Outline

1. Multi-Engine Machine Translation
 - Alignment
 - Search Space
 - Features
 - Match

2. Model Combination

3. Other Combination Approaches
Multi-Engine Machine Translation
Model Combination
Other Combination Approaches

Alignment
Search Space
Features

Individual Systems

Translate

Align

Decode

Output

This Work: MEMT

METEOR

Translate

Translate

Translate

Input

Kenneth Heafield
System Combination
Arabic-English Example Combination

System 1: So even if that was meaningful, it is because you were late

System 2: Even if feasible, it is because you have been delayed

Combined: Even if feasible, it is because you were late

Compare: Compare

Reference: And even if that was useful, it was because you were late
Sentence Pair Alignment

Match surface, stems, WordNet synsets, and automatic paraphrases

Minimize crossing alignments

Twice that produced by nuclear plants

Double that that produce nuclear power stations

Overall Alignment: Urdu-English Example

1 Russian President Putin Mir ولادی it for a big success.

2 The Russian president ولادی the result of a big victory for Putin.
Overall Alignment: Urdu-English Example

1 Russian President Putin

2 The Russian president

3 For the result Russian President

1 ولادی it for a big success.

2 ولادی the result of a big victory for Putin.

3 ولادی Mir Putin is a great success.

2 ولادی the result of a big victory for Putin.

3 ولادی Mir Putin is a great success.
Search Space

Algorithm

Start at the beginning of each sentence
Branch by appending the first unused word from a system

Example

System 1: Now can know why.

System 2: Now we can now know why.

Partial Hypothesis

{Now
Now}
Search Space

Algorithm

Start at the beginning of each sentence
Branch by appending the first unused word from a system
Use the appended word and those aligned with it

Example

System 1: Now can know why.

System 2: Now we can now know why.

Partial Hypothesis

\[
\begin{cases}
\text{can} \\
\text{we}
\end{cases}
\]
Algorithm

Start at the beginning of each sentence

Branch by appending the **first unused word** from a system

Use the **appended word** and those aligned with it

Loop until all hypotheses reach end of sentence

Example

System 1: Now can know why.

System 2: Now we can now know why.

Partial Hypothesis

Now we \{\text{can, can}\}
Algorithm

Start at the beginning of each sentence
Branch by appending the first unused word from a system
Use the appended word and those aligned with it
Loop until all hypotheses reach end of sentence

Example

System 1: Now can know why.

System 2: Now we can now know why.

Partial Hypothesis

Now we can \{ know, now \}
Outline

1. Multi-Engine Machine Translation
 - Alignment
 - Search Space
 - Features
 - Match

2. Model Combination

3. Other Combination Approaches
Features

Length

Length of hypothesis

Language Model

- **Model**: log probability from an ARPA language model
- **OOV**: count of words not found in the model

Match

Count of n-grams matching each system
Feature Rationale

Length

Length of hypothesis

Compensate for length’s impact on other features

Language Model

Model: log probability from an ARPA language model

OOV: count of words not found in the model

Fluent output with tuned OOV penalty

Match

Count of n-grams matching each system

Agreement with translation systems
Match Features

System 1: Supported Proposal of France

System 2: Support for the Proposal of France

Hypothesis: Support for Proposal of France

<table>
<thead>
<tr>
<th></th>
<th>Unigram</th>
<th>Bigram</th>
<th>Trigram</th>
<th>Quadgram</th>
</tr>
</thead>
<tbody>
<tr>
<td>System 1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>System 2</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
What’s in a match?

Exact matches
- Lexical choice
- Choosing between aligned alternatives

Approximate matches
- Vote to include/exclude text
- Word order

Answer
- Use both types of features
- Exact matches effectively get a tunable bonus
Multi-Engine Machine Translation
Model Combination
Other Combination Approaches

Input
Hypergraph
Hypergraph
Hypergraph
Individual Systems
Model Combination
Select
Output

Kenneth Heafield
System Combination
Model Combination is Hypothesis Selection

The Search Space

- Union of search spaces from each system
- Combined sentence must be in one system’s hypergraph

Formally

- Every system outputs a hypergraph
- Phrasal lattice is just a special-case hypergraph
- Add a root node and an edge to each system root
Model Combination is Hypothesis Selection

The Search Space
- Union of search spaces from each system
- Combined sentence must be in one system’s hypergraph

Formally
- Every system outputs a hypergraph
- Phrasal lattice is just a special-case hypergraph
- Add a root node and an edge to each system root

Source Alignment
Hypergraphs retain alignment to source
Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Length of hypothesis</td>
</tr>
<tr>
<td>Model score</td>
<td>Score given by the underlying system</td>
</tr>
<tr>
<td>System indicator</td>
<td>Each system has a feature:</td>
</tr>
<tr>
<td></td>
<td>1 if derived from that system</td>
</tr>
<tr>
<td></td>
<td>0 otherwise</td>
</tr>
<tr>
<td>N-gram support</td>
<td>Support from each system for n-grams</td>
</tr>
</tbody>
</table>
N-gram support

Posterior of n-gram

What fraction of system i’s translations include “crack rocks”?

Formally

$$v^n_i(g) = \mathbb{E}_{P_i(d|f)} h(d, g)$$

$v^n_i(g)$ System i’s vote for n-gram g

$P_i(d|f)$ Probability of a derivation d in hypergraph f from system i

$h(d, g)$ 1 if the derivation d contains n-gram g; 0 otherwise
Performance

<table>
<thead>
<tr>
<th></th>
<th>ar-en</th>
<th>zh-en</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best individual</td>
<td>43.9</td>
<td>28.4</td>
</tr>
<tr>
<td>Combined</td>
<td>45.3</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Table: Performance (BLEU) on NIST 2008 task using three systems.
Serial System Combination

Input → Translate (SYSTRAN) → Post-edit → Output
Input Comparison

Input to System Combination

<table>
<thead>
<tr>
<th>Method</th>
<th>Output Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBR</td>
<td>N-best list</td>
</tr>
<tr>
<td>Hyposel</td>
<td>N-best list</td>
</tr>
<tr>
<td>Confusion Networks</td>
<td>N-best list</td>
</tr>
<tr>
<td>MEMT</td>
<td>1-best</td>
</tr>
<tr>
<td>Model Combination</td>
<td>Hypergraph</td>
</tr>
<tr>
<td>Serial System Combination</td>
<td>Single output</td>
</tr>
</tbody>
</table>
Results Into English

Czech-English

- memt: 1.3
- upv: 0.4
- rwth: 0.6
- bbn: 1.6

German-English

- memt: 1.8
- upv: 0.8
- rwth: 1.6
- bbn: 0.8
- jhu: 0.9
- hypo: -0.6

Spanish-English

- memt: 0.7
- upv: 0.1
- bbn: 1.0

French-English

- memt: 0.2
- upv: -0.2
- rwth: 0.4
- bbn: 0.4
- jhu: 0.9
- dcu: -0.3
- hypo: lium: -0.4

System Combination
Results From English

English-Czech

- memt: 0.4
- upv: 0.9
- rwth: 0.9
- koc: 0.0
- dcu: 2.2

English-Spanish

- memt: 1.4
- upv: 0.4
- rwth: 0.7
- koc: 0.0

English-German

- memt: 0.9
- upv: 0.4
- rwth: 0.4
- koc: 0.3

English-French

- memt: 1.2
- upv: 1.0
- rwth: 1.0
- koc: 0.8