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ABSTRACT
Increasingly, 802.11 devices are being used by mobile users.
This results in very dynamic wireless channels that are dif-
ficult to use efficiently. Current rate selection algorithms
are dominated by probe-based approaches that search for
the best transmission rate using trial-and-error. In mobile
environments, probe-based techniques often perform poorly
because they inefficiently search for the moving target pre-
sented by the constantly changing channel. We have devel-
oped a channel-aware rate adaptation algorithm - CHARM
- that uses signal strength measurements collected by the
wireless cards to help select the transmission rate. More-
over, unlike previous approaches CHARM leverages channel
reciprocity to obtain channel information, so the information
is available to the transmitter without incurring RTS/CTS
overhead. This combination of techniques allows CHARM
to respond quickly to dynamic channel changes. We imple-
mented CHARM in the Madwifi driver for wireless cards
using the Atheros chipset. Our evaluation both in the real
world and on a controlled testbed shows that channel-aware
rate selection can significantly outperform probe-based rate
adaptation, especially over dynamic channels.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]:
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Network Architecture and Design
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1. INTRODUCTION

Original deployments of 802.11 targeted nomadic users,
i.e. while 802.11 was used by mobile devices such as lap-
tops, the devices, and the wireless network, were typically
used when the user was in a fixed location. This is however
changing. Increasingly 802.11 is deployed in devices that
can be used while the user is mobile such as cell phones,
PDAs, or wearable computers. This results in highly dy-
namic wireless channels that are difficult to use efficiently.
Note that even when the wireless devices are stationary, the
properties of the wireless channel will typically change over
time because of movement in the area around the devices.
Moreover, device mobility further increases the dynamics of
the channels. Channel variability can affect many aspects of
the system including network and application performance
and system properties such as energy efficiency. Effective
adaptation is critical to overall system performance.

In this paper we focus on the problem of transmission rate
selection, which affects the efficiency of the wireless link both
in terms of throughput and transmission time and thus, in-
directly, the performance of applications and the wireless
device. When selecting a transmission rate, a wireless de-
vice faces a fundamental tradeoff between data rate and
range. Higher transmission rates increase throughput and
reduce transmission time, but reduce the range at which the
transmission can be successfully decoded since signal power
and channel capacity decrease with distance. As a result,
when sending to a given receiver, the transmitter wants to
send at the highest transmission rate that can still be de-
coded with high probability. While selecting that rate tends
to be relatively straightforward for static channels, dynamic
channels are much more challenging to handle. For dynamic
channels, effective rate selection requires up-to-date channel
information at the transmitter. Cellular networks address
this problem by incorporating feedback from the receiver to
the sender. The 802.11 standard does not define such a feed-
back mechanism, leaving transmitters in the dark as to what
rate they should send at. Consequently, most rate selection
algorithms to date blindly search for the best possible trans-
mission rate using in-band probing.

We introduce a channel- aware rate selection algorithm -
CHARM - that leverages path loss information gleaned via
channel reciprocity. Since CHARM uses accurate channel
information, it can adapt more quickly to dynamic wireless
channels than the probe-based rate adaptation algorithms
that are currently deployed. Moreover, since CHARM ob-
tains channel information without incurring the overhead of



RTS/CTS required by earlier channel-aware proposals, it is
very efficient.

CHARM achieves its performance by combining three in-
novative techniques. First, we introduce a technique that
allows a transmitter to estimate path loss to a receiver by
passively overhearing messages sent by the receiver. By con-
tinuously monitoring packets, the path loss information can
be kept up to date even for dynamic channels. Second,
we present an algorithm for removing noise from channel
measurements using time-aware weighted moving averag-
ing, thus greatly reducing the inaccuracy introduced by stale
channel information. Third, we developed a method for au-
tomatically adapting the signal thresholds that are used by
the transmitter to select the transmission rate, so thresh-
olds are robust with respect to variations in the transmit
and receive hardware of individual nodes.

We also collected extensive measurements characterizing
wireless channel behavior in a number of different scenar-
ios including both stationary and mobile wireless devices.
The study yields insight into the problems facing channel
adaptation algorithms. We implemented CHARM in the
Madwifi driver and evaluated its effectiveness through a se-
ries of experiments conducted in diverse environments. Our
results show that in dynamic channels induced by mobil-
ity, CHARM dramatically outperforms all rate selection al-
gorithms provided with the Linux Madwifi driver. Even
for more static channels, CHARM outperforms the exist-
ing algorithms in many situations. We also use a controlled
testbed to evaluate CHARM in hidden terminal scenarios,
which present a unique challenge for rate adaptation algo-
rithms.

The rest of this paper is organized as follows. In the next
section we present our measurement study of wireless chan-
nel behavior. Section 3 outlines the CHARM rate selection
algorithm and Sections 4 through 7 describe its four compo-
nents in more detail. Section 8 presents our implementation
of CHARM in the MadWifi driver and Sections 9 and 10
presents our performance evaluation based on measurements
in the real world and on a controlled wireless testbed. We
conclude with a discussion of related work and a summary.
This paper is an extended version of [10].

2. CHANNEL CHARACTERIZATION
When designing a rate selection algorithm it is important

to understand the wireless channel dynamics that the algo-
rithm must adapt to. Nevertheless, earlier work has paid
little attention to this issue. In this section we investigate
indoor wireless channel dynamics. We first study scenarios
with stationary devices in different physical environments
and we then contrast these results with channel measure-
ments for mobile devices.

2.1 RSSI Measurement Setup
Some researchers have studied indoor wireless 2.4 GHz

and 5.2 GHz channels using specialized devices for mea-
suring RSS [21]. In contrast, we use the “Received Signal
Strength Indicator” (RSSI) to characterize channel dynam-
ics since that is the channel metric available on deployed
wireless devices (Section 4). The measurements were con-
ducted using two laptops equipped with Atheros 802.11 b/g
PCMCIA cards. One laptop was configured as an Access
Point (AP). The other laptop was configured as a client in
monitor mode on the same channel (6). The AP sent out a

Figure 1: Chamber Deviation Histogram

continuous stream of very small packets. On the client node,
a modified sniffing program was used to capture the packets
and record the sender MAC address, reception time, packet
type (beacon or not), and the RSSI value. We conducted
measurements in both a well-controlled anechoic chamber
and in several indoor campus locations.

2.2 Anechoic Chamber Results
An anechoic chamber is a controlled environment designed

for antenna radiation pattern measurements. It is full of
radio frequency (RF) absorbers which eliminate interference,
reflections, and multi-path, thus only the line of sight signal
is received. As a result, the anechoic measurements allow us
to understand the precision, and consistency of RSSI values
in a pristine environment.

In the anechoic measurements, the AP transmitted data
for 5 minutes, and the client received more than 200,000
packets. Although the AP and client are fully stationary
in the anechoic chamber, there are small fluctuations in the
RSSI values due to noise in the card and measurement im-
perfections. We calculate the deviation as the difference
from the mean RSSI value during the measurement. Fig-
ure 1 shows that the vast majority (99.96%) of the RSSI
samples are within 2 dB of the mean, suggesting that RSSI
provides fairly consistent measurements.

We did notice a few unusual transient fades (sharp drops)
in the RSSI. Some researchers have viewed this a fatal flaw
that makes RSSI impractical as a basis for rate selection.
However, a careful study of these short-term fades shows
that they usually only last for one packet time and that
they are very uncommon (only 15 packets out of 200,000).
As a result, they are easy to filter out. When we exclude
these packets, we find that the mean RSSI stays at 55.5 and
the standard deviation drops to 0.83 (down from 0.90).

2.3 Campus Environment
We used the same setup with two laptops to perform mea-

surements in several indoor locations on the CMU campus.
The measurements characterize the effects of large scale path
loss, small scale transient fading and interference on RSSI.

Lobby - The main entrance to Wean Hall is two floors
high. Groups of students continuously pass through or wait
at the elevator and there is also room to sit. We captured
the data at around 3pm, when the lobby switches from being
very crowded to being relatively quiet. The antenna of the
AP node was fixed at the corner of the stoop, which is a
typical location for APs. The client node was put on a table
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Figure 2: Lobby RSSI Trace

Trace RSSI # Mean STD K

Lobby1 500000 9.20 3.89 0.86
Lobby2 485808 13.18 3.84 0.74
Lobby3 276243 14.80 3.16 0.91
Lobby4 500000 19.53 2.85 0.87

Hallway1 494118 13.67 3.51 1.12
Hallway2 500000 13.07 2.21 1.60

Lounge1 372955 27.54 4.03 2.14
Lounge2 397008 19.68 3.27 1.75
Lounge3 457380 20.85 4.70 1.50
Lounge4 468597 19.63 3.14 1.57

Library1 139797 11.74 3.97 1.26
Library2 272375 16.44 1.92 2.87

Mobile1 278797 30.06 12.34 N/A

Table 1: Trace Statistics Summary

with someone sitting in front of it, occasionally typing on
the keyboard. In this scenario, there was no direct line of
sight between the two nodes.

One of the four RSSI traces we captured is shown in Fig-
ure 2; the other traces are similar. We observe small scale
fading and variations in large scale path loss despite the
fact that both laptops were stationary. These effects are
the result of people moving in the area around and be-
tween the two laptops. This is important since it implies
that even with stationary devices, rate adaptation algorithms
must cope with channel dynamics caused by moving objects
(people). We summarize the number of RSSI values col-
lected, the mean, standard deviation, as well as the K-factor
for each trace in Table 1. The standard definition of K is
the ratio of signal power in the dominant component over
the scattered power. Here, we derive K using the RSS, and
calculate K as the ratio of average RSS to its standard devia-
tion. Larger K indicates a stronger dominant component, or
line of sight signal. Since the laptops do not have direct line
of sight in the lobby, the traces have small K-factors. We oc-
casionally see very short (single packet) yet large variations
in RSSI.

Hallway - Next, we moved the AP to another hallway
opposite of the client node. The statistics in Table 1 show
that these traces have similar mean and standard deviation.
The K values are larger since there is a line of sight path as
the dominant component.
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Figure 3: Lounge RSSI Trace
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Figure 4: Mobile RSSI Trace

Lounge - The graduate student lounge is a relatively
closed environment where small numbers of students come
and go. The lounge is about 70 square meters. The AP
node was placed just outside of the lounge while the client
node was put on a table in the lounge. We show one of four
lounge traces that we gathered in Figure 3; the other three
traces are similar. Since there is a lot less movement in the
lounge than in the lobby, the RSSI is much less variable than
in the lobby trace.

Library - In the library we placed the laptops in an area
with a lot of metal shelves. This results in an environ-
ment rich in reflections and multi-path, which, combined
with movement, results in a very challenging scenario.

Mobile devices - Finally, we collected a trace for a mo-
bile scenario. The AP node was fixed inside a room, and we
walked back and forth in the corridor outside of the room
while holding the client node. The trace is shown in Fig-
ure 4. We observed that changes in large-scale path loss are
much more significant than in the traces collected using sta-
tionary devices. The traces differ both in terms of the range
and rate of RSSI fluctuations. Specifically, the RSSI val-
ues fluctuate across a much broader range and they change
more quickly in the mobile scenario. The resulting channel
is obviously more challenging for rate selection algorithms.
Small scale fading is similar to that observed in the earlier
traces.
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Figure 5: Packet Success Rate over a Clear Channel

2.4 Discussion
We briefly summarize the salient features observed in the

channel measurements.

• RSSI measurements are fairly accurate, though there is
a small amount of noise inherent in the measurement.

• The dynamics of large-scale path loss depend heavily
on the environment. It can be relatively fixed when
the devices are stationary and there is little move-
ment in the area (Figure 3). Large-scale path loss can
become more variable when there is more movement
(Figure 2) and it becomes highly dynamic and can
change abruptly for mobile devices (Figure 4). Adapt-
ing rapidly to these changes can greatly improve per-
formance.

• Small-scale fading due to movement increases as line-
of-sight and dominant rays decrease. Fades occur on a
variety of time-scales. Rate adaptation algorithms can
benefit from adapting to slower fades, but fades also
occur on a very small timescale that a rate adaptation
algorithm is unlikely to be able to adapt to successfully.

The rapid channel fluctuations observed as both small-
scale fading and changes in large-scale path loss are not well
addressed by probe-based algorithms since they are slow to
discover the channel state. We now describe how CHARM
uses signal measurements to quickly obtain accurate channel
information.

3. CHARM: CHANNEL-AWARE RATE
ADAPTATION

The probability of a successful packet reception is largely
determined by the signal-to-interference and noise ratio (SINR)
at the receiver. As an example, Figure 5 shows the packet
success rate as a function of received signal strength for a
commercial Atheros card for a clear channel (no interference,
low noise floor) [9]. While effects such as multi-path can im-
pact the packet success rate [1], commercial 802.11 cards are
very good at overcoming such impairments [6]. If the trans-
mitter could accurately predict all three components in the
SINR (signal, noise, interference) at the receiver, it could
directly select the best transmission rate without resorting
to probing. However, getting the necessary information is
complicated because commercial NICs provide only limited
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Figure 6: CHARM Design Overview

information and the receiver-side information is needed by
the transmitter.

The most important element of SINR when selecting a
rate is the received signal strength (RSS). This quantity
can be estimated at the receiver using the received signal
strength indicator (RSSI), but must be known at transmit-
ter where the transmission rate is selected. Earlier work,
e.g. RBAR [5], has solved this problem by requiring the use
of RTS/CTS frames, which allows the receiver to explicitly
communicate this information to the sender. Unfortunately,
the benefit of improved rate selection is largely negated by
the overhead introduced by the RTS/CTS frames.

CHARM also makes use of explicit channel information to
select transmission rates but it avoids RTS/CTS overhead.
The design of CHARM has four components as is shown in
Figure 6:

• Path loss monitoring - Nodes continuously moni-
tor transmissions from potential destinations. Based
on the RSSI readings, they estimate the instantaneous
path loss to that destination by leveraging channel
reciprocity.

• Path loss prediction - Before transmitting a packet,
the sender uses historical path loss information for the
destination to estimate the current path loss to that
destination.

• Rate selection - Using the predicted path loss, the
sender estimates the SINR at the receiver and uses it
to look up the best transmission rate in a rate selection
table that lists the minimum required SINR threshold
for each destination and for each transmission rate.

• Rate SINR threshold estimation - Based on in-
formation on the success and failure of past transmis-
sions, the sender slowly updates the thresholds in the
rate selection table. This is necessary to calibrate the
thresholds for the specific wireless cards used by the
sender and receiver and to account for possible drift in
the various readings on the wireless cards.

We elaborate on the design and implementation of these
components in the next four sections.



4. MONITORING PATHLOSS
We describe how a sender can efficiently monitor path loss

to destinations of interest by leveraging channel reciprocity.

4.1 Received Signal Strength
The received signal strength of a wireless signal in dB can

be expressed as [17]:

RSS = Ptx + Gtx − PL + Grx (1)

where RSS is the received signal strength, Ptx is the trans-
mit power, Gtx and Grx are the transmit and receive an-
tenna gain, and PL is the path loss. Thus, a transmitter
that knows the quantity Ptx +Gtx−PL+Grx can calculate
RSS at the receiver.

Ptx, Gtx and Grx are properties of the transmit and re-
ceive hardware and are generally fixed. Their values can
be obtained from the hardware and provided to the trans-
mit side rate selection algorithm, although in practice it is
not necessary to know the individual values for Gtx and
Grx. The only portion of Equation 1 that is difficult to
obtain is the path loss PL. It is determined by the signal
transfer function between the transmitter and the receiver
and it constantly changes as a result of movement in the
area around the transmitter and receiver and mobility of the
wireless devices, as shown by the measurements in Section 2.
For channel-aware rate adaptation to be viable, we need a
method of conveying this information to the transmitter in
a low-overhead fashion.

CHARM obtains path loss information by leveraging the
Reciprocity Theorem [19], which states: “If the role of the
transmitter and receiver are instantaneously interchanged,
the signal transfer function between them remains unchanged.”
As path loss is entirely determined by the signal transfer
function, the instantaneous path loss between two nodes is
the same in both directions and a transmitter can obtain
the path loss to a receiver by measuring the path loss from
the receiver to the transmitter.

Practically speaking, this means that if the “transmitter”
knows the transmit power used by the “receiver”, it can es-
timate the path loss (in both directions) by observing the
RSS for packets it receives from the “receiver”, taking an-
tenna gains into account. More formally, solving Equation 1
for path loss we get

PL = Ptx + Gtx + Grx −RSS (2)

where Ptx in this case is the transmit power of the“receiver”.
For the purposes of rate selection, the antenna gains can
simply be considered a fixed part of the path, so the equation
becomes PL = Ptx−RSS. We describe below how we obtain
the RSS at the transmitter, while the transmit power at the
“receiver” can simply be provided by the ‘receiver”.

4.2 Measuring Received Signal Strength
In practice, wireless nodes need to rely on the “Received

Signal Strength Indicator” (RSSI) value as a measure for
the RSS. Fortunately, modern wireless cards try to have the
RSSI accurately reflect the RSS. For example, the documen-
tation for Atheros HAL indicates the following mapping:
RSSI = RSS + NF , where NF is the noise floor which the
driver reports as -95 dBm. Previous work on RSSI character-
ization [7] for Atheros confirms this. For example, Figure 7
shows the reported RSSI as a function of the RSS for an
Atheros card; there was no interference and noise was fixed.
The RSSI-RSS relationships is indeed very close to being lin-
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Figure 7: Atheros Wireless Card Characterization

ear, especially in the central part of the RSSI range, which
is the region of interest. We conclude that RSSI is a good
approximation of RSS and, combined with transmit power
information, it can be used to estimate path loss. In our
work, RSSI non-linearity is not an issue since we automati-
cally calibrate SINR thresholds (Section 6).

4.3 Noise and Interference
Another important quantity in the SINR is the noise level

at the receiver. Noise is described as random relatively con-
tinuous signals in the communication band of interest. In
practice, the vast majority of true noise is composed of ther-
mal background radiation and device generated noise. Typi-
cally, the noise of a device is dominated by the “noise figure”
of the low-noise amplifier (LNA) in the device. As this is
constant, it can easily be communicated from the receiver
to the transmitter.

Interference refers to signals present at a receiver that
were not generated by the transmitter of interest. Wideband
continuous sources of interference can loosely be treated as
“noise”. The receiver can measure this interference and re-
port it in its “noise” level. Narrowband continuous sources
of interference are more problematic, but are uncommon in
existing WLAN networks.

Bursty interference is more problematic and cannot be
treated as “noise”. The concern is that bursty interference
might affect both individual signal strength and noise mea-
surements in random ways. The effect on noise can be elim-
inated by taking several measurements and taking the low-
est value (since noise is mostly constant). The effect of
interference on signal strength measurements is harder to
eliminate, but in practice its effect is limited for two rea-
sons. First, wireless networks attempt to reduce bursty
interference using medium access protocols that use car-
rier sense (i.e. CSMA/CA). For compliant devices, this
greatly reduces interference by effectively limiting it to hid-
den terminal scenarios. Bursty interference generated by
non-compliant sources or by imperfections in the MAC pro-
tocol can be a concern. Second, RSSI is measured at packet
acquisition time, before capture effect can play a role and
as a result, the effect of interference on RSSI is generally
under 1 dB. The most that we have been able to deliber-
ately affect RSSI using interference is approximately 3 dB.
Intuitively, if the interference is stronger than that, the “in-
terfering” packet is received or no reception takes place [9].
We study the impact of interference on the performance of
CHARM in Section 10.



4.4 Measuring path loss
All transmitters in CHARM continuously passively mon-

itor the packets sent by any destinations of interest. Any
packet sent by the destination can be used to gain channel
information, including data, ack, and management packets.
The transmitter records the RSSI of the packets it overhears,
and, as described above, uses the RSSI to estimate the in-
stantaneous path loss of the channel from the destination to
itself (Equation 2). Due to channel reciprocity, this is also
the instantaneous path loss to that destination. All path
loss estimates are stored in a table with a timestamp for use
by the path loss prediction algorithm described in the next
section.

To calculate the path loss, the transmitter needs the trans-
mit power used by the destination. The transmitter also
needs the noise level at the receiver to estimate the receiver
SINR before a packet transmission (Section 7). This infor-
mation is explicitly provided by the destination. All nodes
inform other nodes within their transmission range about
the transmit power they use and the noise level they ob-
serve. In our implementation, which targets infrastructure
802.11 networks, this is done by introducing an additional
802.11 information element in beacons, probe requests, and
probe responses, as specified in the 802.11 standard. If a
transmitter is using transmit power control, CHARM may
suffer some lack of accuracy, depending on how quickly the
transmit power is changed.

Our approach allows the transmitter to obtain path loss
information to destinations without having to use expensive
RTS/CTS frames, which are effectively active probes.

5. PREDICTING PATH LOSS
In the previous section we described how a transmitter

can collect information about the path loss to destination
nodes by passively overhearing the packets they send. In
this section we describe how these past loss samples are used
to predict path loss before each packet transmissions.

5.1 A Time-aware Prediction Algorithm
A common approach for predicting future values based

on history is to use some form of moving average where all
values in the past are treated equally or are weighted by
sample count. Our trace analysis in the previous section
shows however that there are clear trends in the RSSI val-
ues, so it is important to consider the timing of the samples.
Specifically, recent samples are more likely to be represen-
tative of the current channel conditions than older samples,
so they should carry more weight. Ignoring time could re-
sult in giving too much weight to stale channel information.
We avoid this pitfall by using a time-aware averaging algo-
rithm: we assign a weight to each RSSI based on packet
arrival time, not sample count. The use of a time-based al-
gorithm is especially important because the packet arrival
rate from individual nodes is usually very bursty.

The natural candidate for averaging is an EWMA (Expo-
nential Weighted Moving Average). However, the algorithm
executes in the driver where we do not have floating point
support, so we opted for a simpler Linearly Weighted Mov-
ing Average (LWMA) instead. We define RSSIAvg to rep-
resent the long term average RSSI of received packets from
a specific host. It is updated every time we are informed of
a fresh RSSI value, called RSSICur, gathered from a new
incoming packet from that host. The algorithm takes into

Scenario Basic Filtered
Scenario MSE(STD) MSE(STD)
lobby1 2.38 (1.46) 1.57 (1.16)
lobby2 1.46 (1.10) 1.17 (0.97)
lobby3 1.19 (0.97) 1.07 (0.91)
lobby4 1.17 (0.96) 1.06 (0.90)
Hall1 1.87 (1.27) 1.39 (1.08)
Hall2 1.86 (1.27) 1.48 (1.12)
lounge1 1.24 (0.99) 1.12 (0.93)
lounge2 1.09 (0.92) 0.86 (0.79)
lounge3 1.18 (0.96) 0.72 (0.69)
lounge4 1.16 (0.96) 0.92 (0.82)
Mobile1 1.51 (1.12) 1.16 (0.95)

Table 2: LWMA Prediction accuracy

Receive a packet
if deviation > 5 {

if last RSSI is marked {
Erase the mark
Update RSSIavg

} else {
Mark it as suspicious transient fading

} else {
if last RSSI is marked {

Erase the marked RSSI
}

Update RSSIavg
}

Figure 8: LWMA Algorithm with Filtering

consideration the time interval dT between the new packet
and the previous one. The value of RSSIAvg is updated as
follows:

RSSIAvg = [RSSIAvg ∗f(dT )+RSSICur]/(1+f(dT )) (3)

f(dT ) is a linearly decreasing function of dT , starting at 1
and decreasing to 0 when dT exceeds a decision time win-
dow. We use a window of two seconds since we did not
observe any benefit from larger windows.

We applied this prediction algorithm to the traces col-
lected in Section 2. Our success metric is how well we can
predict the RSSI of each new packet based on the RSSI val-
ues of earlier packets. The results are shown in the middle
column of Table 2. The prediction MSE (Mean Square Er-
ror) is less than 2 in most cases, which shows that time-aware
LWMA prediction works quite well.

5.2 Identify Small-scale Transient Fading
In Section 2, we observed that traces include sharp tran-

sient fades that last for only a single packet. They have no
predictive value and can in fact disrupt the prediction. At
the same time, it is important that we do not ignore the on-
set of a longer-term drop in RSSI. For this reason, we define
small-scale fades as an abnormally low RSSI value that lasts
for only one packet.

To detect and filter out transient fades, we check for large
drops in RSSI. We define the deviation as the difference
between RSSICur and RSSIAvg before it is updated. If
the deviation is larger than a threshold, set to five in our
configuration, the transient fading filtering procedure is in-
voked. The packet is marked as a potential transient fade,



Figure 9: Prediction Error Distribution

Figure 10: Predicting Error over Time

and we delay the update of RSSIAvg until the next RSSI
is received. We then check whether the sharp drop in RSSI
was a one-packet event or a longer term trend. If it is a
one time event, we simply drop the low value and update
RSSIAvg using the RSSI value of the last packet. Other-
wise, we include the effect of both values in RSSIAvg. The
revised prediction algorithm is shown in Figure 8.

We applied the filtering LWMA algorithm to the campus
traces and compared its performance with the basic LWMA
algorithm in Table 2. A comparison of the MSE and STD
shows that the revised algorithm performs consistently bet-
ter than the basic LWMA algorithm. Figure 9 shows the
distribution of the prediction error for a subset of the traces.
We see that the prediction error is mostly within 2 dB.

Figure 10 illustrates the operation of our prediction algo-
rithm on a segment of a real trace. We see that the pre-
diction follows the trace well, and identifies transient fades
correctly.

6. RATE SINR THRESHOLD ESTIMATION
Each transmission rate has a minimum SINR that is re-

quired for packet reception to occur with a good probabil-
ity. Initially, CHARM uses default values for this threshold.
However, imperfections in transmit power information, re-

-MaxDelta ... -1 0 1 ... MaxDelta
ok 0 ... 0 50 101 ... 200
fail 0 ... 1 61 100 ... 0

Table 3: Sample SINR Threshold Statistics

For each rate {
For delta = -MaxDelta to MaxDelta {
Compute successful fraction for this bin.
if (successFrac indicates good reception) {
if (delta < 0) { // bin is below cur thresh
We succeeded below the thresh.
Indicates that we may want to move thresh
down.

} else if (delta > 0) { // bin is above thresh
We succeeded above the thresh as expected.
Maybe we should send at a higher rate.
Consider lowering next rate’s thresh.
Also, argues in favor of not raising
current thresh.

}
} else {
if (delta < 0) { // bin below current thresh
We failed below the thresh.
Not surprising.

} else { // bin above or equal to cur thresh
We failed unexpectedly.
Indicates that we may want to increase
thresh.

}}}

Figure 11: Algorithm for Updating SINR Thresh-
olds

ceiver noise estimation, unreported interference, and multi-
path effects can affect this threshold.

To overcome these issues, CHARM automatically cali-
brates SINR thresholds on-line according to observed per-
formance. The Rate SINR Threshold Estimation module
performs this function by observing packet success rate as
a function of predicted SINR. This module then adjusts the
SINR threshold for each rate accordingly. This works as fol-
lows. When packets are sent at a particular transmission
rate, the results of transmission - success or failure - are
recorded in “bins” according to the observed SINR in the
case of successful transmission and estimated SINR in the
case of failed transmission. These bins are indexed relative
to the current SINR threshold for the given rate as shown in
Table 3. The various results pointing toward rate increase
or decrease are then weighed, and the threshold is adjusted
according to the outcome of that weighing operation.

For example, if the threshold for 11 Mbps is currently
10 dB, and a transmission succeeds with an observed 9 dB
SINR, the packet success count for bin -1 is incremented. If,
on the other hand, a transmission fails with an estimated
SINR of 12 dB, then the packet failure count of bin 2 would
be incremented. CHARM periodically (every few seconds
currently) updates the rate SINR thresholds using the infor-
mation in the bins to determine how to update the thresh-
old. Conceptually, if a given rate is failing at SINRs above
its threshold, it probably should be increased. On the other
hand, if a rate is succeeding below its threshold, it probably
should be decreased. Note that this threshold calibration
works on a much larger time-scale and much more gradually
than the core rate selection algorithm. A high-level descrip-



tion of the threshold update procedure is shown in Figure
11. As these thresholds may vary from receiver to receiver,
each transmitter contains a rate SINR threshold set for each
receiver that it is communicating with, and updates these
thresholds independently.

7. RATE SELECTION
Before sending a packet to a specific destination, the sender

first invokes the path loss prediction algorithm to estimate
the current path loss to the destination. It then uses its
own transmit power and the noise level at the receiver (pro-
vided by the receiver - Section 4.4) to obtain an estimate
of the SINR at the receiver. This SINR estimate is finally
used to determine a set of transmission rates through lookup
in a table with SINR thresholds for the intended receiver.
Per packet the driver can specify several transmission rates,
which will be used for the original transmission and each
of the possible retransmissions in the order specified by the
driver. For the first transmission, the driver picks the high-
est rate supported for the estimated SINR value, in order
to maximize the channel throughput. For retransmissions,
lower rates are selected according to the schedule described
in the implementation section. There are two reasons for
switching to lower rates fairly quickly. First, we want to
the deliver the packet and since the first transmission failed,
the first rate may have been too high. Second, a successful
delivery result in an ACK, which give us more up to date
information on the SINR. Updated SINR information will
benefit later packets.

8. IMPLEMENTATION
We have implemented CHARM using the Linux Madwifi

driver which supports devices based on the Atheros chipset.
Our implementation supports both the 802.11g and 802.11b
modes of operation. In this section we describe how we
adapted CHARM to the Atheros chipset, and we also discuss
how we deal with two implementation challenges: legacy
nodes and antenna diversity.

8.1 Transmit Rate Selection for Atheros
A key benefit of the Atheros architecture is that much of

the 802.11 protocol is implemented in the driver, although
time-critical functionality are still implemented in the firmware.
For rate selection, the Atheros hardware strikes a balance
that allows rate adaptation policy to remain in the driver
while implementing the time-critical portion - retransmis-
sion - in the firmware. This is supported using a “Multi-rate
Retry” mechanism in which the driver sends four data pairs
of the form (rate, number of attempts) to the card for each
packet. The firmware begins with the first rate, attempts
to send it the specified number of times before dropping
down to the second rate and so on. The driver is informed
of the number of transmissions attempted and whether the
last transmission was successful.

When transmitting a packet, CHARM consults the Path
Loss Prediction module to determine the current estimated
path loss to the receiver. The SINR at the receiver is then
calculated using the current transmission power and the
noise/interference at the receiver. The SINR threshold table
is then consulted to determine the highest rate that satisfies
the current estimated SINR. The other rates specified to the
card (for possibly retransmissions) are selected as follows. If

Pair Rate Attempts
1 best estimated rate 3
2 if rate 1 >= 36 Mbps 1 if rate 2 > 11 Mbps

rate 2 = rate 1 − two rates 2 otherwise
otherwise
rate 2 = rate 1 − one rate

3 if rate 2 > 11 Mbps 1
rate 3 = 11 Mbps
otherwise
rate 3 = rate 1 − one rate

4 1 Mbps default maximum

Table 4: Multi-rate Retry Settings

the first rate is at least 36 Mbps, then the second rate set is
set to two rates lower than the first set. Otherwise it is set 1
rate lower. For the third rate, we select 11 Mbps if the sec-
ond rate was higher than 11 Mbps, otherwise we select one
rate lower than the second rate. CHARM always sets the
final rate to the lowest - and most robust - rate available, 1
Mbps, and the transmission attempts to the driver’s default
maximum for that rate. In all cases, if the calculated rate
is 1 Mbps, the default maximum number of transmissions is
used and subsequent rate pairs are unused. Reducing rates
quickly and the use of 1 Mbps result in a fairly conserva-
tive rate schedule. The motivation is that 1) the ACK sent
in response to a successful transmission provides detailed
channel information that is preferable to the binary channel
information provided by a packet drop and 2) we prefer not
to drop packets given to us by the higher layer.

Table 4 summarizes CHARM’s Multi-rate Retry settings.
CHARM disables the 6, 9, and 12 Mbps rates since they
were experimentally observed to be inferior to the 5.5 and
11 Mbps alternatives from the 802.11b rate set.

8.2 Antenna Diversity
The primary source of link asymmetry is antenna diver-

sity. Reciprocity holds between a single pair of antennas but
if a node transmits and receives on different antennas, then
reciprocity no longer holds. In that case, the average path
loss will generally be similar, but there can be significant
differences in some situations.

CHARM supports antenna diversity by operating inde-
pendent Path Loss Prediction and Rate RSSI Threshold
modules for each antenna. CHARM only needs to track
one module for each antenna - instead of one for each an-
tenna pair between each node and its receiver (usually 4)
since 802.11 ACK packets are always sent back on the an-
tenna on which a packet was received. For this reason, the
path loss prediction algorithm is augmented to rely on ACK
packet information when it is available. RSSI information
from other received frames is only used if the ACK informa-
tion is stale.

In addition, CHARM combines rate adaptation with trans-
mit diversity control by controlling selection of the transmit
antenna. When transmitting a packet, CHARM asks each
antenna prediction module to predict the SINR at the re-
ceiver. CHARM then selects the transmit antenna that has
the highest predicted SINR. To the best of our knowledge,
CHARM is the first rate adaptation algorithm to specifically
address the issue of jointly selecting transmission rate and
transmit antenna. To demonstrate the practicality of our
approach, all evaluation results in Section 9 were obtained
with antenna diversity turned on.



Figure 12: Median Throughput for Static Scenarios

8.3 Legacy Nodes
Nodes that do not explicitly exchange transmit and noise

power information can still benefit from CHARM. For such
nodes, the Rate SINR Threshold Estimation technique de-
scribed in Section 6 is especially important. The reason is
that when a legacy node is the destination for a transmis-
sion, the transmitter does not have information on its trans-
mit power and noise, so the default SINR thresholds that it
uses may differ substantially from the correct values. Since
CHARM adapts these threshold dynamically, the thresholds
will converge to the appropriate values. However, because of
the lack of noise and interference information CHARM will
take more time to discover the best threshold values since
the difference between the best and the default thresholds
will be larger.

9. EVALUATION
To demonstrate CHARM’s effectiveness we measured its

performance against several existing rate selection algorithms
in both static and mobile scenarios. The performance met-
ric we will use is link throughput, since this is probably the
primary metric for many users. The evaluation using other
metrics such as energy efficiency and packet jitter are left for
future work. All the experiments in this section were done
“in the wild”, so they automatically account for the effects
of interference, noise, multi-path and hidden terminals that
are naturally present in deployed wireless networks.

9.1 Static Node Scenarios
We measured CHARM’s performance against the three

rate selection algorithms provided with the Madwifi driver:
AMRR [13], ONOE [14], and SampleRate [2]. Adaptive
Multi-rate Retry (AMRR) is the device driver-based ver-
sion of Adaptive Auto Rate Fallback (AARF). AARF is
an adaptive variant of the well-known Auto Rate Fallback
(ARF) algorithm [20] that selects transmission rates based

on the success and failures of recent packet transmission
attempts. ONOE tries to overcome the loss-sensitivity of
ARF and its variants by attempting to select the highest
transmission rate with a packet loss rate of 50%. SampleR-
ate [2] attempts to maximize throughput by estimating the
per-packet transmission time of each rate and selecting the
transmission rate with the lowest expected per-packet trans-
mission time. The averaging used in SampleRate makes it
robust to rapid small-scale fading in the presence of con-
stant large-scale path loss, but it is often slow to adapt to
new channel conditions.

In our tests, the transmitter constantly sends as many
UDP packets as possible to the receiver. These UDP pack-
ets are 1742 bytes each. The receiver records the number of
packets it receives at one second intervals. For most scenar-
ios, we measure four tests of 20 seconds each. We then treat
all 80 one second measurements as individual trials and re-
port summary statistics. We repeat this test for the four rate
selection algorithms. We compare rates in 11 different loca-
tions located in four buildings in three different geographic
locations. The first location - “Home” - is a suburban town-
home. The second and third locations - REH and WEH - are
university campus buildings with an operational 802.11b/g
network. The fourth location - “Apartment” - is an urban
apartment. While the transmitter and receiver are station-
ary in these tests, there is naturally movement in the area,
so channels are dynamic, similar to the traces described in
Section 2.

Figure 12 shows the results of our tests. In eight lo-
cations, CHARM significantly outperforms the best of the
other three algorithms. In two locations, CHARM performs
essentially the same as the best of the other three algorithms.
In one location, the best of the other three algorithms signifi-
cantly outperforms CHARM. The one location where charm
performs poorly was located in a university library. The re-
ceiver was located on a metal shelf, and the transmitter
was obscured from the receiver. The large amount of metal



Figure 13: Throughput for Two Indoor Mobile Sce-
narios

shelving in the environment resulted in extreme multipath
fading as seen in Library traces in Section 2 which were
gathered from the same environment.

In general, in poor signal environments, CHARM per-
forms similarly to the best of the other algorithms, though
SampleRate may outperform CHARM in a severe multipath
environment. In moderate to good signal environments,
CHARM significantly outperforms the best of the others.
Among the other algorithms, SampleRate performs some-
what better than ONOE, and AMRR fares the worst.

9.2 Mobile Node Scenarios
While 802.11 networks have traditionally involved com-

munication between stationary devices, they are increasingly
being used by mobile devices such as 802.11 phones, PDAs,
embedded devices, and even automobiles. As we saw in Sec-
tion 2, mobility results in more rapid channel variations that
are very challenging for rate selection algorithms. In such
dynamic environments, we expect that it is critical to gain
accurate channel information quickly in order to effectively
utilize the channel.

We compared CHARM against the same three algorithms
(AMRR, ONOE, and SampleRate) in two mobile scenarios.
In each scenario, the receiver was stationary while the trans-
mitter moved within range of the receiver for 40 seconds.
Each algorithm was tested two times for each scenario. Fig-
ure 13 shows the results. CHARM significantly outperforms
all other algorithms for the vast majority of the trace. There

is one small region where SampleRate outperforms all oth-
ers by remaining aggressive when the channel degrades, but
this is short-lived. For almost the entire trace, CHARM’s
ability to quickly gain an accurate picture of channel state
translates into dramatically better performance.

10. EMULATOR-BASED EVALUATION
In the previous section we compared the performance of

CHARM with three other rate selection algorithms in a va-
riety of real-world environments. While this allows a very
realistic evaluation, the lack of control makes it difficult ana-
lyze and interpret results. In this section we use a controlled
wireless testbed to analyze the performance of CHARM in
mobile environments and to study the impact of hidden ter-
minals.

The controlled experiments use the CMU wireless network
emulator, which supports realistic and fully controllable and
repeatable wireless experiments [3]. The testbed uses real
wireless devices (laptops) but instead of having the devices
communicate through the uncontrolled ether, the RF signals
transmitted by the devices are shifted down to an interme-
diate frequency, digitized and forwarded to a DSP engine.
The DSP engine uses a set of FPGAs to model the effects of
signal propagation, including large scale attenuation, effects
of mobility, interference, etc. in real time. The resulting sig-
nals are converted back into the RF domain and sent to the
wireless interfaces of the devices. The emulator testbed of-
fers a high degree of realism since it uses real wireless cards,
but we can fully control the signal propagation environment.
More details on the wireless emulator, including examples of
the types of experiments it supports, can be found elsewhere
[8, 6, 9].

All emulator-based results presented in this section were
done using the same wireless cards that were used for the
real world experiments. However, they use 802.11b (instead
of 802.11b/g) since we are still in process of optimizing the
emulator accuracy for 802.11g experiments.

10.1 Mobile Scenarios
For the mobile emulator experiments, we use a channel

model that includes a log based path loss model and a sta-
tistical Ricean fading model. This statistical model is very
realistic and reflects the effects of both distance based atten-
uation and mobility. In each experiment, the mobile trans-
mitter sends a UDP flow of 8 Mbps while moving along
a predefined route in the emulated world at three different
speeds of 0.5 m/s, 1m/s and 2m/s respectively. Figure 14(b)
shows the throughput at a walking speed of 1m/s. We see
that CHARM outperforms the other three rate selection al-
gorithms by reacting more quickly to changes in the chan-
nel. AMRR and SampleRate perform reasonably well, while
ONOE performs very poorly. Note also that the perfor-
mance differences between the four algorithms is similar in
character to the real-world results presented in Section 9.2.

Figures 14(a) and (c) show the throughput when the trans-
mitter is moving at 0.5m/s and 2m/s. Again CHARM has
the best performance, followed by AMRR and SampleRate.
An interesting point is that at the lower speed, SampleRate
is quite conservative. As a result, it never fully recovers to
the maximum data rate (of about 7 Mbps) when the quality
of the channel improves. This is partly due to the fact that it
is sensitive to large amounts of packet loss; we also observed
this during the experiments presented in Section 9.2.
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Figure 14: Mobile Throughput on the Emulator -
High Traffic Rate

Table 5(a) shows the average throughput for each rate
selection algorithm. It shows that CHARM achieves the
highest throughout at all speeds. We also kept track of
the transmission rates that were sellected by the four al-
gorithms during the mobile experiments. The results are
shown in Figure 15. We observe that CHARM consistently
picks higher transmission rates, while AMRR also mostly
picks the 11 Mbps rate. SampleRate spends between 40%
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Figure 15: Distribution of Rates Selected in Mobile
Scenarios

and 60% of the time transmitting at 5.5 Mbps, i.e. it does
not recover quickly when the channel improves. ONOE al-
most never transmits at the maximum rate.

10.2 Low Traffic Density
Rate selection algorithms rely on channel information to

make rate selection decisions and that information is ob-
tained by monitoring either the RSSI (for CHARM) or the
success or failure of transmission attempts (for the others).



Speed 0.5 m/s 1 m/s 2 m/s

CHARM 4.35 4.38 4.36
Sample 1.13 3.55 3.32
AMRR 3.91 3.87 3.16
ONOE 0.38 0.34 1.27

(a) High Rraffic Rate

Speed 0.5 m/s 1 m/s 2 m/s

CHARM 2.13 2.15 2.19
Sample 2.14 2.19 2.18
AMRR 1.98 2.01 2.09
ONOE 1.17 0.94 0.79

(b) Low Traffic Rate

Table 5: Average Throughput for Mobile Scenarios
on the Emulator Testbed (Mbps)

Mobile Throughput(RTS-CTS off. Speed: 1 m/s)

0

0.5

1

1.5

2

2.5

3

3.5

1 11 21 31 41 51 61 71
Time (Sec)

Th
ro

ug
hp

ut
 (M

bp
s)

CHARM
Sample
AMRR
ONOE

Figure 16: Mobile Throughput on Emulator - Low
Traffic Rate

This means that when the traffic load is low, the algorithms
will have less information to work with. We reran the ex-
periments from the previous section, but we limited the rate
to 2.5Mbps. We again monitored the throughput and rates
selected by these four algorithms. Figure 16 shows the result
at 1 m/s. We see that the results are similar to those for the
full rate experiments (Figure 14(b)), except that the higher
rates are “clipped” at just under 2.5 Mbps, as one would ex-
pect. The distribution of the selected rates is very similar
to those for the full rate experiments in Figure 15 and are
not shown. Table 5(b) shows the average throughputs for
all three speeds. CHARM and SampleRate now have similar
performance. The more conservative behavior of SampleR-
ate does not hurt performance in this case since either the 11
Mbps or 5.5 Mbps transmission rates are sufficient to keep
up with application data rate. AMRR has slightly lower
performance while ONOE again performs poorly.

10.3 Hidden Terminal Study
In a hidden terminal situation a sender transmits to a re-

ceiver which can hear a third node (the hidden terminal).
However, the transmitter and the hidden terminal cannot

No/0Mbps 1Mbps 2Mbps 5Mbps

CHARM 11 11 11 11
Sample 11 11 5.5,11 1,2,5.5
AMRR 11 11 1 1
ONOE 11 1,11 1,11 1

Table 6: Hidden Terminal Rates Selected

hear each other. This can cause collisions at the receiver
since the transmitter and the hidden terminal will not defer
to each other. Hidden terminals are a challenge for most rate
selection algorithms. For algorithms that rely on transmis-
sion success rates, packet losses due to collisions will trigger
reductions in transmit rate. This may be the wrong response
since this will not necessarily eliminate collisions loss. The
increased transmission time may in fact increase the colli-
sion probability. For algorithms that rely on RSSI readings
to predict the SINR at the receiver, the (hidden) interference
caused by the hidden terminal can result in large errors in
the SINR estimates. The traditional solution to avoid colli-
sions due to hidden terminal nodes is to use the RTS/CTS
packet exchange before packet transmissions. While this
avoids the collisions, it also introduces significant overhead
and reduces network throughput.

In this section we use the emulator to study how the four
rate selection algorithms deal with hidden terminals. We use
a very simple static scenario so that we can easily analyze
and interpret the results. We use four nodes: a transmitter,
a target receiver, a hidden terminal, and the destination to
which the hidden terminal transmits. We force the chan-
nels between the transmitter and the target receiver, and
between the hidden terminal and receiver to have the same
path loss, so packets from either node will arrive at the re-
ceiver with the same signal strength. The fourth node can
only be heard by the hidden terminal. The channels be-
tween the transmitter and the hidden terminal have very
high path loss so they cannot hear each other. We mea-
sured the throughput between the transmitter and the re-
ceiver for different rates of interfering traffic, and both with
and without the use of RTS/CTS. We compared the per-
formance of the four rate selection algorithms and a fixed
11 Mbps strategy. We present results without fading, but
results with fading are similar.

Figure 17 summarizes throughput results. As shown along
the x-axis, the different groups of measurements correspond
to the scenarios with different rates of interfering traffic (0,
1, 2, or 5 Mbps) and the use of RTS/CTS. Note that no
interfering traffic effectively means that there is no hidden
terminal. Table 6 shows the transmission rates that are used
in the different scenarios. We can draw several conclusions
from the results. First, we learn from the results without
interference that the cost of using RTS/CTS is about 18%,
which explains why RTS/CTS is rarely used in practice.

Second, we see that the rate selection algorithms have
very different performance in the presence of interference
from the hidden terminal. CHARM performs very well and
its performance is similar to that of using a fixed transmis-
sion rate of 11 Mbps in all scenarios. The rates in Table 6
confirm that CHARM uses the highest transmission rate.
The reason is that the RSSI measurements show the sig-
nal strength at the receiver is good, so CHARM picks the
highest transmission rate. This is appropriate both when
RTS/CTS is turned off (reduces the transmit time and thus
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Figure 17: Median Throughput for Hidden Terminal Study

the chance for collisions) and when it is turned on (most effi-
cient). SampleRate also does very well, especially when the
interference is limited to 1 or 2 Mbps. The reason is that
SampleRate’s estimates of the expected transmission time
indicate that using the higher rates is more effective. Only
when the rate of the interfering traffic increases to 5 Mbps
does it start using the 1 and 2 Mpbs transmit rates.

Both AMRR and ONOE perform poorly in all scenarios.
The error bars indicate that these two algorithms are either
trapped at lowest transmission rate or bounce between two
different rates. The reason is that the packets losses caused
by collisions “trick” both algorithms to use the lowest trans-
mission rate. While occasional successful packet transmis-
sions can cause it to switch back to a high transmission rate,
such increases in rate tend to be short lived.

A final observation is that in all scenarios, except with the
highest rate of interfering traffic, the throughput obtained
with CHARM and SampleRate is higher without RTS/CTS
than with RTS/CTS. In other words, the loss in efficiency
caused by(occasional) poor rate selection is lower than the
extra overhead of using RTS/CTS. We see that RTS/CTS
only helps when interference is very persistent.

11. RELATED WORK
Numerous efforts have addressed the problem of trans-

mission rate selection. We broadly categorized these ap-
proaches into probe-based, SINR-based, and hybrid tech-
niques, though in many cases, hybrid elements are present
in probe and SINR-based algorithms.

Probe-based rate selection algorithms leverage success-
ful packet reception as an implicit indicator of reception con-
ditions at the receiver [20, 13, 14, 2, 22, 16]. These algo-
rithms typically use in-band probing via user data packets.
802.11 ACKs provide the transmitter with knowledge that
reception occurred; ACK-timeouts are taken as an indication
that reception did not occur, though this may not be the case

if it is the ACK packet that is lost. The advantage of probe-
driven approaches is simplicity, and the ability to implicitly
take into account complex factors affecting reception. A
key disadvantage is the speed at which channel information
can be obtained. From the transmitter’s perspective, each
transmission attempt results in either a success, or a per-
ceived failure. Another major disadvantage of probe-based
rate adaptation is the inability to distinguish the causes of
perceived transmission failure; all the transmitter knows is
that it did not correctly receive an ACK. A packet loss could
be the result of a missing ACK or a collision caused by a
hidden terminal, neither of which would justify reducing the
transmission rate.

In contrast to probe-based approaches, SINR-based ap-
proaches use signal metrics provided by the wireless devices
to select the transmission rate [5, 18, 15]. The algorithms
typically rely on the RTS/CTS mechanism to provide instan-
taneous receiver-side SINR information to the transmitter.
In theory, knowing the SINR at the receiver would allow
the transmitter to directly set the transmission rate with-
out wasting precious time probing. However, the use of the
RTS/CTS mechanism to communicate the receiver SINR
to the transmitter introduces significant overhead, as we ob-
served in the previous section, which CHARM avoids. More-
over, relying on a single unfiltered SINR measurement can
potentially result in poor rate selection.

[4] introduces a hybrid approach. It is effectively a probe-
based technique in which SINR information is used to re-
strict the set of rates that can be used by the probing algo-
rithm. This approach shares some elements with CHARM,
but there are significant differences. CHARM uses SINR in-
formation as the primary source of information for rate se-
lection. Historical information on success or failure of packet
transmission is used indirectly to optimize the threshold
used by the SINR-based algorithm. In contrast, [4] uses his-
tory as the primary mechanism and SINR as a background
mechanism.



Channel reciprocity has also been exploited in other wire-
less technologies. For example, it is used in rate selection
by cellular TDD systems [11]. Moreover, 802.11n [12] relies
on channel reciprocity to determine modulation and coding
parameters.

12. CONCLUSION
Increasing, 802.11 is being used in devices that can be used

while users are mobile. Our measurement study shows that
this results in highly dynamic wireless channels, which can
affect the performance of many aspects of the mobile device.
Adaptation is critical to overall system performance. We
have developed a channel-aware rate adaptation algorithm
(CHARM) that quickly obtains accurate channel state infor-
mation, and, unlike earlier channel-aware efforts, leverages
channel reciprocity to eliminate the need for RTS/CTS ex-
changes. We use time-aware signal prediction technique to
predict current channel information based on past observa-
tions, thus avoiding the pitfall of using stale channel infor-
mation. In addition, we have developed techniques for auto-
matically calibrating SINR thresholds. Our implementation
of CHARM in the MadWifi driver for Atheros cards consid-
ers many practical issues such as antenna diversity and sup-
port for legacy nodes. Experiments show that in dynamic
signal propagation environments, i.e. when the wireless de-
vices are mobile or when there is a lot movement in the
area, CHARM’s rapid adaptation allows it to dramatically
outperform probe-based techniques. Even in more static en-
vironments, CHARM often significantly outperforms other
rate selection algorithms.
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