, this implies
total RVM space usage of no more than a few MB.

6.1 Sources of RVM Space Usage
Persistent IOT Data Structures. The primary reason we
store IOT data structures in recoverable memory is because
important information about a transaction such as readset,
writeset, and the execution environment must be able to
survive crashes and shutdowns. Such events tend to be sig-
nificantly more frequent on mobile clients than on station-
ary workstations. The recoverable memory allocated to a
transaction can be reclaimed as soon as it is committed,

resolved, or canceled.

Conflict Representation. During conflict resolution, objects
belonging to the local or global replicas of a DRR must be
accessible to the resolver in the same way as a normal
cached object. This requires the IOT system to maintain an
internal persistent representation of such objects. This rep-
resentation primarily consists of file system metadata such
as link count, version information, size, and modification
time [6].

6.2 Reducing RVM Space Usage
Persistent IOT Data Structures. Since the amount of RVM
space used by transaction data structures is proportional to
the number of live transactions, the transaction cancellation
mechanism described in Section 5.2 also contributes to re-
ducing RVM space usage. Early experience with the IOT
mechanism revealed another significant opportunity for
reducing RVM space usage. Part of the meta-data associ-
ated with an IOT is the set of values of Unix environment
variables accessible to the IOT when it was initiated. Since
these variables are rarely modified, the simple optimization
of sharing a copy of this state across IOTs is highly effec-
tive. If a few of these variables are modified, only those
variable need to be explicitly represented in the state of
IOTs initiated subsequently—effectively a simple form of
copy-on-write.

Conflict Representation. Because of the strong similarity
between the ways persistent memory and disk space are
consumed by the DRR representation, the same resource
management strategy discussed in Section 5.2 is applicable
here.

6.3 Evaluating RVM Space Usage
Our evaluation of RVM space usage parallels that of disk
space usage presented in Section 5.3. We address two ques-
tions: What is the amount of RVM space needed for discon-
nected transaction processing over sustained periods, up to
a week? When a transaction is invalidated, what is the
amount of RVM space needed for representing an incon-
sistent object?

6.3.1 RVM Space Cost for Transaction Data Structures
Methodology. We employ the same trace-driven simula-
tion experiment described in Section 5.3.1 to measure the
accumulated RVM cost for maintaining persistent transac-
tion data structures during a full week of disconnected
transaction processing. We also use controlled experiments
to measure the RVM cost for individual transactions using
common workloads such as software development and
document processing. In addition, we execute three differ-
ent SynRGen micro-models [2] as workloads representative of
interactive transactions containing repetitive editing and
compiling activities.

Results. Fig. 13a displays the high-water marks of RVM
space cost recorded during trace-driven simulation. The
simulation assumes that the total RVM space cost for
maintaining the shared pool of environment variables is
3 KB, which is ample in our experience. The highest RVM   
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The graph in part (a) shows the high-water marks of RVM space cost recorded by the transaction simulator for the five week-long traces shown in
Fig. 7. The graph in part (b) shows same results except that transaction cancellation is not performed during the simulation.

Fig. 13. High-water marks of RVM space cost.

RVM Space Cost (B)
Application Total Readset Writeset
Latex Dissertation (204 pages) 3,162 2,340 612
Latex Proposal (52 pages) 1,052 756 108
Latex Short Paper (6 pages) 830 540 108
Build Coda Venus 13,278 8,280 4,794
Build Coda Server 7,493 6,012 1,247
Build Coda Repair Tool 2,146 1,584 340
Synrgen Codahacker 6,071 2,700 3,205
Synrgen Programmer 5,933 2,664 3,103
Synrgen Synrgenhacker 5,641 2,664 2,808

This table shows the RVM space cost for executing common applications as transactions. The Readset and Writeset columns display the RVM space cost
for storing the transaction readset and writeset respectively. Note that the total cost here does not include the RVM space for environment variables, which are
stored in a shared pool. The average RVM space cost of this pool is 2.4 KB in these workloads.

Fig. 14. RVM space cost for common transactions.

Average Average Average
Application Readset Writeset RVM Space
Name Size Size Cost (B)
awk 0.02 0.01 188.8
cc 18.1 2.7 862.7
cp 30.5 15.3 2,126.3
cpp 51.5 1.0 2,093.5
emacs 35.6 4.0 1,543.3
find 62.5 0.3 2,512.5
make 108.7 13.6 4,726.4
rcsci 13.0 7.0 779.0
rcsco 9.0 4.6 614.4
scribe 13.7 3.0 745.7
sed 0.1 0.02 193.1
sh 50.9 2.5 2,108.1
vi 5.5 2.4 390.2

This table shows the average RVM space cost and the average readset and writeset sizes of applications executed as transactions in trace-driven simulations
using the traces listed in Fig. 7. Note that the RVM cost here does not include the space for environment variables.

Fig. 15. RVM usage statistics from trace-driven simulation.
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space cost among the five traces in Fig. 13a is about 1.2 MB,
and the average cost is about 0.5 MB. This falls well below
the limit of a few MB of RVM space, mentioned earlier in this
section as necessary to obtain good RVM performance on
current mobile hardware. Fig. 13b shows the important role
of transaction cancellation in reducing RVM space usage.

Further data on RVM space usage by typical applications
is provided by Fig. 14, which reports on the results of con-
trolled experiments, and Fig. 15, which presents results
from trace-driven simulation. The data shows that RVM
space cost per transaction for most applications is small,
ranging from a few KB to about 13 KB.

6.3.2 RVM Space Cost for Conflict Representation
Methodology. Our approach to estimating the RVM space
cost for a typical replica subtree during resolution is identi-
cal to that discussed earlier in Section 5.3.2 for disk space
usage. We use symbolic analysis to derive a formula for the
number of nodes in a typical replica subtree, and then ap-
ply the empirical data presented in Fig. 11 to this formula.

Results and Analysis. The relationship between the num-
ber of nodes and the height of a subtree is the solution of
the following recurrences:

N(1) = 1 (3)

N(H) = (1 + F + L + S) + D * N(H - 1)  (4)

where N is the number of nodes; H is the subtree height; F
is the number of files per directory; L is the number of links
per directory; S is the number of symbolic links per direc-
tory, and D is the number of directories per directory. The
solution is the following formula:

N H D F L S D F L S DH Ha f a fe j a f= + + + * - - - - --1 1 1

Using the numbers from Fig. 11, we have:

N H H Ha f e j= + * --3 2 25 4 3 2 26 4 2 21. . . . .

According to this formula, a typical replica subtree with
a height of 2 contains 30 nodes. In the current Venus im-
plementation, each node costs about 392 bytes of RVM
space. Hence, a typical replica subtree costs around 11.7 KB
of RVM space. Even if a transaction being resolved has 100
inconsistent objects, the RVM space used by its DRR repre-
sentation will be less than 1.2 MB—certainly acceptable as
short-term RVM usage on today’s hardware.

7 CONCLUSION

Preserving data consistency in mobile computing environ-
ments is a challenge that has attracted growing interest in the
recent past. For example, the Bayou system [18], [19] is ex-
ploring techniques for managing databases that are repli-
cated on mobile clients. This work differs from Coda in its
use of a peer-to-peer model rather than a client-server model,
and in its focus on application-specific techniques rather than
the system-wide, transparent infrastructure provided by Ve-
nus. As another example, Pitoura and Bhargava [14] are in-
vestigating weakened consistency models for classical data-
base systems operating in mobile environments.

In contrast to these efforts, Coda extends the widely-
used Unix file system in a manner that improves consis-
tency yet is minimally demanding of applications. New or
existing applications can easily use the IOT extensions to
the Unix API. Even unmodified applications can benefit
from improved consistency if they are executed inside an
IOT shell. Nontransactional and transactional execution of
applications can be interleaved. Overall, the IOT mecha-
nism of Coda strikes a good balance between the conflicting
demands of consistency, upward compatibility, and re-
source conservation. To the best of our knowledge, this
work represents the first attempt to provide a transactional
capability for mobile file access that pays serious attention
to these pragmatic concerns.

The goal of this paper is to show that the benefits of
Coda’s IOT mechanism come at an acceptable price. Specifi-
cally, our goal is to demonstrate that resource consumption
on mobile clients by the IOT mechanism is acceptable. We
have presented measurements from the IOT implementation
to show that it is indeed minimally demanding of all three
critical resources on a mobile client: CPU and I/O usage, disk
space, and RVM space. Our measurements confirm that even
a severely resource-constrained mobile client can benefit
from the improved consistency offered by IOT.

The next step is to obtain broader validation of the IOT
concept. In particular, this paper does not provide evidence
on the usability of the IOT model, or of its applicability to a
wide range of applications. Only extended usage experi-
ence by a large and diverse user community can provide
the empirical data necessary to critically evaluate IOT along
these dimensions. We look forward to this challenge.
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