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Abstract—The Gaussian quadrature rules (GQRs) are used to
construct a wireless fading simulator based on the popular sum
of sinusoids (SoS) method. The general statistics of the proposed
simulator are given. This simulator is also shown to perform well
for important design parameters. An extension of the GQRs is
employed to build uncorrelated simulators, which are important
in frequency selective and MIMO simulators. These simulation
techniques are then applied to the Mobile-to-Mobile (MtM)
spectrum and are compared with the best known SoS techniques
for the MtM spectrum. Although the proposed method is more
complex, the efficiency and accuracy are significantly better than
the previously proposed methods.
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Wireless channel simulators play an important role in the
research and development of modern communication systems.
One key requirement of a wireless simulator is the generation
of a fading channel caused by Doppler spread. Not only is this
fading a dominate feature in narrowband channels, but
wideband frequency selective channels are often simulated
using an array of uncorrelated fading waveform generators [1,
ch. 7].

INTRODUCTION

Many different techniques have been developed to build
fading waveforms. These techniques can be divided into two
main categories: the filter method [2, 3], and the sum of
sinusoids (SoS) method. The SoS simulator has received
considerable attention recently, because this method balances
accuracy with flexibility and simulation speed [1, ch. 8].

The SoS simulator adds sinusoids with prescribed
frequencies and amplitudes, but random phases [4]. This
simulator is very accurate for various Doppler spectra and can
generate fading samples as needed rather then in large blocks
as in [2]. These properties make the SoS simulator very
attractive for applications that require fast and flexible
computations such as a real-time simulator. The frequencies
and amplitudes of the SoS simulator can be computed either
deterministically or statistically. The deterministic method
gives excellent accuracy, but only a limited number of
uncorrelated simulators can be built. The statistical method can
generate a large number of uncorrelated simulators, but there
may be a large variation of accuracy due to the randomness of
the parameters [5].
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Many techniques have been developed to generate
parameter values for deterministic [4] and statistical [6, 7] SoS.
These methods are usually specific to the shape of the Doppler
spectrum and have typically been applied to the mobile-to-
stationary channel. The shape of the mobile-to-mobile (MtM)
Doppler spectrum is more complex, and only recently have
statistically valid SoS techniques been presented to simulate the
MtM Doppler spread [8].

Gaussian Quadrature Rules (GQRs) can be applied to
generate SoS parameters for a variety of band-limited spectra
[9, 10]. Although the GQRs have been applied to a number of
practical spectra, the rules have not yet been developed for
more complex spectra such as the MtM spectrum. These rules
are not random, therefore the resulting SoS simulator is
deterministic. A variation on the GQRs, Patterson’s quadrature
formulas (PQFs), allows for randomness in the SoS parameters
[11] which leads to a statistical SoS simulator.

The paper is organized as follows. Section II gives the
theoretical background of the SoS with GQRs and PQFs.
Section III describes the procedure for applying GQRs and
PQFs to the MtM spectrum. Section IV compares the GQRs
and PQFs methods to the best known SoS methods for the
MtM spectrum.

II.  THEORETICAL BACKGROUND

A.  SoS Simulator Statistics

The complex signal produced by the SoS simulator g(¢) can
be represented by the following functions:

g,.(t)=ZN:c,.’n cos(2nﬁ’nt+9,.’n), (1
gq(t)=ZN:cq’n cos(2nfq’nt+9q’n), ()
g()=g,()+ jeg,(0). (3)

The amplitudes ¢4, and frequencies f;;,, are generated by the
chosen SoS method and the phases 6,,, are independent and
uniformly distributed from 0 to 2m; i.e. 0;,, ~ U[0, 2®). The
phases are random so that g(f) and g,(#) will be close to a
Gaussian distribution by the central limit theorem, assuming N
> 6 [4]. The resulting probability distribution function (PDF) of
g(?) will be close to the theoretical definition for Rayleigh
fading. Assuming all frequencies are unique, the principle of
orthogonal cosines can be used to find the autocorrelations:



R, (1)= ZN: cl cos(2nfl.’nr) 2, 4
R,, (1)= ic;’n cos(21tfq’n‘c)/2, ®)
Rgg (T) = Rg,-g,- (t)+ qugq (T) (6)

The SoS amplitudes and frequencies should be chosen so
that the SoS autocorrelations (4-6) match the desired
autocorrelations as closely as possible. Most simulation tests
require that the simulated autocorrelation closely matches the
theoretical autocorrelation up to a maximum delay of T« for a
given maximum autocorrelation error. At delays larger than
Tmax, the autocorrelation of the channel is not relevant to the
communication process under test; e.g., Tmax could be the
packet length.

A second important parameter in evaluating simulators is
the second derivative of the autocorrelation at T =0,

This parameter is called the spread factor because it is related
to the rms Doppler spread [4]. The spread factor directly
impacts the level crossing rate and the average fade duration of
the resulting simulation. The spread factor for the SoS is given

by [4]
BS{)S :n{ ,n)2:|'

If B is the desired spread factor, then the performance of the
SoS simulation can be evaluated with the relative difference,

Bdg,y‘ =| B_ﬁS()S |/B-

N

Slen s +e, . f,

n=1

(8)

)

For statistical SoS simulators the autocorrelations and
spread factor are random variables and do not always match the
ideal case for a given trial. Therefore, another performance
measure is needed to determine how far on average the SoS
statistics may deviate from the ideal. This measure is the
variance of the autocorrelation or the mean squared distance
from the ideal autocorrelation R/(1),

var[R(1)]= E(‘Ré& (t)-R, (T)(z )

B.  Gaussian Quadrature Properties

(10)

Gaussian Quadrature is a classic technique for high
precision numeric integration. A foundational problem in
numeric integration is how to approximate an integral as a sum
of samples of the integrand at nodes x, each times a
corresponding weight w,; i.e.,

Jale) ekt = X, (5,)+ £

A GQR is a set of weights and nodes that attempts to minimize
the approximation error £ for a weight function ®(x). The
GQRs give the exact value of the integral of a polynomial fit of
fix) times o(x). This fit is of the order 2N-1, where N is the

(11)
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number of points in the summation. The beauty of the GQRs is
that the weights and nodes do not depend on the function f(x)
but only on the chosen weight function and number of nodes.
The limits of integration will only define a linear scaling of the
weights and nodes.

A GQR is based on a set of orthogonal polynomials. The
integration interval and weight function over which the
polynomials are orthogonal give the limits and o(x) for the
GQR. The roots of the Nth polynomial give the nodes of the N
point GQR. An explanation of the theory behind the GQRs can
be found in [12].

A proper choice of ®(x) can greatly improve the accuracy
of the GQRs. The simplest case is if the integrand f(x) is
approximated well by a polynomial. Then w(x) = 1 will be
sufficient, and the corresponding Gauss-Legendre rules can be
used. If a polynomial fit does not suit f(x) but will work well
for f(x)/®(x), then the GQRs can be written

ﬂ@WhWMW=iMAMmmHE. 12

The GQRs can be applied to the SoS parameter generation
by observing that the autocorrelation function is the inverse
Fourier transform (IFT) of the power spectral density (PSD),
represented as S( /). Assuming that the Doppler spectrum is
band-limited and symmetric, the autocorrelation is

R,(1)= " 25(f )cos(2m fT)df - (13)

The band-limited assumption is true for all real world Doppler
spectra. Asymmetrical spectra can be simulated by inducing a
correlation between gi(¢) and g,(¢) [4 ch. 6]. Applying GQRs to
the IFT in (13) gives

N

R (t)= X 2w,S(f, Jeos2n 1)/ wlf, )+ E - (14)
n=1

This representation of the autocorrelation is in the same form as

the autocorrelations given in (4-6). Comparing (14) with (4)

and (5) reveals that the SoS frequencies f;, , are the nodes f, of

the GQRs from (14) and the amplitudes are found to be

¢, =\w,S(f)]olf,)-

The GQRs are only as good as the polynomial fit on
fx)o(x). In (14), f(x)/0X(x) contains a cosine term which has a
good polynomial fit only for low frequencies. The GQRs will
be a good approximation up to a certain T, When T is zero,
the cosine term is one. Consequently, if S( f)/@( f) can be
closely approximated by a polynomial as T— 0, the GQRs
produce the exact autocorrelation and the simulation
reproduces the ideal spread factor.

(15).

The GQRs can be used to generate parameters for either
gi(?) or g,(f), but not both. If the spectra for the / and Q
components are the same, then the GQRs will give the same
parameters which contradicts the assumption of uncorrelated
quadrature components. A simple way to fix this problem is to
let the O component have one more term than the / component
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Fig. 1. Doppler spectrum for fi = 1 Hz. The vertical lines mark the

singularity. To the left of the singularity is the middle-section; to the right is
the end-section. The full spectrum is symmetric about zero.

[4]. The GQRs are interpolatory in nature; consequently the
nodes for a GQR of order N+1 will all be different from the
nodes of a GQR of order N. This technique will ensure that the
I and Q components are uncorrelated, but can only produce a
limited number of practical uncorrelated simulators. This
problem can be solved though the calculation of PQFs.

PQFs address the following question: given P preassigned
nodes, what are the M nodes and P+M weights that optimize
the approximation in (11)? PQFs give the optimum weights and
added nodes with respect to a chosen GQR. The resulting
precision is the same polynomial fit of f(x) as the GQRs but
with an order of at least 2M+P-1 [11]. Different preassigned
nodes will result in different calculated nodes. If only one
preassigned node is used, the calculated nodes will all be
unique from the set calculated from a different preassigned
node, assuming that the two preassigned nodes are not
members of each other’s calculated nodes.

For the SoS application the nodes represent frequencies,
and only one preassigned frequency is used to maximize
precision. The preassigned frequency is chosen at random for
each simulator, and PQFs are used to calculate the optimal set
of amplitudes and frequencies. The calculated frequencies will
be unique across all of the simulators, because each simulator
uses a different preassigned frequency. Thus, the simulators
will all be uncorrelated.

PQFs are based on the GQRs so the same performance is
given by the SoS generated from PQF as from GQRs.
Therefore, the spread factor should be ideal for any SoS
generated from PQF, provided that S( /" )/@( /) is closely
approximated by a polynomial. Also, the variance of the
autocorrelation will be small, because the precision of the
polynomial fit will always be the same.

One drawback with PQFs is that not all preassigned nodes
result in calculated nodes that are real and within the range of
the PSD. Typically, about 50-80% of the possible preassigned
nodes will give valid results. This problem can be solved by
finding the ranges of good preassigned nodes and then limiting
the preassigned nodes to those ranges.
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III.  GQRS APPLIED TO THE MTM SPECTRUM

A. Properties of the MtM Spectrum

The MtM spectrum models the Doppler spread when both
the transmitter and receiver are in motion. The PSD and
autocorrelation are given by [13]"

Re[K[0(N]]

S(f)=n_27\/;f1 12a>0 |f]<f(1+a) (16)
R, ()=R,, (t)=R,(1)=J,2nf7)/,(2nf,7). (A7)
where,

a=f,1f, (18)

fi and f, are the maximum mobile-to-stationary Doppler
frequencies of the faster and slower antennas respectively, and

0(n)=1+af 17 -1 )/laar?). (19)
The function K[-] represents the complete elliptic integral of the
first kind and Jy(-) represents the zeroth-order Bessel function
of the first kind. The cross-correlation between g; and g, is
zero. The PSD for a = 0.2 and a = 0.8 is plotted in Fig. 1. When
| f| < fi(l-a), O(f) > 1 and the elliptic integral results in a
complex number. If numerical support for complex elliptic
integrals is not available, the identities in [14, p. 337] can be
applied to transform the PSD into a form with all real elliptic
integrals. The resulting PSD is

s(r)=klron)waso) Ifl<fi-a). @0
The spread factor for the MtM spectrum is given by [15]

B=2(ns(1+a)).

B.  GOR MtM Simulator

The PSD for the MtM case contains singularities at | /| =
fi(1-a). Since this PSD cannot be closely approximated with a
polynomial, a GQR with @ ( /) = 1 will result in significant
errors. The PSD approaches these singularities asymptotically
on the order of a natural log approaching zero. Therefore, a
weight function that is a natural log will eliminate the
singularities. The log weight function is not a characteristic of
any of the classical GQRs, but the weights and nodes of this
GQR can be found by recursion with the method of modified
moments given as an example in [12, p. 159]. Because the log
function has only one singularity, the PSD in (16) must be split
into two sections which we will call the end-section and the
middle-section. The weight function of the end-section can be
expressed as

21)

GQ1= —.[01 In(2ax/o) £ (x )dx » (22)
and for the middle-section the weight function is given by
GQ2 = In((1 - x)(1 - a)/ot) (x)dx: (23)

where o is a shaping parameter. These weight functions are
designed to eliminate the singularity in each section as well as

' The reference does not include Re[ ] in the equation for the PSD, but it is
clear from the proof that it should be included.
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Fig.2. The number of sinusoids needed for a given Tma. and maximum error
with the MMEDS method.

be in a convenient form for solving the quadrature rules.

The value of a is critical to the accuracy of the GQR. The
derivative of the scaled version of the MtM PDF over the
weight functions in (22, 23) is infinite at the singularity except
for a particular value of o.. By extending the limit in [14 p. 591]
to

timf &]\1-(7/B)" [ +1n()) = n(4p):

and applying this limit to the singularity of the derivative, the
required values of o can be shown to be

B 32fia/(l1-a) a<l'
o= Sfl

(24)

(25)
a=1

With these values of o and the weight functions given in
(22, 23), the resulting functions S(f)/® ( ) will be continuous,
and a reasonable good approximation can be obtained with a
polynomial fit. However, a new GQR must be calculated for
each value of a.

The GQRs from (22, 23) require that the spectrum be split
into two segments. The total number of sinusoids used, N,
should be split between the two quadrature rules to maximize
the parameters given in Section I. The ratio of nodes in the
middle-section to the total number of nodes we define to be the
splitting factor, F. The optimum splitting factor is a function of
a and is generally not dependant of the total number of
sinusoids N for N > 14. The optimum values of F were found
numerically by minimizing the error in the spread factor using
(21) and (8) for N = 50 and 185 linearly-spaced values of a in
the range [0.04, 0.96]. The resulting curve is a close fit for the
polynomial

F=476r"-122r* +12.4r> —=6.20r* +2.037+0.0917, (20)
where,
r=(1-a)/(l+a). 27)

If F*N is not an integer, then this number is rounded to the
nearest integer. There are numerical problems in the algorithm
if there is only one point in a section. Therefore, if N-F*N or
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F*N is one, then another point is added to the single point
section.

PQFs can be applied to this spectrum to give uncorrelated
simulators. PQFs require a recursion relation for the
coefficients of the orthogonal polynomial used to generate the
GQR. The benefit of generating the GQRs in (22, 23) with the
method of modified moments, is that this recursion relation is
calculated in the procedure. The procedure is as follows. First
the weighting functions for (22, 23) are found. Then the
method of modified moments is applied to find the recursion
relation for each GQR. Next, a preassigned frequency is
selected at random for each segment. The optimal amplitudes
and frequencies for each segment are calculated with PQFs
according to the preassigned frequency. Lastly, the amplitudes
are scaled according to samples of the spectrum at the
calculated frequencies. The last two steps are repeated with
different preassigned frequencies until the desired number of
uncorrelated simulators is achieved.

IV. PERFORMANCE OF GQR TECHNIQUES

A. Deterministic Models

The GQR simulator has been defined for the MtM channel
in the previous section. This SoS simulator is now compared
with the modified method of exact Doppler spread (MMEDS)
for MtM fading [5]. The equations for the MMEDS simulator
are not given here because of space constraints, but a detailed
description of the method can be found in [5].

The performance of the two simulators is measured by
calculating T, across a range of values of N having different
maximum errors and values of a, with f; = 1 Hz and a sampling
frequency of f; = 1 kHz. The test was performed on only the /
component, because the autocorrelation is the same for both
components. The results are shown in Figs. 2, 3. The Ty.x plots
show that the GQR method requires significantly fewer
sinusoids than MMEDS for the same T,.x. Therefore, the GQR
method is a much faster simulator with the same accuracy.
However, the SoS parameters are much easier to compute for
the MMEDS case which may make it more practical for shorter
simulations.
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Fig.4. Variance of the autocorrelation of the statistical SoS.

The spread factor for the MMEDS will always be exact.
This is not the case for the GQR method. Nevertheless, the
relative difference between the theoretical and the ideal spread
factors (9) will be very small; e.g., the maximum relative
difference in spread error for N = 20 is about 4*107, with a =
[0.05, 0.95].

B. Statistical Models

The double ring model is the best known statistical MtM
fading simulator in terms of autocorrelation variance [5]. The
details of the double ring model, as well as the equations for
the autocorrelations, are given in [5]. This model is compared
with the GQRs with PQFs, or GQR/PQF, when the preassigned
frequency is independently drawn from f, ~ U0, fyax)-

The statistical models were tested by calculating the
variance in the autocorrelation of the complex signal as defined
in (10). The variances were computed over 10" trials, with f; =
1 Hz and f; = 1 kHz. Fig. 4 compares the variances of the
GQR/PQF model to the double ring model; both with 16
sinusoids and a = 0.2. The results in Fig. 4 clearly show that the
GQR/PQF method gives much lower variance than the double
ring model in the important region where T is low. Although
the double ring model performs better for larger T, for practical
tests the statistics for longer delays are much less important
than those for short delays. However, parameters for the double
ring model are very easy to compute, so this simulator may be
faster for very short simulations with moderate accuracy
requirements.

Another benefit for the GQR/PQF model is that spread
error will consistently be low. This is not the case with the
double ring simulator. Therefore, the level crossing rate and
average fade duration will be consistently much more accurate
with the GQR/PQF model. To illustrate this point Table I gives
the variance of the spread factor for the same simulations in
Fig. 4 for various values of a.

V. CONCLUSION

This paper has shown that the GQRs and PQFs can be used
to develop new deterministic and uncorrelated statistical SoS
fading simulators. These techniques were applied to the MtM
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TABLEI
'VARIANCE OF SPREAD ERROR

u Var(f) Var((f)
GQR/PQF Double Ring
0.2 1.54%107"° 5.49%107
0.5 6.30%107"* 3.47%107
0.8 8.50%10™"* 8.86*107
1 5.94%107 0.138

channel and compared to current MtM simulators. The
parameters for the SoS are easier to calculate with the current
simulators. However, the GQR/PQF simulators perform much
better in terms of matching the autocorrelation with fewer
sinusoids. The deterministic simulator for GQR does slightly
worse than the MMEDS in terms of the spread factor, but the
error is small enough in the GQR model that they are both
practically ideal. The GQR/PQF is a significant improvement
over the best current statistical MtM simulator in terms of the
spread factor.
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