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Abstract—The Gaussian quadrature rules (GQRs) are used to 
construct a wireless fading simulator based on the popular sum 
of sinusoids (SoS) method. The general statistics of the proposed 
simulator are given. This simulator is also shown to perform well 
for important design parameters. An extension of the GQRs is 
employed to build uncorrelated simulators, which are important 
in frequency selective and MIMO simulators. These simulation 
techniques are then applied to the Mobile-to-Mobile (MtM) 
spectrum and are compared with the best known SoS techniques 
for the MtM spectrum. Although the proposed method is more 
complex, the efficiency and accuracy are significantly better than 
the previously proposed methods.  

Keywords-Fading channel simulator; sum-of-sinusoids; 
mobile-to-mobile channel. 

I. INTRODUCTION 
Wireless channel simulators play an important role in the 

research and development of modern communication systems. 
One key requirement of a wireless simulator is the generation 
of a fading channel caused by Doppler spread. Not only is this 
fading a dominate feature in narrowband channels, but 
wideband frequency selective channels are often simulated 
using an array of uncorrelated fading waveform generators [1, 
ch. 7].  

Many different techniques have been developed to build 
fading waveforms. These techniques can be divided into two 
main categories: the filter method [2, 3], and the sum of 
sinusoids (SoS) method. The SoS simulator has received 
considerable attention recently, because this method balances 
accuracy with flexibility and simulation speed [1, ch. 8].  

The SoS simulator adds sinusoids with prescribed 
frequencies and amplitudes, but random phases [4]. This 
simulator is very accurate for various Doppler spectra and can 
generate fading samples as needed rather then in large blocks 
as in [2]. These properties make the SoS simulator very 
attractive for applications that require fast and flexible 
computations such as a real-time simulator. The frequencies 
and amplitudes of the SoS simulator can be computed either 
deterministically or statistically. The deterministic method 
gives excellent accuracy, but only a limited number of 
uncorrelated simulators can be built. The statistical method can 
generate a large number of uncorrelated simulators, but there 
may be a large variation of accuracy due to the randomness of 
the parameters [5].  

Many techniques have been developed to generate 
parameter values for deterministic [4] and statistical [6, 7] SoS. 
These methods are usually specific to the shape of the Doppler 
spectrum and have typically been applied to the mobile-to-
stationary channel. The shape of the mobile-to-mobile (MtM) 
Doppler spectrum is more complex, and only recently have 
statistically valid SoS techniques been presented to simulate the 
MtM Doppler spread [8].  

Gaussian Quadrature Rules (GQRs) can be applied to 
generate SoS parameters for a variety of band-limited spectra 
[9, 10]. Although the GQRs have been applied to a number of 
practical spectra, the rules have not yet been developed for 
more complex spectra such as the MtM spectrum. These rules 
are not random, therefore the resulting SoS simulator is 
deterministic. A variation on the GQRs, Patterson’s quadrature 
formulas (PQFs), allows for randomness in the SoS parameters 
[11] which leads to a statistical SoS simulator.  

The paper is organized as follows. Section II gives the 
theoretical background of the SoS with GQRs and PQFs. 
Section III describes the procedure for applying GQRs and 
PQFs to the MtM spectrum. Section IV compares the GQRs 
and PQFs methods to the best known SoS methods for the 
MtM spectrum. 

II. THEORETICAL BACKGROUND 

A.  SoS Simulator Statistics 
The complex signal produced by the SoS simulator g(t) can 

be represented by the following functions: 
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The amplitudes ci/q,n and frequencies fi/q,n are generated by the 
chosen SoS method and the phases θi/q,n are independent and 
uniformly distributed from 0 to 2π; i.e. θi/q,n ~ U[0, 2π). The 
phases are random so that gi(t) and gq(t) will be close to a 
Gaussian distribution by the central limit theorem, assuming N 
> 6 [4]. The resulting probability distribution function (PDF) of 
g(t) will be close to the theoretical definition for Rayleigh 
fading. Assuming all frequencies are unique, the principle of 
orthogonal cosines can be used to find the autocorrelations: 

This research is sponsored by the National Science Foundation 

1550-2252/$25.00 ©2007 IEEE  534



 ( ) ( )∑
=

τπ=τ
N

n
ninigg fcR

ii
1

,
2
, 22cos , (4) 

( ) ( )∑
=

τπ=τ
N

n
nqnqgg fcR

qq
1

,
2
, 22cos , (5) 

( ) ( ) ( )τ+τ=τ
qqii gggggg RRR . (6)  

 
The SoS amplitudes and frequencies should be chosen so 

that the SoS autocorrelations (4-6) match the desired 
autocorrelations as closely as possible. Most simulation tests 
require that the simulated autocorrelation closely matches the 
theoretical autocorrelation up to a maximum delay of τmax for a 
given maximum autocorrelation error. At delays larger than 
τmax, the autocorrelation of the channel is not relevant to the 
communication process under test; e.g., τmax could be the 
packet length.  

A second important parameter in evaluating simulators is 
the second derivative of the autocorrelation at τ  = 0,  

( )0ggR−=β .    (7)   
This parameter is called the spread factor because it is related 
to the rms Doppler spread [4]. The spread factor directly 
impacts the level crossing rate and the average fade duration of 
the resulting simulation. The spread factor for the SoS is given 
by [4]  
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If β is the desired spread factor, then the performance of the 
SoS simulation can be evaluated with the relative difference,  

ββ−β=β /|| SoSdiff . (9) 

 
For statistical SoS simulators the autocorrelations and 

spread factor are random variables and do not always match the 
ideal case for a given trial. Therefore, another performance 
measure is needed to determine how far on average the SoS 
statistics may deviate from the ideal. This measure is the 
variance of the autocorrelation or the mean squared distance 
from the ideal autocorrelation Rt(τ ), 
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B. Gaussian Quadrature Properties 
Gaussian Quadrature is a classic technique for high 

precision numeric integration. A foundational problem in 
numeric integration is how to approximate an integral as a sum 
of samples of the integrand at nodes xn each times a 
corresponding weight wn; i.e.,  
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A GQR is a set of weights and nodes that attempts to minimize 
the approximation error E for a weight function ω(x). The 
GQRs give the exact value of the integral of a polynomial fit of 
f(x) times ω(x). This fit is of the order 2N-1, where N is the 

number of points in the summation. The beauty of the GQRs is 
that the weights and nodes do not depend on the function f (x) 
but only on the chosen weight function and number of nodes. 
The limits of integration will only define a linear scaling of the 
weights and nodes. 

A GQR is based on a set of orthogonal polynomials. The 
integration interval and weight function over which the 
polynomials are orthogonal give the limits and ω(x) for the 
GQR. The roots of the Nth polynomial give the nodes of the N 
point GQR. An explanation of the theory behind the GQRs can 
be found in [12]. 

A proper choice of ω (x) can greatly improve the accuracy 
of the GQRs. The simplest case is if the integrand f (x) is 
approximated well by a polynomial. Then ω(x) = 1 will be 
sufficient, and the corresponding Gauss-Legendre rules can be 
used. If a polynomial fit does not suit f (x) but will work well 
for f (x)/ω(x), then the GQRs can be written 
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The GQRs can be applied to the SoS parameter generation 

by observing that the autocorrelation function is the inverse 
Fourier transform (IFT) of the power spectral density (PSD), 
represented as S( f ). Assuming that the Doppler spectrum is 
band-limited and symmetric, the autocorrelation is 
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The band-limited assumption is true for all real world Doppler 
spectra. Asymmetrical spectra can be simulated by inducing a 
correlation between gi(t) and gq(t) [4 ch. 6]. Applying GQRs to 
the IFT in (13) gives 
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This representation of the autocorrelation is in the same form as 
the autocorrelations given in (4-6). Comparing (14) with (4) 
and (5) reveals that the SoS frequencies fi/q,n are the nodes fn of 
the GQRs from (14) and the amplitudes are found to be 

( )nnnni ffSwc ω= )(, .     (15). 
 

The GQRs are only as good as the polynomial fit on 
f (x)/ω(x). In (14), f (x)/ω(x) contains a cosine term which has a 
good polynomial fit only for low frequencies. The GQRs will 
be a good approximation up to a certain τmax. When τ is zero, 
the cosine term is one. Consequently, if S( f )/ω( f ) can be 
closely approximated by a polynomial as τ → 0, the GQRs 
produce the exact autocorrelation and the simulation 
reproduces the ideal spread factor.  

The GQRs can be used to generate parameters for either 
gi(t) or gq(t), but not both. If the spectra for the I and Q 
components are the same, then the GQRs will give the same 
parameters which contradicts the assumption of uncorrelated 
quadrature components. A simple way to fix this problem is to 
let the Q component have one more term than the I component 
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[4]. The GQRs are interpolatory in nature; consequently the 
nodes for a GQR of order N+1 will all be different from the 
nodes of a GQR of order N. This technique will ensure that the 
I and Q components are uncorrelated, but can only produce a 
limited number of practical uncorrelated simulators. This 
problem can be solved though the calculation of PQFs. 

PQFs address the following question: given P preassigned 
nodes, what are the M nodes and P+M weights that optimize 
the approximation in (11)? PQFs give the optimum weights and 
added nodes with respect to a chosen GQR. The resulting 
precision is the same polynomial fit of f (x) as the GQRs but 
with an order of at least 2M+P-1 [11]. Different preassigned 
nodes will result in different calculated nodes. If only one 
preassigned node is used, the calculated nodes will all be 
unique from the set calculated from a different preassigned 
node, assuming that the two preassigned nodes are not 
members of each other’s calculated nodes.   

For the SoS application the nodes represent frequencies, 
and only one preassigned frequency is used to maximize 
precision. The preassigned frequency is chosen at random for 
each simulator, and PQFs are used to calculate the optimal set 
of amplitudes and frequencies. The calculated frequencies will 
be unique across all of the simulators, because each simulator 
uses a different preassigned frequency. Thus, the simulators 
will all be uncorrelated. 

PQFs are based on the GQRs so the same performance is 
given by the SoS generated from PQF as from GQRs. 
Therefore, the spread factor should be ideal for any SoS 
generated from PQF, provided that S( f )/ω( f ) is closely 
approximated by a polynomial. Also, the variance of the 
autocorrelation will be small, because the precision of the 
polynomial fit will always be the same.  

One drawback with PQFs is that not all preassigned nodes 
result in calculated nodes that are real and within the range of 
the PSD. Typically, about 50-80% of the possible preassigned 
nodes will give valid results. This problem can be solved by 
finding the ranges of good preassigned nodes and then limiting 
the preassigned nodes to those ranges. 

III. GQRS APPLIED TO THE MTM SPECTRUM 

A. Properties of the MtM Spectrum 
The MtM spectrum models the Doppler spread when both 

the transmitter and receiver are in motion. The PSD and 
autocorrelation are given by [13]1 
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where, 
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f1 and f2 are the maximum mobile-to-stationary Doppler 
frequencies of the faster and slower antennas respectively, and 
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The function K[·] represents the complete elliptic integral of the 
first kind and J0(·) represents the zeroth-order Bessel function 
of the first kind. The cross-correlation between gi and gq is 
zero. The PSD for a = 0.2 and a = 0.8 is plotted in Fig. 1. When 
| f | < f1(1-a), Q( f ) > 1 and the elliptic integral results in a 
complex number. If numerical support for complex elliptic 
integrals is not available, the identities in [14, p. 337] can be 
applied to transform the PSD into a form with all real elliptic 
integrals. The resulting PSD is 
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The spread factor for the MtM spectrum is given by [15] 
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B. GQR MtM Simulator 
The PSD for the MtM case contains singularities at | f | = 

f1(1-a). Since this PSD cannot be closely approximated with a 
polynomial, a GQR with ω ( f ) = 1 will result in significant 
errors. The PSD approaches these singularities asymptotically 
on the order of a natural log approaching zero. Therefore, a 
weight function that is a natural log will eliminate the 
singularities. The log weight function is not a characteristic of 
any of the classical GQRs, but the weights and nodes of this 
GQR can be found by recursion with the method of modified 
moments given as an example in [12, p. 159]. Because the log 
function has only one singularity, the PSD in (16) must be split 
into two sections which we will call the end-section and the 
middle-section. The weight function of the end-section can be 
expressed as 
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and for the middle-section the weight function is given by 
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where α is a shaping parameter. These weight functions are 
designed to eliminate the singularity in each section as well as 

                                                        
1 The reference does not include Re[ ] in the equation for the PSD, but it is 

clear from the proof that it should be included.  
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Fig. 1.  Doppler spectrum for f1 = 1 Hz. The vertical lines mark the 
singularity. To the left of the singularity is the middle-section; to the right is 
the end-section. The full spectrum is symmetric about zero. 
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be in a convenient form for solving the quadrature rules.  
The value of α is critical to the accuracy of the GQR. The 

derivative of the scaled version of the MtM PDF over the 
weight functions in (22, 23) is infinite at the singularity except 
for a particular value of α. By extending the limit in [14 p. 591] 
to 
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and applying this limit to the singularity of the derivative, the 
required values of α can be shown to be 
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With these values of α and the weight functions given in 

(22, 23), the resulting functions S( f )/ω ( f ) will be continuous, 
and a reasonable good approximation can be obtained with a 
polynomial fit. However, a new GQR must be calculated for 
each value of a. 

The GQRs from (22, 23) require that the spectrum be split 
into two segments. The total number of sinusoids used, N, 
should be split between the two quadrature rules to maximize 
the parameters given in Section I. The ratio of nodes in the 
middle-section to the total number of nodes we define to be the 
splitting factor, F. The optimum splitting factor is a function of 
a and is generally not dependant of the total number of 
sinusoids N for N > 14. The optimum values of F were found 
numerically by minimizing the error in the spread factor using 
(21) and (8) for N = 50 and 185 linearly-spaced values of a in 
the range [0.04, 0.96]. The resulting curve is a close fit for the 
polynomial  

0917.003.220.64.122.1276.4 2345 ++−+−= rrrrrF ,  (26) 
where, 
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If F*N is not an integer, then this number is rounded to the 
nearest integer. There are numerical problems in the algorithm 
if there is only one point in a section. Therefore, if N-F*N or 

F*N is one, then another point is added to the single point 
section. 

PQFs can be applied to this spectrum to give uncorrelated 
simulators. PQFs require a recursion relation for the 
coefficients of the orthogonal polynomial used to generate the 
GQR. The benefit of generating the GQRs in (22, 23) with the 
method of modified moments, is that this recursion relation is 
calculated in the procedure. The procedure is as follows. First 
the weighting functions for (22, 23) are found. Then the 
method of modified moments is applied to find the recursion 
relation for each GQR. Next, a preassigned frequency is 
selected at random for each segment. The optimal amplitudes 
and frequencies for each segment are calculated with PQFs 
according to the preassigned frequency. Lastly, the amplitudes 
are scaled according to samples of the spectrum at the 
calculated frequencies. The last two steps are repeated with 
different preassigned frequencies until the desired number of 
uncorrelated simulators is achieved.  

IV. PERFORMANCE OF GQR TECHNIQUES  

A. Deterministic Models 
The GQR simulator has been defined for the MtM channel 

in the previous section. This SoS simulator is now compared 
with the modified method of exact Doppler spread (MMEDS) 
for MtM fading [5]. The equations for the MMEDS simulator 
are not given here because of space constraints, but a detailed 
description of the method can be found in [5]. 

The performance of the two simulators is measured by 
calculating τmax across a range of values of N having different 
maximum errors and values of a, with f1 = 1 Hz and a sampling 
frequency of fs = 1 kHz. The test was performed on only the I 
component, because the autocorrelation is the same for both 
components. The results are shown in Figs. 2, 3. The τmax plots 
show that the GQR method requires significantly fewer 
sinusoids than MMEDS for the same τmax. Therefore, the GQR 
method is a much faster simulator with the same accuracy. 
However, the SoS parameters are much easier to compute for 
the MMEDS case which may make it more practical for shorter 
simulations. 
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Fig.2.  The number of sinusoids needed for a given τmax and maximum error 
with the MMEDS method. 
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Fig.3.  The number of sinusoids needed for a given τmax and maximum error 
with the GQR method. 
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The spread factor for the MMEDS will always be exact. 
This is not the case for the GQR method. Nevertheless, the 
relative difference between the theoretical and the ideal spread 
factors (9) will be very small; e.g., the maximum relative 
difference in spread error for N = 20 is about 4*10-7, with a = 
[0.05, 0.95].  

B. Statistical Models 
The double ring model is the best known statistical MtM 

fading simulator in terms of autocorrelation variance [5]. The 
details of the double ring model, as well as the equations for 
the autocorrelations, are given in [5]. This model is compared 
with the GQRs with PQFs, or GQR/PQF, when the preassigned 
frequency is independently drawn from fp ~ U[0, fmax). 

The statistical models were tested by calculating the 
variance in the autocorrelation of the complex signal as defined 
in (10). The variances were computed over 104 trials, with f1 = 
1 Hz and fs = 1 kHz. Fig. 4 compares the variances of the 
GQR/PQF model to the double ring model; both with 16 
sinusoids and a = 0.2. The results in Fig. 4 clearly show that the 
GQR/PQF method gives much lower variance than the double 
ring model in the important region where τ  is low. Although 
the double ring model performs better for larger τ , for practical 
tests the statistics for longer delays are much less important 
than those for short delays. However, parameters for the double 
ring model are very easy to compute, so this simulator may be 
faster for very short simulations with moderate accuracy 
requirements. 

Another benefit for the GQR/PQF model is that spread 
error will consistently be low. This is not the case with the 
double ring simulator. Therefore, the level crossing rate and 
average fade duration will be consistently much more accurate 
with the GQR/PQF model. To illustrate this point Table I gives 
the variance of the spread factor for the same simulations in 
Fig. 4 for various values of a. 

V. CONCLUSION 
This paper has shown that the GQRs and PQFs can be used 

to develop new deterministic and uncorrelated statistical SoS 
fading simulators. These techniques were applied to the MtM 

channel and compared to current MtM simulators. The 
parameters for the SoS are easier to calculate with the current 
simulators. However, the GQR/PQF simulators perform much 
better in terms of matching the autocorrelation with fewer 
sinusoids. The deterministic simulator for GQR does slightly 
worse than the MMEDS in terms of the spread factor, but the 
error is small enough in the GQR model that they are both 
practically ideal. The GQR/PQF is a significant improvement 
over the best current statistical MtM simulator in terms of the 
spread factor.  
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TABLE I 
VARIANCE OF SPREAD ERROR 

a Var(β) 
GQR/PQF 

Var((β) 
Double Ring 

0.2 1.54*10-16 5.49*10-3 

0.5 6.30*10-14 3.47*10-2 

0.8 8.50*10-13 8.86*10-2 

1 5.94*10-9 0.138 
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Fig.4.  Variance of the autocorrelation of the statistical SoS.  
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