
he ability to access information
on demand at any location confers competitive advantage on
individuals in an increasingly mobile world. As users become
more dependent on this ability, the span of access of data
repositories will have to grow. The increasing social accep-
tance of the home or any other location as a place of work is
a further impetus to the development of mechanisms for
mobile information access.

These considerations imply that data from shared file sys-
tems, relational databases, object-oriented databases, and
other repositories must be accessible to programs running on
mobile computers. For example, a technician servicing a jet
engine on a parked aircraft needs access to engineering
details of that model of engine as well as past repair records
of that specific engine. Similarly, a businessman who is contin-
uing his work on the train home from Manhattan needs access to
his business records. Yet another example involves emergency
medical response to a case of poisoning: the responding per-
sonnel will need rapid access to medical databases describing
poison symptoms and antidotes, as well as access to the spe-
cific patient’s medical records to determine drug sensitivity.

This article is a status report on the work being done by
my colleagues and myself toward meeting such challenges. It
begins by describing a scenario that offers a tantalizing
glimpse of the power of mobile information access. The major
obstacles on the path toward this vision are then examined.
The rest of the article is a summary of research on overcom-
ing these obstacles in the context of the Coda and Odyssey
systems.

A Vision of Tomorrow
Imagine this hypothetical scenario of a business trip in the
year 2000:

You are sitting at your office desk, editing a report stored
in a shared file system. The machine you are using is a small
notebook computer, but it lets you use the larger and more
comfortable display and keyboard on your desk via a tabletop
infrared link. Soon it is time to leave for the airport.

When the limousine arrives, you pick up your notebook
and leave. On the ride to the airport you continue your work.
Your notebook recognizes that it is no longer on a local area
network (LAN), but continues communication with the
servers via a cellular modem. You finish your editing, save the

file, and send mail to your coauthor letting him know that he
can now review your edits. You then begin working on the
slides for your talk in Paris. Upon arrival at the airport, you
board your transatlantic flight and continue working.
Although each seat is provided with an outlet for air-to-
ground telephone service, your notebook inquires and discov-
ers that telephone charges are very high. It therefore wisely
decides to let you operate disconnected and to defer all com-
munication until you have landed.

When you arrive in your Paris hotel room, your notebook
discovers that the hotel’s late-night telephone charges are low,
and that there is a high-definition television (HDTV) set in
your room. It therefore propagates the changes you have
made so far, fetches new versions of some of the files you had
cached, picks up your mail, and uses the HDTV set as your
display. You work late into the night, putting the finishing
touches on your slides. The next morning, you present your talk.
Your notebook senses the presence of a large wall-sized dis-
play in the conference room, and shows your slides on it.
Since your talk is about a new piece of user-interface soft-
ware, you are able to give a live demo of it using the notebook.

Once your business is complete, you decide to play tourist
for a day before returning home. The concierge at your hotel
subscribes you to an excellent guided walking tour, and rents
you a heads-up display and headphones. Setting out with your
notebook in your backpack, you pick a route from the map
displayed. As you walk, you indicate items of interest on the
map. A short video describing the unique historical and archi-
tectural features of the site is seen, and the accompanying
audio commentary is heard. As you pass through a major
shopping district, advertisements of sales (translated by your
notebook into English) pop up on your display.

One of these interests you, and you walk into the store and
purchase a gift. The store clerk obtains your travel itinerary
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from your notebook and arranges for your duty-free purchase
to be delivered to the correct gate for your flight home tomorrow.

You continue on your walking tour for many more hours.
Exhausted, you decide to take the metro back to your hotel.
On the metro, you watch CNN on your notebook. From time
to time, as the train goes through regions of poor reception,
the displayed image degenerates from full-motion color to
slow-scan black-and-white.

The next morning, you head for the airport, pick up your
gift at the gate, and board the flight home. You can relax and
watch the movie: your notebook has been recording your pur-
chases and is now automatically preparing an expense report.
When you reach home, it will transmit the report to your sec-
retary for reimbursement.

Adaptation: The Key to
Mobile Information Access

W hat makes this scenario fiction rather than reality
today? Not the absence of proper hardware, since
most of the hardware technologies needed are close

at hand. What is missing is the software support. Developing
this software is the goal of our research.

Constraints of Mobility
Our goal is made challenging by four fundamental constraints
of mobility.

Mobile Elements Are Resource-Poor Relative to Static Ele-
ments — At any given cost and level of technology, considera-
tions of weight, power, size, and ergonomics will exact a
penalty in computational resources  such as processor speed,
memory size, and disk capacity. While mobile elements will
undoubtedly improve in absolute ability, they will always be
resource-poor relative to static elements.

Mobility Is Inherently Hazardous — A Wall Street stockbro-
ker is more likely to be mugged on the streets of Manhattan
and have his or her laptop stolen than to have the workstation
in a locked office be physically subverted. Even if security is
not a problem, portable computers are more vulnerable to
loss or damage.

Mobile Connectivity Is Highly Variable in Performance and
Reliability — Inside some buildings, a mobile element may
have reliable, high-speed wireless LAN connectivity; but in
other buildings, it may only have modem or integrated ser-
vices digital network (ISDN) connectivity. Outdoors, it may
have to rely on a low-bandwidth wireless wide area network
(WAN) with gaps in coverage.

Mobile Elements Rely on a Finite Energy Source — While
battery technology will undoubtedly improve over time, the
need to be sensitive to power consumption will not diminish.
Concern for power consumption must span many levels of
hardware and software to be fully effective.

These constraints are not just artifacts of current technolo-

gy, but are intrinsic to mobility. Together, they complicate the
design of mobile information systems and require us to
rethink traditional approaches to information access. In addi-
tion, scalability will be a growing concern because of the ubiq-
uity of mobile computers. Diversity of data will be another
key concern because the data repositories of tomorrow will be
much richer in content than traditional file systems or
databases.

The Need for Adaptation
Mobility exacerbates the tension between autonomy and inter-
dependence that is characteristic of all distributed systems. To
function successfully, mobile elements must be adaptive. The
relative resource poverty of mobile elements, as well as their
lower trust and robustness, argues for reliance on static
servers; but the need to cope with unreliable and low-perfor-
mance networks, as well as to be sensitive to power consump-
tion, argues for self-reliance.

Any viable approach to mobile computing must strike a
balance between these competing concerns. This balance can-
not be a static one; as the circumstances of a mobile client
change, it must react and dynamically reassign the responsibil-
ities of client and server.

Taxonomy of Adaptation Strategies
The range of strategies for adaptation is delimited by two
extremes, as shown in Fig. 1. At one extreme, adaptation is
entirely the responsibility of individual applications. While this
laissez-faire approach avoids the need for system support, it
lacks a central arbitrator to resolve incompatible resource
demands of different applications and to enforce limits on
resource usage. It also makes applications more difficult to
write, and fails to amortize the development cost of support
for adaptation.

At the other extreme, application-transparent adaptation,
the responsibility for adaptation is borne entirely by the sys-
tem. This approach is attractive because it is backward-com-
patible with existing applications: they continue to work when
mobile without any modifications. The system provides the
focal point for resource arbitration and control. The drawback
of this approach is that there may be situations in which the
adaptation performed by the system is inadequate or even
counterproductive for some applications.

Between these two extremes lies a spectrum of possibilities
that are collectively referred to as application-aware
adaptation. By supporting a collaborative partnership between
applications and the system, this approach permits individual
applications to determine how best to adapt, but preserves the
ability of the system to monitor resources and to enforce allo-
cation decisions.

We have been exploring application-transparent adaptation
since about 1990. Our research vehicle has been the Coda
File System, a descendant of the Andrew File System
(AFS) [1]. More recently, we have begun exploration of appli-
cation-aware adaptation in Odyssey, a platform for mobile
computing.

Coda: Application
Transparent Adaptation

C oda is an experimental file system whose goal is to offer
clients continued access to data in the face of server and
network failures [2]. It inherits many of the usage and

design assumptions of its ancestor, AFS. Clients view Coda as
a single location-transparent shared UNIX file system. The
Coda namespace is mapped to individual file servers at the

■ Figure 1. Range of adaptation strategies.
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granularity of subtrees, called vol-
umes. At each client, a cache man-
ager, Venus, dynamically obtains
and caches data as well as volume
mappings.

Disconnected Operation
Disconnected operation, a concept
first conceived and demonstrated in
Coda, is an important initial step in
mobile computing [3–5]. In this
mode of operation, a client contin-
ues to have read and write access
to data in its cache during tempo-
rary network outages. Transparency
is preserved from the viewpoint of
applications because the system
bears the responsibilities of propa-
gating modifications and detecting
update conflicts when connectivity is restored.

The ability to operate disconnected can be useful even
when connectivity is available. For example, disconnected
operation can extend battery life by avoiding wireless trans-
mission and reception. It can reduce communication expense,
an important consideration when rates are high. It allows
radio silence to be maintained, a vital capability in military
applications. And, of course, it is a viable fallback position
when network characteristics degrade beyond usability.

Cache Management — To support disconnected operation,
Venus operates in one of three states: hoarding, emulating,
and reintegrating, as shown in Fig. 2. Venus is normally in the
hoarding state, relying on servers but always on the alert for
possible disconnection. The hoarding state is so named
because a key responsibility of Venus in this state is to ensure
that critical objects are cached at the moment of disconnec-
tion. Upon disconnection, Venus enters the emulating state
and remains there for the duration of disconnection. Upon
reconnection, Venus enters the reintegrating state, resynchro-
nizes its cache with the servers, and then reverts to the hoard-
ing state.

While connected, Venus is in the hoarding state. Upon dis-
connection, it enters the emulating state and stays there until
successfully reconnected to a server. It then transits temporar-
ily to the reintegrating state, and thence to the hoarding state,
where it resumes connected operation.

While disconnected, Venus ser-
vices file system requests by relying
solely on the contents of its cache.
Since cache misses cannot be ser-
viced or masked, they appear as
failures to application programs
and users. The persistence of
changes made while disconnected
is achieved via an operation log,
called the change modify log (CML),
implemented on top of a transac-
tional facility called the recoverable
virtual memory (RVM) [6, 7].

Venus implements a number of
optimizations to reduce the size of
the CML. Before a log record is
appended to the CML, Venus
checks if it cancels or overrides the
effect of earlier records. For exam-
ple, consider the create of a file,
followed by a store . If they are

followed by an unlink , all three
CML records and the data associ-
ated with the store can be elimi-
nated. Both trace-driven simulations
and measurements of Coda in actu-
al use confirm the effectiveness of
log optimizations [4, 8].

Venus combines implicit and
explicit sources of information into
a priority-based cache management
algorithm. The implicit information
consists of recent reference history,
as in least recently used (LRU)
caching algorithms. Explicit infor-
mation takes the form of a per-
client hoard database (HDB),
whose entries are pathnames iden-
tifying objects of interest to the
user at that client. A simple front-

end program called hoard allows a user to update the HDB
directly or via command scripts called hoard profiles. Venus
periodically reevaluates which objects merit retention in the
cache via a process known as hoard walking.

Conflict Detection and Resolution — Coda addresses the
problem of concurrent partitioned updates using an optimistic
replica control strategy. This offers the highest degree of
availability, since data can be updated in any network parti-
tion. Upon reintegration, the system ensures detection of con-
flicting updates and provides mechanisms to help users
recover from these situations.

Coda uses different strategies for handling concurrent updates
on directories and files [9]. For directories, Venus possesses
enough semantic knowledge to attempt transparent resolution
of conflicts. Resolution fails only if a newly created name col-
lides with an existing name, if an object updated at the client
or the server has been deleted by the other, or if directory
attributes have been modified at the server and the client [10].

Since UNIX treats files as uninterpreted byte streams,
Coda does not possess sufficient semantic knowledge to
resolve file conflicts. Rather, it offers a mechanism for
installing and transparently invoking application-specific
resolvers (ASRs) [11]. An ASR is a program that encapsulates
the detailed, application-specific knowledge necessary to dis-
tinguish genuine inconsistencies from reconcilable differences.
Appointment calendars, electronic checkbooks, and project

diaries are examples of applications
where an application-specific
approach to conflict resolution can
have big payoffs. If an ASR is
unsuccessful, the inconsistency is
exposed to the user for manual
repair.

When the manual repair tool is
run on a client, Venus presents the
illusion of an in-place “explosion”
of inconsistent objects into their
distinct versions. Since inconsisten-
cies appear as read-only subtrees in
the existing name space, UNIX util-
ities such as diff and grep can
be used to construct appropriate
replacements for the inconsistent
objects. Upon completion of repair,
the exploded subtrees are col-
lapsed, thus reverting to a normal
name space.

■ Figure 2. Venus state and transitions for discon-
nected operation.
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Weakly Connected Operation
Weak connectivity, in the form of intermittent, low-bandwidth,
or expensive networks, is a fact of life in mobile computing.
Disconnected operation can be viewed as the extreme case of
weakly connected operation — the mobile client is effectively
using a network of zero bandwidth and infinite latency. How-
ever, although disconnected operation is viable, it is not a
panacea. A disconnected client suffers from many limitations:
• Updates are not visible to other clients. 
• Cache misses may impede progress.
• Updates are at risk due to theft, loss, or damage.
• Update conflicts become more likely.
• Exhaustion of cache space is a concern.

We have implemented a series of modifications to Coda
that alleviate these limitations by exploiting weak connectivity
[12]. Our modifications span a number of areas. At the lowest
level, the transport protocol has been extended to be robust,
efficient, and adaptive over a wide range of network band-
widths. Modifications at the higher levels include those need-
ed for rapid cache validation after an intermittent failure, for
background propagation of updates over a slow network, and
for user-assisted servicing of cache misses when weakly con-
nected.

Rapid Cache Validation — Coda’s original technique for
cache coherence while connected was based on callbacks [1,
2]. When a client is disconnected, it can no longer rely on call-
backs. Upon reconnection, it must validate all cached objects
before use to detect updates at the server. Unfortunately, the
time for this validation can be substantial on a slow network.

Our solution allows clients to track server state at multiple
levels of granularity. A server now maintains version stamps
for each of its volumes, in addition to stamps on individual
objects. When an object is updated, the server increments the
version stamp of the object and that of its containing volume.
Clients cache volume version stamps in anticipation of discon-
nection.

When connectivity is restored after a network failure, the
client presents volume stamps for validation. If a volume
stamp is still valid, so is every object cached from that volume.
If a volume stamp is not valid, cached objects from the vol-
ume must be validated individually. Even in this case, perfor-
mance is no worse than in the original scheme. Controlled
experiments as well as measurements from Coda in actual use
confirm that this approach dramatically improves the speed of
cache validation.

Trickle Reintegration — Trickle reintegration is a mechanism
that propagates updates to servers asynchronously, while
minimally impacting foreground activity. Supporting trickle
reintegration required major modifications to the structure
of Venus. As depicted in Fig. 2, reintegration was originally
a transient state through which Venus passed en route to
the hoarding state. Since reintegration is now an ongoing
background process, the transient state has been replaced by
a stable one called the write-disconnected state. Figure 3
shows the new states of Venus and the main transitions
between them.

Trickle reintegration reduces the effectiveness of log opti-
mizations, because records are propagated to the server earli-
er than when disconnected; thus, they have less opportunity to
be eliminated at the client. A good design must balance two
factors. On one hand, records should spend enough time in
the CML for optimizations to be effective. On the other hand,
updates should be propagated to servers with reasonable
promptness. Our solution, illustrated in Fig. 4, uses a simple
technique based on aging. A record is not eligible for reinte-

gration until it has spent a minimal amount of time in the
CML. This amount of time, called the aging window (A) estab-
lishes a limit on the effectiveness of log optimizations. Based
on the results of trace-driven simulations, we have set the
default value of A to 10 min.

At the beginning of reintegration, a logical divider called
the reintegration barrier is placed in the CML. During reinte-
gration, which may take a while on a slow network, the por-
tion of the CML to the left of the reintegration barrier is
frozen. Only records to the right are examined for optimiza-
tion. If reintegration is successful, the barrier and all records
to its left are removed. If a network or server failure causes
reintegration to be aborted, the barrier as well as any records
rendered superfluous by new updates are removed.

Reintegrating all records older than A in one chunk could
saturate a slow network for an extended period. The perfor-
mance of a concurrent high-priority network event, such as
servicing a cache miss, could then be severely degraded. To
avoid this problem, we have made the reintegration chunk
size adaptive, thus bounding the duration of degradation. If a
file is very large, we transfer it as a series of fragments, each
smaller than the currently acceptable chunk size. If a failure
occurs, file transfer is resumed after the last successful frag-
ment.

User-Assisted Cache Miss Handling — When weakly connect-
ed, the performance impact of cache misses is often too
large to ignore. In many cases, a user would rather be told
that a large file is missing than be forced to wait for it to be
fetched over a weak connection. However, there are also situ-
ations where a file is so critical that a user is willing to suffer
considerable delay. We refer to the maximum time a user is
willing to wait for a particular file as his patience threshold for
that file.

Coda incorporates a user patience model to provide adap-
tivity in cache miss handling. This model helps maintain
usability at all bandwidths by balancing two factors that
intrude on transparency. At very low bandwidths, the delays in
fetching large files annoy users more than the need for inter-
action. As bandwidth rises, delays shrink and interaction
becomes more annoying. To preserve usability, Coda handles
more cases transparently. In the limit, at strong connectivity,
cache misses are fully transparent.

Our initial user patience model is logarithmic, based on
the conjecture that patience is similar to other human pro-
cesses such as vision. Figure 5 illustrates this model. Rather
than expressing the patience threshold in terms of seconds, we
have converted it into the size of the largest file that can be
fetched in that time at a given bandwidth. If the estimated
cache miss service time for a file is below its patience thresh-
old, Venus services the miss transparently; otherwise, Venus
reports the miss by returning an error. At any time, users can
examine the history of recent cache misses and augment the
hoard database appropriately. They can also interactively con-
trol the files fetched in hoard walks.

■ Figure 4. CML during trickle reintegration.
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Isolation-Only Transactions
Coda’s emulation of the UNIX file system model has the ben-
efit of compatibility with existing applications. Unfortunately,
the UNIX model is weak in terms of consistency support for
concurrent file accesses. In particular, UNIX has no notion of
read-write file conflicts. This deficiency becomes especially
acute in mobile computing, because extended periods of dis-
connected or weakly connected operation may increase the
probability of read-write inconsistencies.

Consider, for example, a CEO using a disconnected laptop
to work on a report for an upcoming shareholder’s meeting.
Before disconnection he caches a spreadsheet with the most
recent budget figures available. He writes his report based on
the numbers in that spreadsheet. During his absence new bud-
get figures become available, and the server’s copy of the
spreadsheet is updated. When the CEO returns and reinte-
grates, he needs to discover that his report is based on stale
budget data. Note that this is not a write-write conflict, since
no one else has updated his report; it is a read-write conflict,
between the spreadsheet and the report. No UNIX system has
the ability to detect and deal with such problems.

We have extended Coda with a new mechanism called iso-
lation-only transactions (IOTs) to alleviate this shortcoming
[13]. The IOT mechanism offers improved consistency for
applications in a convenient and easy-to-use fashion. The
mechanism is efficient, minimally demanding of resource-poor
mobile clients, and upward-compatible with existing UNIX
software.

An IOT is a sequence of file operations that are treated as
a unit for purposes of conflict detection and resolution. The
name stems from the fact that this mechanism focuses solely
on the isolation aspect of the classic ACID transactional prop-
erties [14]. In other words, IOTs do not guarantee failure
atomicity and only conditionally guarantee permanence. The
IOT subsystem of Venus performs automatic read-write con-
flict detection based on certain serializability constraints. It
supports a variety of conflict resolution mechanisms such as
reexecution and the use of ASRs.

Coda provides two ways to use IOTs. Users can use a spe-
cial IOT shell to transactionally encapsulate selected unmodi-
fied UNIX applications. Alternatively, they can modify
applications using the IOT programming interface. Figure 6
shows an example of the use of IOTs in Coda.

Status and Experience
Evolution — Disconnected operation in Coda was implement-
ed over a period of two to three years. A version of discon-

nected operation with minimal functionality was demonstrat-
ed in October 1990. A more complete version was functional
in early 1991 and has been used since then by members of the
Coda project.

Work on the extensions for weak connectivity began in
1993. The transport protocol extensions and rapid cache vali-
dation mechanism have been in regular use for over a year.
The trickle reintegration and user advice mechanisms were
implemented between 1994 and early 1995, and have recently
been released for general use.

A prototype implementation of IOT support in Coda has
been completed. An evaluation of this prototype based on
controlled experiments confirms that the resource demands of
IOTs are indeed acceptable in a mobile environment. This
prototype now awaits more extensive use.

Current Deployment — Coda is currently deployed to a user
community of Coda developers and other computer science
researchers. Our deployment is currently on Mach 2.6, but we
are porting Coda to NetBSD. We have over 40 user accounts,
of which about 25 are used regularly. Many users run Coda on
both their desktop workstations and their laptops. We have a
total of about 35 Coda clients, evenly divided between work-
stations and laptops. The laptops are 486-based DEC 425SLs
and IBM ThinkPad 701Cs, while the workstations are mostly
DECStation 5000/200s. These clients access almost 4 GB of
data stored on Coda servers. Indeed, there are many more
people wishing to use Coda than we can accommodate with
hardware or support services.

Empirical Study — How will people use mobile computing?
The answer to this question is important because it will criti-
cally influence future designs of mobile computing systems. As
a first step in answering this question, we have instrumented
our deployed Coda system and have been conducting an
ongoing empirical study of system and user behavior [8].

Our data shows that Coda clients do experience various
kinds of service failures, but that Coda is able to mask these
failures effectively. Our observations confirm many earlier
simulation-based predictions on resource usage, as well as
many anecdotal reports from our user community. Our study
has also produced some surprises. For example, the number
of transient failures observed has been far larger than antici-
pated. Another surprise is the tendency of users to limit muta-
tion activity while voluntarily disconnected.

Source Code Distribution — Since 1992 Coda has been dis-
tributed in source code form to several sites outside of
Carnegie Mellon University. Porting Coda to a new machine
type has proven to be relatively straightforward. Most of the
code is outside the kernel. The only in-kernel code, a virtual
file system (VFS) driver [15], is small and entirely machine-
independent. Porting simply involves recompiling the Coda
client and server code, and ensuring that the kernel works on
the specific piece of hardware.

Odyssey: Application
Aware Adaptation

Although the viability of application-transparent adapta-
tion has been demonstrated by Coda, there are impor-
tant situations where it is inadequate. This is likely to be

especially true of applications involving multimedia data such
as videos and maps. Furthermore, the Coda approach relies
heavily on caching, and is likely to fall short when there is no
temporal locality to exploit. This situation is likely to arise in

■ Figure 5. Patience threshold versus hoard priority.
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scenarios involving the search of data repositories from
mobile clients.

We are exploring solutions to these problems in the con-
text of Odyssey. Our approach is not to invent a new operat-
ing system but to extend UNIX with a small but powerful set
of extensions for mobile computing. In keeping with this mini-
malist philosophy, we also strive to keep changes to existing
applications small and consistent with the UNIX program-
ming idiom. Since application transparency is a degenerate
case of application awareness, we expect to eventually incor-
porate Coda as part of Odyssey. However, the initial develop-
ment of the two systems is proceeding along separate paths.

Support for Application-Aware Adaptation
The need for application-aware adaptation can be seen from a
simple example. Consider a movie player capable of display-
ing stored video images. Below a certain bandwidth and net-
work quality, it will not be possible for the player to display
the images in full-motion color. Extensive compression will
help, but cannot solve the problem completely. However, if
the application is also capable of displaying the image in slow-
scan black and white, it could automatically do so when band-
width falls below a critical threshold.

Fidelity — That slow-scan black-and-white display is a reason-
able form of degradation is specific to video data. Other data
types may have entirely different forms of degradation that
are meaningful to them. For example, increasing the mini-
mum feature size displayed may be an appropriate form of

degradation for map data. We define fidelity as the degree to
which a copy of data presented for use at a client matches the
reference copy at a server. Fidelity has many dimensions. One
well-known universal dimension is consistency; other dimen-
sions depend on the type of data in question. The dimensions
of fidelity are natural axes of adaptation for mobility. But the
adaptation cannot be determined solely by the type of data; it
also depends on the application. For example, if the applica-
tion were a video editor rather than a video player, slowing
the frame rate would be a more appropriate form of degrada-
tion than dropping frames to preserve the frame rate.

Resource Negotiation API — Odyssey provides an application
programming interface (API) for resource negotiation [16].
The resources in question may be generic, such as network
bandwidth, cache space, processor cycles, or battery life.
Resources may also be application-specific, such as the num-
ber of queries left to a limited-subscription stock quotation
service.

An application initially tries to access data at the highest
level of fidelity. If the resources needed for this exceed what
is currently available, Odyssey informs the application of this
fact. The application then selects a fidelity level consistent
with available resources. It also registers a window of toler-
ance for each resource of interest. At a later time, if the avail-
ability of a resource improves or degrades beyond this window,
Odyssey will notify the application. It is the application’s
responsibility to then renegotiate the resources needed for an
appropriate level of fidelity.

■ Figure 6. Example of IOT usage.
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Name Space and Client Structure — Odyssey provides a sin-
gle global name space to its clients, as shown in Fig. 7. This
name space is broken into subspaces called tomes. Tomes are
conceptually similar to volumes in Coda and AFS, but incor-
porate the notion of type. The type of a tome determines the
type-specific resources, operations, and dimensions of fidelity
for all items in the tome.

As illustrated in Fig. 8, the structure of an Odyssey client
reflects the decomposition of functionality into generic and
type-specific components. Generic functionality is implement-
ed by the viceroy, whose most important task is to act as the
single point of resource control in the system. The viceroy
also services requests for generic resources and plays a central
role in resource negotiation.

Type-specific functionality is implemented in cache man-
agers subordinate to the viceroy, called wardens. There is one
warden for each tome type, and it is invoked by the viceroy to
service requests on Odyssey objects of that type. The wardens
are responsible for implementing the access methods on
objects of their type, and for providing support for different
levels of fidelity. They also provide reasonable default policies
to allow a modicum of backward compatibility with legacy
applications.

Support for Dynamic Sets
How does one support search of data repositories from
mobile clients that are weakly connected? Since there is little
temporal locality to exploit, caching is unlikely to be helpful.
Instead, our approach is to exploit the associativity inherent in
search operations to overlap prefetching of data over slow
networks with the computation or think time involved in a
search task.

The vehicle we are using for this aspect of our research is a
new operating system abstraction called dynamic sets [17, 18].
The essence of the abstraction is the explicit grouping of sets
of file accesses and the communication of this grouping by
applications to the operating system. This simple abstraction
can have surprisingly powerful performance implications for
mobile search. Figure 9 presents the most important system
calls in the Odyssey API for dynamic sets.

By using dynamic sets, an application discloses the mem-
bership of a group of related files. This disclosure offers the
system a strong hint on future file accesses that can be exploit-
ed for prefetching. In addition, by using a set to represent the
grouping, the system is free to optimize the order in which the
set members are fetched. For example, if some members of
the set happen to be cached they can be returned first. The
fetching of later members can be overlapped with the process-
ing of earlier members.

Status and Experience
We have completed a simple, skeletal implementation of the
Odyssey architecture. This includes a library implementation
of the API for application-aware adaptation, as well as the
wardens, servers, and applications for video and map data.
Although the prototype is rudimentary in many respects, it
provides initial evidence of the overall validity of our
approach. Based on this positive feedback, we are implement-
ing a more complete, in-kernel prototype.

Our work in dynamic sets has gone through two phases. In
the first phase, we built a user-level library implementation of
the dynamic sets API. Although the prototype’s absolute per-
formance was modest due to implementation inefficiencies, it
was adequate to confirm the substantial benefits of dynamic
sets. We codified our experience into a validated perfor-
mance model, and used it to explore whether the effort of a
more complete and efficient implementation of dynamic sets
was justified. Based on the encouraging results of our analy-
sis, we have embarked on the second phase and are close to
completing an in-kernel implementation of dynamic sets.

Conclusion

Our work bears a complementary relationship to the
other efforts described in this special issue. Mobile IP,
described by Johnson and Maltz [19], represents a net-

working layer below Coda and Odyssey. The different quality
streams of Generative Video, described by Moura et al. [20],
correspond to different levels of video fidelity on an Odyssey
client. The applications described by Bruegge and Bennington
[21] could benefit from Coda’s support for mobile file access.
The Wireless Andrew Network described by Hills and John-
son [22] provides the infrastructure necessary for the Coda
user community to remain connected while mobile. Finally,
the wearable computers described by Smailagic and Siewiorek
[23] are now powerful enough to run Coda, thus enabling a
new and unique class of applications.

The ability to access information on demand while mobile
will be a critical capability in the 21st century. As elaborated
in this article, adaptation is the key to this capability. Our
research is exploring two different approaches to adaptation:
application-transparent and application-aware. Our experi-
ence with Coda confirms that application-transparent adapta-
tion is indeed effective in many cases. In circumstances where
it is inadequate, our initial experience with Odyssey suggests
that application-aware adaptation is the appropriate strategy.

Acknowledgments
Although this article has a single author, it is based on the
contributions of many past and present Coda and Odyssey

■ Figure 7. Tomes in Odyssey.

Odyssey

Movies

Payroll Ball.mpg Cal.mpg

Hello.c

SQL tome
Unix tome
Mpeg tome

■ Figure 8. Odyssey client architecture.

Viceroy
Generic support

Wardens
Type-specific support

Cache managerApplication

API
extensions Kernel



IEEE Personal Communications • February 1996 33

project members, including Jay Kistler, Puneet
Kumar, David Steere, Lily Mummert, Maria
Ebling, Hank Mashburn, Brian Noble, Josh Raiff,
Qi Lu, Morgan Price, Bob Baron, Dushyanth
Narayanan, and Eric Tilton. Perhaps the most
important contribution of all has been made by
the Coda user community, through its bold will-
ingness to use and help improve an experimental
system.

Further Reading
This article provides only the briefest overview of
our work. A detailed annotated guide to Coda
and Odyssey papers may be found on the World
Wide Web at this URL: http://www.cs.cmu.edu/afs/
cs.cmu.edu/project/coda/Web/coda.html.
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■ Figure 9. Core subset of dynamic sets API.

setHandle setOpen(char *setPathname) ;

errorCode setClose(setHandle set) ;

fileDesc setIterate(setHandle set, int flags) ;

errorCode setDigest(setHandle set, char *buf, int count) ;

A dynamic set is created by calling setOpen with a set pathname, and receiv-
ing a set handle for the open set in return. The system can expand the set into
its members and fetch these members as agressively as resources warrant.
Once open, the membership of a set can be browsed using setDigest. An
individual member can be accessed using setIterate, which returns a file
descriptor as if an open had been performed on the member selected. The
system is free to iterate through the set in any order. setClose terminates use


