
The 11th IEEE Conference on High Performance Distributed Computing (HPDC’02), Edinburgh, Scotland, July 2002. To Appear.

Software Architecture-based Adaptation for Grid Computing

Shang-Wen Cheng, David Garlan, Bradley Schmerl,
Peter Steenkiste, Ningning Hu

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{zensoul,garlan,schmerl,prs,hnn}@cs.cmu.edu

Abstract

Grid applications must increasingly self-adapt dynami-
cally to changing environments. In most cases, adaptation
has been implemented in an ad hoc fashion, on a per-
application basis. This paper describes work which gener-
alizes adaptation so that it can be used across applications
by providing an adaptation framework. This framework
uses a software architectural model of the system to ana-
lyze whether the application requires adaptation, and al-
lows repairs to be written in the context of the architec-
tural model and propagated to the running system. In this
paper, we exemplify our framework by applying it to the
domain of load-balancing a client-server system. We re-
port on an experiment conducted using our framework,
which illustrates that this approach maintains architectural
requirements.

1. Motivation and Approach

Grid computing infrastructures [10,14] offer a wide range
of distributed resources to applications. However, the het-
erogeneity of both the network and computing resources,
and the dynamic load conditions make, adaptation an im-
portant requirement for grid applications. For example, the
applications must be able to adapt themselves at runtime
to handle such things as resource variability (network
bandwidth, server availability, etc.) and system faults
(servers and networks going down, failure of external
components, etc.). If the system is not adaptive, it will
often have unacceptably poor performance. In the past,
managing and changing systems required human over-
sight, but in order to be practical, grid applications must
be able to adapt automatically, with minimal human inter-
vention.

Adaptability in most applications so far has been im-
plemented in a fairly ad hoc fashion. The code that deals
with adaptation is typically embedded in the application

code. While this may work for local adaptation (i.e., for a
single node or communication channel), it does not work
well for global adaptation (e.g., that requires changes in
the structure of the application) or in cases where multiple
adaptation operations have to be coordinated. It also com-
plicates both the application and adaptation code and
makes the reuse of adaptation strategies impossible.

In this paper we present an alternative approach in
which system models – in particular, software architec-
tural models – are maintained at runtime and used as a
basis for system reconfiguration and adaptation. An archi-
tectural model of a system is one in which the overall
structure of a running system is captured as a composition
of coarse-grained interacting components and connectors
[20,22]. As a basis for self-repair, the use of architectural
models has a number of nice properties: (1) An architec-
tural model can provide a global perspective on the system
allowing one to determine non-local changes to achieve
some property; (2) architectural models can make “integ-
rity” constraints explicit, helping to ensure the validity of
any change; and (3) by “externalizing” the monitoring and
adaptation of a system using architectural models, it is
possible to engineer adaptation mechanisms, infrastruc-
ture, and policies independent of any particular applica-
tion, thereby reducing the cost and improving the effec-
tiveness of adding self-adaptation to new systems.

Our approach is based on the three-layer architecture
shown in Figure 1:

• The Runtime Layer consists of the application itself,
together with its operating environment (networks,
processors, I/O devices, communications links, etc.)
(1). It also includes a monitoring infrastructure that
captures information that is relevant to the applica-
tion. This information is filtered and presented to the
model layer in architecture-relevant terms (2).

• The Model Layer is responsible for interpreting sys-
tem observations. It consists of an architectural
model of the system (3), together with an architec-
ture manager (4) that determines whether a system’s



runtime behavior is within the envelope of accept-
able ranges according to the architecture. The archi-
tecture manager verifies whether the application
goals and constraints are satisfied, and if not, it can
adapt the application using a repair handler. Repairs
are propagated down to the running system (5).

• The Task Layer is responsible for setting overall sys-
tem objectives (6). In this context, it can for example
determine what applications should execute based
on external policies. It can also set performance ob-
jectives and resource constraints for applications.
These profiles will be used by the model-layer to
guide adaptation. We will not discuss the task layer
any further in this paper.

To illustrate how the approach works, consider a stor-
age infrastructure consisting of a set of server groups that
provide information to a set of users (Figure 3). Each
server group consists of a set of replicated servers (Figure
2), and maintains a queue of requests, which are handled
in FIFO order by the servers in the server group. Individ-

ual servers send their results back directly to the request-
ing user. The goal is to use adaptation to maintain two
inter-related system qualities. First, to guarantee the qual-
ity of service for each user, the request-response latency
for users must be under a certain threshold, which may
vary depending on the task and user. Second, to keep costs
down, the set of currently active servers should be kept to
a minimum.

The remainder of this paper is organized as follows.
We first present a short overview of software architec-
tures. We then describe the main mechanisms underlying
software architecture-based adaptation, and we discuss an
experiment that illustrates the usefulness of our approach.
We conclude with related work and a summary.

2. Software Architectures

The centerpiece of our approach is the use of architectural
models. We use a simple scheme in which an architectural

Figure 3. Deployment Architecture.

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

User1 User2 User3 User4 User5 User6

ServerGrp1 ServerGrp2 ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3

User1 User2 User3 User4 User5 User6

ServerGrp1 ServerGrp2 ServerGrp3

Figure 2. Software Architecture.

Task 
Manager 

 
 
Translator 

Architecture
Manager 

Environment 
& Runtime 
Manager 

Task Model 

Architectural 
Model 

Runtime 
System 

Task Layer 

Model Layer

Runtime Layer

1
2 

34 

5 

6 

Figure 1 Adaptation Framework.



model is represented as a graph of interacting components.
This is the core architectural representation scheme
adopted by a number of architecture description lan-
guages, including Acme [11], xADL [8], and SADL [18].
Nodes in the graph are termed components. They repre-
sent the principal computational elements and data stores
of the system: clients, servers, databases, user interfaces,
etc. Arcs are termed connectors, and represent the path-
ways of interaction between the components. A given
connector may in general be realized in a running system
by a complex base of middleware and distributed systems
support. In the software architecture illustrated in Figure
2, the server group, servers, and users are components.
The connector includes the request queue and the network
connections between users and servers.

To account for various behavioral properties of a sys-
tem, elements in the graph can be annotated with a prop-
erty list. For example, properties associated with a con-
nector might define its protocol of interaction, or perform-
ance attributes (e.g., delay, bandwidth). The software ar-
chitecture can also include a set of constraints that must be
maintained. Constraints can, for example, specify that
some property value must always be within a certain
range. One of the advantages of architectural descriptions
is that they provide opportunities for automatic verifica-
tion of the constraints. In our design, the Task Layer
specifies the performance profile for the application in the
form of threshold constraints, e.g., average latency <
maxLatency. These constraints can then be checked dy-
namically to see if the system is functioning within
bounds.

3. Software Architecture-based Adaptation

The software architectures outlined above are design-time
artifacts, and are created and analyzed using design-time
tools. The idea behind software architecture-based adapta-
tion is to make these models and analysis tools available
at runtime so they can guide adaptation. This section dis-
cusses the main mechanisms: a monitoring infrastructure
that provides information about the applications and the
runtime environment, repair strategies that adapt the ap-
plication, and adaptation operations that are used by the
repair strategies to perform adaptation.

3.1. Monitoring Infrastructure

In order to provide a bridge from system level behavior to
architecturally-relevant observations, we have defined a
three-level approach, illustrated in Figure 4. This monitor-
ing infrastructure is described in more detail elsewhere
[12]: here we summarize the main features.

The lowest level is a set of probes, which are “de-
ployed” in the target system or physical environment.
Probes monitor the system and announce observations via

a probe bus. We can use off-the-shelf monitoring compo-
nents (such as Remos [16]) and write wrappers to turn
them into probes, or write custom probes. At the second
level a set of gauges consume and interpret lower-level
probe measurements in terms of higher-level model prop-
erties. Like probes, gauges disseminate information via a
gauge reporting bus. The top-level entities in Figure 4 are
gauge consumers, which consume information dissemi-
nated by gauges. Such information can be used, for exam-
ple, to update an abstraction/model, to make system repair
decisions, to display warnings and alerts to system users,
or to show the current status of the running system.

For instance, in the example above we must deploy a
gauge that captures the averageLatency property of each
client. Similarly, we want to place gauges that measure the
bandwidth between the client and the server group and
also to measure the load on the server group. The informa-
tion provided by these gauges will be used when making
adaptation decisions.

3.2. Architecture Repair Strategies

The second extension is the specification of repair strate-
gies that correspond to selected constraints of the architec-
ture. The key idea is that when an architectural constraint
violation is detected, the appropriate repair strategy will
be triggered.

A repair strategy has two main functions: first to de-
termine the cause of the problem, second to determine
how to fix it. Thus the general form of a repair strategy is
a sequence of repair tactics. Each repair tactic is guarded
by a precondition that determines whether that tactic is
applicable. The evaluation of a tactic’s precondition will
usually involve the examination of various properties of
the architecture in order to pinpoint the problem and de-
termine applicability. If it is applicable, the tactic executes
a repair script that is written as an imperative program
using style-specific operators described in Section 3.3. To
handle the situation where several tactics may be applica-
ble, the enclosing repair strategy decides on the policy for
executing repair tactics. It might apply the first tactic that

Abstraction 
/ model

Target system 
/ environment

Gauge 
consumers

Gauges

Probes

Gauge 
reporting bus

Probe bus

report report

observation observation

Figure 4. The Monitoring Infrastructure.



succeeds. Alternatively, it might sequence through all of
the tactics.

Figure 5 illustrates the repair strategy and tactics asso-
ciated with the latency threshold constraint in our exam-
ple. Our analysis pointed us to the need for two different
repairs if the observed latency rises above a threshold, as
reported in [6]. The first is to add a new server to a server
group if the server group is overloaded and the second is
to move a client to a new server group that has better
bandwidth to the client. A third repair (not shown) reduces
the number of servers in a server group if the server group
is underutilized.

Line 1 defines the constraint that the average latency
must not be below the maximum latency set by the task
requirements. Line 2 calls the repair strategy to be in-
voked if the constraint fails. The repair strategy in lines 4-
14, fixLatency, consists of two tactics. The first tactic,
defined in lines 16-26, handles the situation in which a
server group is overloaded, identified by the precondition
in lines 22-23. Its main action in lines 24-25 is to create a
new server in any of the overloaded server groups. The
second tactic, defined in lines 28-42, handles the situation
in which high latency is due to communication delay,
identified by the precondition in lines 30-31. It queries the
architecture to find a server group that will yield a higher
bandwidth connection in lines 35-36. In lines 37-39, if

such a group exists it moves the client-server connector to
use the new group.

3.3. Architecture Adaptation Operators

Repair strategies use architecture adaptation operators to
modify the architecture of the application. These opera-
tors will be specific to the structure of the architecture
(this is called an architecture style). In the most generic
case, architectures can provide primitive operators for
adding and removing components and connections [6].

In terms of our example, we define the following op-
erators:

• addServer(): This operation is applied to a server
group component and adds a new replicated server
component to its representation, ensuring that the ar-
chitecture is structurally valid.

• move(to:ServerGroupT): This operation is applied
to a client, deleting the role currently connecting the
client to the connector that connects it to a server
group, and performing the necessary attachment to a
connector that will connect it to the server group
passed in as a parameter.

• remove(): This operation is applied to a server and
deletes the server from its containing server group.
Furthermore, it changes the replication count on the
server group and deletes the binding.

1 invariant r : averageLatency <= maxLatency
2 !→ fixLatency(r);
3
4 strategy fixLatency (badRole : ClientRoleT)={
5 let badClient : ClientT =
6 select one cli : ClientT in self.Components |
7 exists p : RequestT in cli.Ports |
8 attached(badRole, r);
9 if (fixServerLoad(badClient)) {
10 commit repair; }
11 else if (fixBandwidth(badClient,badRole) {
12 commit repair; }
13 else {abort ModelError;}
14 }
15
16 tactic fixServerLoad (client:ClientT) :boolean={
17 let loadedServerGroups :set{ServerGroupT}=
18 select sgrp:ServerGroupT in
19 self.Components |
20 connected(sgrp,client) and
21 sgrp.load > maxServerLoad;

22 if (size(loadedServerGroups) == 0)
23 return false;
24 foreach sGrp in loadedServerGroups {
25 sgrp.addServer(); }
26 return (size(loadedServerGroups)>0);
27
28 tactic fixBandwidth(client:ClientT
29 role:ClientRoleT):boolean={
30 if (role.bandwidth>=minBandwidth) {
31 return false;}
32 let oldSGrp: ServerGroupT =
33 select one sGrp:ServerGroupT in
34 self.Components | connected (client,sGrp);
35 let goodSGrp : ServerGroupT =
36 findGoodSGrp(client,minBandwidth);
37 if (goodSGrp != nil) {
38 client.move (goodSGrp);
39 return true;
40 } else {
41 abort NoServerGroupFound;
42 }}

Figure 5. An Example Repair Strategy.



The above operations effect changes to the architec-
tural model. The next operation queries the state of the
running system:

• findGoodSGroup(cl:ClientT,bw:float):ServerGroupT;
finds the server group with the best bandwidth
(above bw) to the client cli, and returns a reference
to the server group.

The final component of our adaptation framework is a
translator that interprets the actions of the repair scripts at
the model layer as operations on the actual system at the
runtime layer (Figure 1, item 5). The nature of these op-
erations will depend heavily on the implementation plat-
form. To illustrate, the specific operators and queries sup-
ported by the runtime system in our example are listed in
Table 1. These operators include low-level routines for
creating new request queues, activating and deactivating
servers, and moving client communications to a new
queue.

4. Framework Implementation

We have implemented a prototype implementation of the
framework based on the set of Acme architectural design
tools that we have developed previously [21]. A Java li-
brary, called AcmeLib, is used to parse Acme descriptions
and check whether architectural constraints are satisfied.
If constraints are violated, another component of our
framework (Tailor) is invoked to conduct repairs. These
repairs adapt the architectural model stored in AcmeLib so
that the constraints are maintained.

Changes to architectural properties are received via the
monitoring infrastructure. The monitoring infrastructure is
implemented in Java, and uses the Siena wide area event
bus to communicate messages over the distributed system.
Gauges are implemented using our gauge library which
implements a gauge protocol that we have defined for
gauge creation, communication, and deletion. Probes in
the implementation and environment use the Remos sys-
tem [16] and a set of application-specific probes. The ap-
plication-specific probes are implemented using AIDE [2],

which preprocesses Java source code to facilitate the in-
strumentation of the code. The probes report when par-
ticular methods have been called, so that bandwidth, la-
tency, and server load can be calculated by the gauges.
These events are also reported to a Siena bus. Currently,
we have hand-tailored support for translating APIs in the
Model Layer to ones in the Runtime Layer. Also, the re-
pairs included in Tailor are handwritten, using a form that
could be generated from the repair strategies in Figure 5.

5. Experimental Evaluation

We conducted an experiment to test the effectiveness of
our adaptation framework on a system that has no built-in
adaptation, and to elucidate the portions of our framework
that needed more investigation.

The implementation that we used for our experiment
was based on the example presented in this paper – that of
a client-server system using replicated server groups
communicating over a distributed system. We used this
example because the architectural style of the system is
amenable to automatic performance analysis [23], the re-
sults of which we can use to guide the development of our
repairs, as described in more detail in [6].

This system is implemented in Java and has a set of
change operations corresponding to the operations in Ta-
ble 1, that are called via RMI to change the system. The
clients send requests to an entity that splits the requests
into queues, corresponding to the client’s server group.
Servers in a group pull information from the appropriate
queue, and send a reply. The size of the reply is indicated
by the client request.

The requirements and assumptions that fed into our
analysis are:

• We desire the maximum average latency experi-
enced by clients to be less than 2 seconds

• The size of client requests is small (0.5K on aver-
age) compared to server responses (20K on aver-
age).

createReqQueue() Adds a logical request queue to Req-queue machine
in Figure 2.

findServer([string cli_ip,
float bw_thresh])

Finds a spare server that has at least bw_thresh
bandwidth between it and the client.

moveClient(ReqQ newQ) Moves a client to the new request queue.
connectServer(Server srv,

ReqQ to)
Configures a server so that it pulls client requests
out of the to request queue.

activateServer () Signals that the server should begin pull requests
from the request queue.

deactivateServer() Signals that a server should stop pulling requests
from the request queue.

remos_get_flow (string clIP,
string svIP)

This is a Remos API call that returns the predicted
bandwidth between two IP addresses.

Table 1. Environment Manager Operators and Queries.



• The average arrival rate of requests is approximately
six per second.

Given these inputs, we calculated that an initial starting
point of 3 replicated servers in one server group would be
sufficient to serve our six clients, and that the bandwidth
between the clients and servers should not be less than
10Kbps. Our experiment measured the effectiveness of
our approach as compared to not using our approach.

5.1. Experimental Design

The experiment was conducted in a distributed setting
inside a dedicated experimental testbed consisting of five
routers and eleven machines (depicted in Figure 6), in
which wed eployed the. Because we had access to fewer
machines than processes, Clients 1 and 2 (C1 and C2 in
the figure) share a machine, and the request queue shares a
machine with Server 5 (S5). In the initial state, Servers 4
and 7 were spare servers that we could activate as repairs
warranted. The routers are connected via 10Mbps links;
each application node is connected to a router by a con-
nection that is at least 10Mbps. The repair infrastructure
was restricted to the machine running Server 4 (the thick
ellipse in Figure 5), except for those parts of the infra-
structure associated with monitoring and communication

of observations, which were distributed throughout the
environment.

To measure the effectiveness of our approach, we
examined how often the latency of any client exceeded
two seconds, whether our repair was effective in reducing
the latency to the required bounds, and how this compared
with the latency experienced when our repairs were not
conducted (the control). Because we used a network of
machines, we were unable to eliminate all of the variables
between the control and our experiment runs. However,
we attempted to control as many variables as possible by
(1) seeding the clients so that the size of requests and re-
sponses occurred in the same sequence in both experi-
ments, (2) executing a program that generates the same
bandwidth competition for each experiment, and (3) iso-
lating the network from outside traffic and users.

To ensure that repairs occurred, we needed to arrange
the bandwidth competition so that there were periods of
time where the bandwidth would cause the latency of
some clients to be high. Similarly, the clients were con-
trolled so that they requested larger amounts of informa-
tion more frequently for a period of time. In this way, we
ensured that there were periods of time during which the
assumptions made in architectural performance analysis
were invalid, and so that repairs were required.

The control and the experiment runs were executed
under the conditions described above for a period of thirty
minutes each. Figure 7 shows the stepping functions we
used for generating bandwidth competition and server
load. In the first two minutes, we ran the system in a qui-
escent state to give our gauges, probes, and system time to
deploy and connect. In the following 8 minutes, we raised
the bandwidth between the machines running Clients 3
and 4 (C3&4) and the machines representing Server
Group 1 (SG1). In this period we would expect our repair
strategies to migrate these clients to Server Group 2
(SG2). In the period 10 minutes to 20 minutes, we in-
creased the server loads by increasing the file request size

C1,C2

S4

S1

S2

S3

C4 C3

S6

S5,RQ

S7

C5,C6

10Mbps

Application

Router (w/ Remos)

Figure 6. The Experimental Testbed.

600 1200 1800

9Mbps
5Mbps

Time (seconds)

Figure 7. Bandwidth and Server Load Generation.

BW between

C3,C4 and SG1

BW between

C3,C4 and SG2

Filesize and

request rate,

from all clients.

20KB@>2/sec

2Mbps



and rate of messages sent from all clients (20KB, twice
every second), while reducing the bandwidth to SG1. In
the final 10 minutes, we increased the bandwidth between
C3&4 and SG2. During the periods of high bandwidth
between C3&4 and their respective server groups, we
maintained moderate bandwidth (3Mbps) between the
opposite server groups. We needed to restrict the competi-
tion in this way because of the limited resources on our
testbed. In future work, we plan to run the experiments
with more realistic bandwidth data, based on network traf-
fic to Carnegie Mellon’s web server.

5.2. Results

The results for the control run (without adaptation) are
shown in Figure 8 through Figure 10. The average latency,
shown in Figure 8, continues to rise. Once the latency
rises to above two seconds (at approximately 140 seconds
for each client), it never falls below this required thresh-
old. This is because the server load and bandwidth never

0.1

1

10

100

0 600 1200 1800

Time elapsed (s)

Q
u

eu
e

L
en

g
th

Figure 13. Server Load under Repair.

0.01

0.1

1

10

100

0 600 1200 1800

Time elapsed (s)

A
va

ila
b

le
B

an
d

w
id

th
(M

b
p

s)

Figure 12. Available Bandwidth under Repair.

Figure 11. Average Latency under Repair.

0.1

1

10

100

0 600 1200 1800

Time elapsed (s)

L
at

en
cy

(s
)

0.0001

0.001

0.01

0.1

1

10

0 600 1200 1800

Time elapsed (s)

A
va

ila
b

le
B

an
d

w
id

th
(M

b
p

s)

Figure 10. Available Bandwidth in Control.

0.1

1

10

100

1000

10000

0 600 1200 1800

Time elapsed (s)

Q
u

eu
e

L
en

g
th

Figure 9. Server Load for Control.

0.1

1

10

100

1000

0 600 1200 1800

Time elapsed (s)

L
at

en
cy

(s
)

Figure 8. Average Latency for Control.



recover. In Figure 9, the server load increases dramatically
as the experiment progresses. (Note that we measure
server load by measuring the size of the queue of waiting
client requests.) Similarly, the available bandwidth falls
dramatically as the experiment progresses, as shown in
Figure 10. The dashed line in both figures indicates the
limits that we used to decide which repair tactic to exe-
cute. In Figure 9, a queue size of greater than six waiting
requests indicated that the server was overloaded, and so
the server repair should be tried. In Figure 10, an available
bandwidth of less than 10Kbps indicated that there was
not enough bandwidth. Note that for the control run, we
overloaded the system so much that it never recovers.
However, toward the end of our run the servers actually
begin to recover.

Figure 11 through Figure 13 show the results obtained
when our adaptation framework and repair strategies were
applied under the same conditions as the control. Figure
11 shows a dramatic improvement in the average latencies
experienced by the clients. Once our framework detects
that client latency is above two seconds, a repair is in-
voked (either to move a client or add a server), and this
improves the system performance as predicted by our de-
sign time analysis. In each of the figures for our experi-
ment, the duration under which a repair is running is indi-
cated by the lines at the top of the graph.1 In fact, our
framework has a positive effect on the available band-
width because we are taking better advantage of different
network links in our system after a repair. Our results for
the server load show a marked improvement over the
course of the experiment, except during the time that we
increase the load on the server. During this time, we are
continually performing repair. These repairs, encourag-
ingly, do have a positive effect on the overall latency.
Figure 13 shows the server load experienced during the
run. Note that the only time that the server load rises
above the constrained value is when we stress the servers.

5.3. Discussion

The experiment indicates that the architectural approach
improves the performance of the overall system, but fur-
ther investigation is warranted under more realistic condi-
tions. Repairs were conducted automatically by the system
as needed, and the latency experienced by clients was less
then two seconds for most of the time. In contrast, the
latency experienced in the control spent a considerable
amount of time over two seconds. When the system
started to perform badly it continued to perform badly,
and the indications were that it only started to recover
toward the end of our control run.

1 The gradient in these lines merely clarifies the beginning
and end of a repair.

As noted, during the period of increased server load,
repairs are continually performed. Due to limited re-
sources in our testbed, we were able to recruit only two
extra servers. Once these were activated (at times 700
seconds and 800 seconds) the only repair possible was to
move clients. During this period, we observed some oscil-
lation, with clients moving back and forth between server
groups. This movement still had a positive effect on the
system, but we believe this is an artifact of the way we
stressed the servers. Recall that the servers were stressed
by sending large amounts of data more frequently. Of
course, this also affects the bandwidth, and so the band-
width repair does improve the system.

In running this experiment we found a number of areas
on which to concentrate future work:

• The time that it takes to effect a repair averages 30
seconds. Most of this time is spent in communicat-
ing to create and delete gauges. Improving this time
by caching gauges or relocating them (rather than
destroying and creating new ones) should see our
repair speed improve dramatically.

• The same network is being used to monitor the sys-
tem as to run it. This means that when the available
bandwidth is low, communication over our monitor-
ing system is correspondingly slow. This produces a
lag in the time when the bandwidth actually rises
and the time it is noticed and repaired by our system.
One way to address this is to use network Quality of
Service (QoS) techniques to prioritize monitoring
traffic.

• It is important to understand the underlying probe
technology. The first Remos query for information
about bandwidth between two nodes on the network
takes several minutes because Remos needs to col-
lect and analyze data. After this initial delay, the
query is quite fast. To reduce this effect, we pre-
queried Remos so that subsequent queries were
much faster. Again, this reduced the time of our re-
pairs. In general, this points to the need for more so-
phisticated probe technologies that need to be pro-
vided for caching or prefetching this information.

• In some instances, the effects of a repair on a system
will take time. For example, adding a new server to
a server group will not immediately reduce the over-
all load on the server group. Without taking this ef-
fect into account, unnecessary repairs are likely to
occur (for example, to continue adding servers or to
move clients). This type of delay is something that
can only be gleaned from experience of running the
repairs, and points to the need for a more sophisti-
cated repair engine that can monitor repairs and their
effects, and use this to adapt its repair policy.

Although we do not expect our approach to compete
with hand-tailored, per-application adaptation, we believe
that this approach will save time in engineering adaptation
into applications that require it but do not possess it, in



analyzing those repairs, and in changing them as required.
However, this would be moot if the repairs did not im-
prove the situation. These results show that we do get im-
provement by applying our framework – how this im-
provement compares to hand-tailored adaptation is an area
of future work.

6. Related Work

There has been a lot of research on the development of
adaptive applications, e.g., [9,15]. However, in most
cases the adaptation process is hardwired into the applica-
tion code, making it difficult to characterize or modify the
adaptation rules. However, the need for a more systematic
approach has been recognized. For example, [1] describes
a generic adaptation framework for point-point streaming
applications, and [4] proposes an architecture that sepa-
rates application code, although only for local adaptation.
Our architecture-based approach provides a more general
solution that supports adaptation of applications and sys-
tems for which it is not explicitly supported.

The BBN QuO system [17] extends CORBA to sup-
port applications that adapt to resource availability. In this
system users can define operating regions, while contracts
specify the performance expectations for application
modules. The runtime system monitors the application and
execution environment, and invokes application specific
handlers when the application changes operating region.
QuO is a specific example of an adaptive and reflective
middleware system, but it does not have an explicit archi-
tectural model of the entire application. A similar ap-
proach is outlined in [25].

Given that adaptation relies on access to accurate sys-
tem information, several monitoring tools in support of
network-aware applications have been developed [26,27].
Like Remos, these tools can play the role of probes in our
architecture. JAMM [24] is an environment that gives
users access to wide range of information on the distrib-
uted system. This design is similar to our proposed gauge
infrastructure. For example, both gauges and JAMM give
users access to information on both the runtime environ-
ment and the application, making it possible to not only
detect problems, but also diagnose them. A grid informa-
tion services architecture that has been implemented as
MDS-2 in Globus is described in [7] . While many details
are different, its high-level architecture roughly matches
the probe/gauge component of our architecture. It distin-
guishes between information providers (similar to our
probes) and aggregate directory services (similar to
gauges).

There has been some related research on architecture-
based adaptation. However, it relies on specific architec-
tural styles, and implementations that match these styles
[13,19]. In this paper, we have described mechanisms that
bridge the gap between an architectural model and an im-

plementation – both for monitoring and for effecting sys-
tem changes.

7. Conclusion and Future Work

In this paper we presented a technique for using software
architectural models to automate adaptation in systems.
This approach has a number of advantages for the systems
builder over current approaches that hardwire adaptation
mechanisms into the components of the application. First,
the use of architectural models permits non-local proper-
ties to be observed, and non-local adaptations to be ef-
fected. For example, suitable monitoring mechanisms can
keep track of aggregate average behavior of a set of com-
ponents. Second, formal architectural models permit the
application of analytical methods for deriving sound repair
strategies. For example, a queuing-theoretic analysis of
performance can indicate possible points of adaptation for
a performance-driven application. Third, externalized ad-
aptation (via architectural models) has several important
engineering benefits: adaptation mechanisms can be more
easily extended; they can be studied and reasoned about
independently of the monitored applications; they can
exploit shared monitoring and adaptation infrastructure.

We described an experiment that illustrates that our
approach can maintain architectural constraints. The ex-
periment also directs us to future work. For example, we
plan to investigate strategies for selecting which repairs
are best in given circumstances. Our experiment simply
chose to repair the first client that reported an error, and
the tactic chosen was to prioritize server load repairs.
Smarter approaches include fixing the client that is ex-
periencing the worst latency first, choosing the tactic that
contributes the most to the latency, and other adapting
schemes alluded to in Section 5. Similarly, we need to be
able to capture in a repair strategy the desired behavior if
no repair will improve the situation – for example, if the
server load is too high and there are no available servers to
add to a server group. In such a case it may be necessary
to alert a human observer for manual intervention.

Another area of future research is to provide additional
tool support for specifying repairs and the mappings be-
tween the architectural level and the runtime level. Cur-
rently, we have hand-coded solutions for these compo-
nents of our framework. We are using the example de-
scribed in this paper, and others, to elicit the requirements
for such components, in order to make the engineering of
these components easier.

Acknowledgements
This work is supported in part by DARPA under Grants
N66001-99-2-8918 and F30602-00-2-0616. Views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of DARPA.



References
[1] Bollinger, J., and Gross, T. A Framework-Based Approach

to the Development of Network-Aware Applications. IEEE
Transacations on Software Engineering (Special Issue on
Mobility and Network Aware Computing) 24(5):367-390,
May 1998.

[2] Calnan, P. Semantic-based Code Transformation. MS The-
sis Proposal, Department of Computer Science, Worchester
Polytechnic Institute, Massachussets, March 2002.

[3] Carzaniga, A., Rosenblum, D.S., and Wolf, A.L. Achieving
Expressiveness and Scalability in an Internet-Scale Event
Notification Service. Proc. 19th ACM Symposium on Prin-
ciples of Distributed Computing (PODC2000), Portland
OR, July, 2000.

[4] Chang, F. and Karamchety, V. Automatic Configuration
and Run-time Adaptation of Distributed Applications. Proc.
the Ninth IEEE International Symposium on High Perform-
ance Distributed Computing (HPDC'00), pages 11-20, Au-
gust 2000.

[5] Cheng, S-W., Garlan, D., Schmerl, B., Sousa, J.P., Spitzna-
gel, B., Steenkiste, P., Hu, N. Software Architecture-based
Adaptation for Pervasive Systems. International Conference
on Architecture of Computing Systems (ARCS'02): Trends
in Network and Pervasive Computing, April 8-11, 2002.

[6] Cheng, S-W., Garlan, D., Schmerl, B., Sousa, J.P., Spitzna-
gel, B., Steenkiste, P. Using Architectural Style as the Basis
for Self-repair. The Working IEEE/IFIP Conference on
Software Architecture 2002, Montreal, August 25-31, 2002.
To appear

[7] Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman, C.
Grid Information Services for Distributed Resource Shar-
ing. Proc. the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10),
IEEE Press, August 2001.

[8] Dashofy, E., van der Hoek, A., and Taylor, R.N. A Highly-
Extensible, XML-Based Architecture Description Lan-
guage. Proceedings of the Working IEEE/IFIP Conference
on Software Architecture, Amsterdam, The Netherlands,
August 2001.

[9] Flinn, J., Narayanan, D., Satyanarayanan, M. Self-Tuned
Remote Execution for Pervasive Computing. In Proceed-
ings of the 8th Workshop on Hot Topics in Operating Sys-
tems (HotOS-VIII), Oberbayen, Germany, May 2001.

[10] Foster. I. and Kesselman, C. Globus: A Metacomputing
Infrastructure Toolkit. I. Foster, C. Intl J. Supercomputer
Applications, 11(2):115-128, 1997.

[11] Garlan, D., Monroe, R.T., and Wile, D. Acme: Architec-
tural Description of Component-Based Systems. Founda-
tions of Component-Based Systems. Leavens, G.T., and Si-
taraman, M. (eds). Cambridge University Press, 2000 pp.
47-68.

[12] Garlan, D., Schmerl, B.R., and Chang, J. Using Gauges for
Architecture-Based Monitoring and Adaptation. The Work-
ing Conference on Complex and Dynamic System Architec-
ture. Brisbane, Australia, December 2001.

[13] Gorlick, M.M., and Razouk, R.R. Using Weaves for Soft-
ware Construction and Analysis. Proceedings of the 13th
International Conference on Software Engineering, IEEE
Computer Society Press, May 1991.

[14] Grimshaw, A. and Wulf, W. The Legion Vision of a
Worldwide Virtual Computer. Communications of the
ACM, Jan 1997, Vol 40, No 1.

[15] Krintz, C., and Calder, B. Reducing Delay with Dynamic
Selection of Compression Formats. Proceedings of the

Tenth IEEE International Symposium on High Performance
Distributed Computing, California, USA, August 2001.

[16] Lowekamp, B., Miller, N., Sutherland, D., Gross, T., Steen-
kiste, P., and Subhlok, J. A Resource Query Interface for
Network-aware Applications. Cluster Computing, 2:139-
151, Baltzer, 1999.

[17] Loyall, J.P., Schantz, R.E., Zinky, J.A., and Bakken, D.E.
Specifying and Measuring Quality of Service in Distributed
Object Systems. In Proceedings of the 1st IEEE Symposium
on Object-oriented Real-time Distributed Computing,
Kyoto, Japan, April 1998.

[18] Moriconi, M. and Reimenschneider, R.A. Introduction to
SADL 1.0: A Language for Specifying Software Architec-
ture Hierarchies. Technical Report SRI-CSL-97-01, SRI In-
ternational, March 1997.

[19] Oreizy, P., Medvidovic, N., and Taylor, R.N. Architecture-
Based Runtime Software Evolution in the Proceedings of
the International Conference on Software Engineering 1998
(ICSE'98). Kyoto, Japan, April 1998, pp. 11—15.

[20] Perry, D.E., and Wolf, A. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineer-
ing Notes 17(4):40-52, October 1992.

[21] Schmerl, B., and Garlan, D. Exploiting Architectural De-
sign Knowledge to Support Self-repairing Systems. Proc.
the 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE2002), July 2002.

[22] Shaw, M., and Garlan, D. Software Architectures: Perspec-
tives on an Emerging Discipline. Prentice Hall, 1996.

[23] Spitznagel, B. and Garlan, D. Architecture-Based Perform-
ance Analysis. Proc. the 1998 Conference on Software En-
gineering and Knowledge Engineering, June, 1998.

[24] Tierney, B., Crowley, B, Gunter, D., Holding, M., Lee, J.
and Thompson, M. A Monitoring Sensor Management Sys-
tem for Grid Environments. Proc. the Ninth IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC'00), pp. 97-104, August 2000.

[25] Vraalsen, F, Advt, R., Mendes, C., and Reed, D. Perform-
ance Contracts: Predicting and Monitoring Grid Application
Behavior. Presented at GRID 2000 workshop, November
12, 2001, Denver.

[26] Wolski, R. Forecasting Network Performance to Support
Dynamic Scheduling Using the Network Weather Service.
Proc. the 6th High-Performance Distributed Computing
Conference (HPDC97), August 1997, pp. 316-325.

[27] Wolski, R. and Jayes, J. Predicting the {CPU} Availability
of Time-shared Unix Systems. Proc. the Eighth IEEE Sym-
posium on High Performance Distributed Computing
{HPDC99}, August 1997, pages 105-112..


