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1 Introduction

As software systems become more complex the overall system structure|or software architecture|
becomes a central design problem. Design issues at this level include gross organization and control
structure, assignment of functionality to computational units, and high-level interactions between
these units [SG96a].

The importance of software architecture for practicing software engineers is highlighted by the
ubiquitous use of architectural descriptions in system documentation. Most software systems con-
tain a description of the system in terms such as \client-server organization," \layered system,"
\blackboard architecture," etc. These descriptions are typically expressed informally and accom-
panied by box and line drawings indicating the global organization of computational entities and
the interactions between them.

While such descriptions may provide useful documentation, the current level of informality
limits their usefulness. It is generally not clear precisely what is meant by these architectural
descriptions. Hence it may be impossible to analyze an architecture for consistency or determine
non-trivial properties of it. Moreover, there is no way to check that a system implementation is
faithful to its architectural design.

What is needed is a more rigorous basis for describing software architectures. At the very least
we should be able to say precisely what is the intended meaning of a box and line description
of some system. Ideally we should be able to check that the overall description is consistent in
the sense that the parts �t together appropriately. More ambitiously, we would like to be able to
formally describe architectural families|or styles|and prove general properties about that family.

The Wright Architectural Speci�cation Language was developed for this purpose. Wright

provides a formal basis for specifying both the structure and behavior of architectural descrip-
tions. Speci�cally, it supports the description of architectures as hierarchical graphs of components
and connectors. Each component and connector is augmented with speci�cations that permit one
to characterize precisely the abstract behavior of the components and their interactions. It also
provides a set of rules for statically checking certain important properties of an architectural de-
scription, including (a) whether the expectations of component about its architectural environment
are consistent with those actually provided by the other components in the architecture; (b) whether
an architectural description is complete; and (c) whether the interface of a component is consistent
with the computation performed by the component.

In addition to supporting formal speci�cation and analysis of speci�c architectures, Wright

also supports the de�nition of architectural styles. An architectural style de�nes a family of sys-
tems that have a common architectural design vocabulary and satisfy a common set of design
constraints. By permitting reasoning at the level of architectural styles, Wright supports the
powerful technique of developing general theories for classes of system architecture, thereby guar-
anteeing satisfaction of desirable properties for any speci�c architecture that satis�es the constraints
of the style.

In this report we present the Wright language. We begin by motivating its design. Next we
provide an informal description of its key features for describing architectural structure. In the
next two sections we explain how to model the behavior of an architecture. This is followed by an
informal description of the validation checks that are supported by Wright. We then present a
formal semantics forWright and its associated analyses. Appendix A provides a BNF description
for Wright; Appendix B lists a complete example of a simple architecture de�ned in Wright;
Appendix C brie
y discusses mechanical checking of Wright speci�cations.
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2 Language Goals

Developing a good architecture|one that satis�es the immediate product requirements, and eases
future product evolution|is arguably one of the most critical aspects of practical software design.
However, currently the ability to select or design appropriate architectures is impeded by the lack
of good notations and tools for describing, analyzing, and manipulating architectures.

While this gap in technology is generally recognized, there is much less consensus about exactly
what a formal notation for architecture should consist of, and what its detailed objectives should be.
For example, should the language deal only with structure, or should it also support the description
of other properties of interest? And, if the latter, which properties? It is important, therefore, to
be clear about the intended goals of any proposed architectural formalism.

The goal of Wright is to provide a practical, semantically well-founded language for charac-
terizing the abstract behavior of architectures and architectural families:

...practical... real software architects should be able to use the notation to describe real systems.
This has two consequences. First, the language must match engineers' intuitions and expec-
tations about architectural description. In our view, it is not enough to have a language that
only theoretians can use. Rather, it should supplement, not replace the now informal, but
useful, concepts for describing architectures. Second, there should be tangible, incremental
bene�ts for using the language. This means that the e�ort of specifying an architecture should
be repaid in useful insight and analytic capability. Further, the engineer should be able to
get some bene�t even with small amounts of formalism.

...semantically well-founded... the language should be based on solid theoretic underpinnings that
permit formal reasoning and analysis. While it is not necessary that engineers understand
those theoretical underpinnings, it is critical that the derived capabilities for speci�cation and
analysis be sound.

...abstract behavior... we believe that a useful architectural speci�cation language must go beyond
simple structure. Therefore, Wright focuses on certain kinds of architectural behavior:
namely, the abstract computations and interactions that take place in a system. While there
are many aspects of behavior thatWright does not address (such as timing), it does provide a
vehicle for characterizing the architecturally important events of a system and understanding
how di�erent components of the system cooperate to produce overall behavior. The choice
of events, however, is up to the speci�er: by picking a small number of high-level events of
interest, a system can be modelled at a high level of abstraction, while a more detailed event
model allows a more re�ned description and analysis.

...families... it should be possible to understand the properties of a collection of architectures that
share some common features. By specifying the properties of a family of systems, the e�orts
of formalization can be amortized over a (usually in�nite) set of potential systems in the
family. Moreover, the ability to de�ne families supports the speci�cation and codi�cation of
established architectural styles that ease the design task of an architect.

We now show how Wright attempts to achieve these goals. As we will illustrate, the key
features that contribute are: (a) the use of architectural elements (components and connectors)
to structure speci�cations, (b) support for de�ning and analyzing new architectural connection
types, (c) semantic foundations based on process algebra, (d) analytic capability for determining
(statically) whether a system is well-formed and complete, and (e) the ability to de�ne architectural
styles.
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Component SplitFilter

Port Input hread data until end-of-data is reachedi
Port Left houtput data repeatedlyi
Port Right houtput data repeatedlyi
Computation hrepeatedly read from Input, then output, alternating between Left and Right ports.i

Figure 2: The structure of a component description

3.1 Components

A component is a locus of computation. As in the example system above, a typical component
might read characters from its input and convert each letter to upper case. A database system
might include a repository component that provides access to its data and a client component that
summarizes the data in a report when it is requested by the user.

In Wright, each component is de�ned by a component type description, which has two im-
portant parts: an interface and a computation. The interface consists of a number of ports. Each
port represents an interaction in which the component may participate.2 For example, Split in
Figure 1 might be de�ned by the component type SplitFilter, shown in Figure 2. The description
indicates that each component of this type has three ports, one for input and two for output. As
an alternative example, a map database server component might have two ports, one to respond to
clients' queries about the map, and another that an administrator would use to update the map.

The computation part of a component describes what the component actually does. The com-
putation carries out the interactions described by the ports and shows how they are tied together
to form a coherent whole. In the above example, the behavior of a SplitFilter component is to divide
its input into two streams.

A port speci�cation describes two aspects of a components interface. First, it partially describes
the component's intended behavior. Speci�cally, the port speci�cation de�nes the behavior of the
component as viewed through the lens of that particular port. The port becomes, in e�ect, a partial
speci�cation of the component.

The second aspect of a port is a speci�cation of the expectations about the system within which
the component will interact. In the example, SplitFilter illustrates this aspect of a port by indicating
(shown informally above) that it expects to be able to read data on Input until it is noti�ed of
end-of-data.

In SplitFilter, notice how each port speci�cation says something about the Computation. The
Input port indicates how data is read, and the Left and Right ports say something about the output
behavior. Note, however, that the port speci�cations do not in combination completely de�ne the
full behavior of the computation. In particular, they are unable to relate the behaviors at di�erent
ports. For example, there is no indication outside the Computation that Left and Right alternate.
The Computation is itself the full speci�cation upon which analysis of the component's properties
will be based. However, the ports act as a useful partial speci�cation of a component's behavior,
which, as we will see later, allows us to simplify the analysis of an assembled system.

Thus ports are analogous to interface speci�cations in traditional module-oriented languages. In
both cases the speci�cations provide an abstraction of the component's actual behavior, and permit

2Here, and throughout the report, we will often use the term \component" instead of the term \component type".
It will be clear from context when we are referring to a type and when to an instance.
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certain kinds of checks that uses of the component are consistent with its de�nition. However, there
are three fundamental di�erences. First, in Wright a component can have multiple ports|and
hence multiple interfaces. Second, as we have noted, the port not only declares what it provides
to the system, but also declares what expects of its environment. Third, as we will see later, port
speci�cations provide more than static \signatures" of the interface|they also indicate dynamic
patterns of interaction.

3.2 Connectors

In Wright, connectors de�ne patterns of interaction between components. One of the novel
features of Wright is the ability to make these patterns explicit as new connector types.

Explicit Connector Types

In the informal diagrams of today's architectural descriptions, the lines|or connectors|that join
components often represent rich and varied abstractions of component interaction. For example, a
line representing a pipe connector might indicate sequential 
ow of data between two �lters. Or it
might represent a procedure call connector that uses a call-and-return pattern of control. An event-
multicast connector might represent an abstraction in which one component can announce events
that are received by an arbitrary set of listener components. More complex connectors include such
things as database connectors (e.g., supporting two-phase commit) and reliable, secure network
message-passing connectors.

To support the need of architects to represent many kinds of interaction, Wright allows one
to de�ne new connector types. Once a new type of connector is de�ned, a system can make
use of any number of instances of that connector. By capturing a pattern of interaction as a
connector type, and then using the pattern repeatedly in connector instances, Wright makes
explicit the commonality that typically occurs throughout a software architecture. For example,
the \pipe" interaction is used multiple times in the simple pipe-�lter example above. If each pair of
components were to specify the interaction independently (as required by more traditional module-
oriented languages), then there would be no simple means to verify that there is indeed only one
kind of interaction taking place throughout the system.

The identi�cation of commonality is important because it allows us to reuse general results
about the shared element. For example, if we can show that the pipe connector type has the
property that no data is lost, then that property will hold wherever any pipe instance is used in the
system. If we had to do the analysis in the context of a speci�c interaction, (for example, between
the Left output of Split and the Input of UpperCase) then would have to repeat the analysis each time
we used the pipe connector.

The explicit description of connector types is also valuable in the larger context of a development
process as well. By specifying explicitly that each use of the connector instance uses an identical
interaction pattern we can exploit shared infrastructure to implement the connector correctly. For
instance, if we use a runtime library to implement a communication pathway (such as stdio.h to
implement pipes), how can we tell where the library can be used to connect components? If the
library corresponds to a connector type, the architecture makes the answer clear. If there is no
such correspondence, a potentially di�cult veri�cation task looms. ahead

The use of explicit connectors also increases the independence of components by structuring
the way a component interacts with the rest of the system. A connector provides, in e�ect, a
set of requirements must be met by components using the connector, and an information-hiding
boundary that clari�es what expectations the component can have about its environment. Thus
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Connector Pipe

Role Source hdeliver data repeatedly, signalling termination by closing the pipei
Role Sink hread data repeatedly, closing at or before end of datai
Glue hdeliver data in order from Source to Sinki

Figure 3: The structure of a connector description

a component speci�cation is described in a way that allows it to be used in multiple contexts. In
the Split �lter, for example, the Left port refers not to the UpperCase �lter, which is the target of
data in our example system, but to a general interaction pattern. The SplitFilter speci�cation does
not indicate whether the output is delivered to UpperCase, some other �lter, several other �lters, a
�le, or even if that output is dropped from the system and ignored. The component speci�cation
need only indicate what that component will do, because the connector speci�cations are there to
describe how the component is combined with others in an actual context of use.

Connector Structure

A Wright description of a connector consists of a set of connector roles and the connector glue.
Each role speci�es the behavior of a participant in the interaction. For example, a pipe has two
roles, the source of data and the sink (the component that receives the data). A procedure call
connector has a caller and a de�ner. An event broadcast connector has an announcer and zero or
more listeners.

Connector roles indicate what is expected of the components that will participate in that inter-
action. In Figure 3, for example, the Sink role indicates how that participant is expected to behave:
Any component that acts as a Sink is permitted to read data and is responsible for closing the
connection. This role might, for example, be �lled by the Input port of the SplitFilter. The SplitFilter

does indeed read data and does not continue beyond end-of-data.
The connector Glue describes how the participants work together to create an interaction. In

the case of a pipe (shown in Figure 3), Glue describes how the data from the source is delivered
to Sink. As another example, a procedure call connector glue would indicate that the caller role
initiates an invocation, followed by a return from the callee role.

As with the Computation of a component, the Glue speci�cation of the connector de�nes the
full behavioral speci�cation. As we will see when we de�ne the semantics of a Wright con�gura-
tion, the Glue processes coordinate the components' behavior. In e�ect, we interpret a connector
speci�cation to mean that if the actual components obey the behaviors indicated by the roles, then
the computations of the components will be combined as indicated by the Glue.

3.3 Con�gurations

In order to describe a complete system architecture, a set of components and connectors of a
Wright description must be combined into a con�guration.

Instances

To use the component and connector types in a speci�c system an architect must �rst de�ne and
name a set of instances of those types. Instance declarations for the example of Figure 1 are shown
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Configuration Capitalize

Component UpperCase

: : :

Connector Pipe

: : :

: : :
Instances

Split : SplitFilter
Upper : UpperCase
Merge : MergeFilter

P1, P2, P3 : Pipe
Attachments

Split.Left as P1.Source

Upper.Input as P1.Sink

Split.Right as P2.Source

Merge.Right as P2.Sink

Upper.Output as P3.Source

Merge.Left as P3.Sink

end Capitalize.

Figure 4: The structure of a con�guration.

in Figure 4.

Attachments

Once component and connector instances have been declared, a con�guration is created by describ-
ing a set of attachments. Attachments de�ne the topology of the con�guration by indicating which
components participate in which interactions. This is done by associating a component's port with
a connector's role.

For example in Figure 4, the attachment declaration \Split.Left as P1.Source" indicates that the
component Split will play the role of Source in the interaction P1. It will �ll this role through the
port Left. That is, all of the data that Split outputs to port Left will be delivered to whichever
component is the sink of pipe P1. In Figure 4, the matching declaration \Upper.Input as P1.Sink"
indicates that it is the component Upper that will receive the data from Split.

The attachment declarations bring together all of the elements of an architectural description.
Each component carries out a computation, part of which is determines the interactions speci�ed
by its ports. Those ports are attached to a roles, which indicate what rules the ports must follow in
order to be a legal participants in the interactions speci�ed by the connectors. If each component,
as represented by its respective ports, obeys the rules imposed by the roles, then the connector
Glue de�nes how the Computations are combined to form a single, larger computation for the
system as a whole.

Hierarchy

Wright permits hierarchical descriptions. In particularl, the computation for component (or the
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SegmentCapitalizeRmWhiteSp

MergeSplit

Upper

Figure 5: Hierarchical Architecture.

glue for a connector) can be represented either by a primitive behavior speci�cation (to be described
in Section 4) or by an architectural description itself. In the later case, the component serves as
abstraction boundary for an architectural subsystem.

When a component is represented by an architectural subsystem, it is described as a con�g-
uration in the same way as indicated above. In addition, however, for a component the nested
architectural description has an associated port map, which de�nes how the port names on the
\inside" are associated with the port names at interface of the component. (Similarly for roles:
role names on the \inside" are identi�ed with role names on the \outside".)

Figures ?? and 6 and illustrate the use of hierarchy on a simple example. The system is
responsible for removing white space from a stream of characters, capitalizing every other letter,
and then segmenting the output into 5-character words separated by spaces. This is accomplished
at the top level with three �lters: the �rst removes white space, the second capitalizes every other
character, and the third produces 5-character words . The middle component, however, is realized
as the subarchitecture outlined earlier.

3.4 Style

So far we have discussed how the architecture of an individual system is described in Wright:
the architect introduces component and connector types, creates instances of those types, and then
attaches them to form a con�guration.

In many situations, however, an architect is actually concerned with a family of systems, rather
than a single one. In Wright such families are termed architectural styles.

The Importance of Architectural Styles

The interest in architectural styles (or families) arises for several reasons. First, the architect might
be interested in developing a framework for some product line. By specifying the shared architec-
tural structure of the products, the architect can de�ne standards to which the individual products
must adhere. This in turn simpli�es the development of a speci�c system in the product line, makes
it easier to understand and maintain those systems, supports reuse of shared implementations and
infrastructure, and often allows an organization to develop domain-speci�c, reusable componentry
and component generators.

Second, even when a system is not part of a product line, it will likely undergo various revisions
over time. That sequence of releases itself determines a family. Thus when developing the architec-
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Configuration Cap-Words

Component RmWhiteSp

: : :
Component CapitalizeFilter

Port Input : : :
Port Output : : :

Computation
Configuration Capitalize

Component UpperCase

: : :

Instances
Split : SplitFilter
Upper : UpperCase
: : :

Attachments

Split.Left as P1.Source

Upper.Input as P1.Sink

: : :
end Capitalize

Bindings
Split.input = Input

Merge.output = Output

end Bindings

Component Segment

: : :
Connector Pipe

: : :
: : :

Instances
: : :

Attachments
: : :

end Cap-Words

Figure 6: Hierarchical Speci�cation in Wright.
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Style Pipe-Filter

Connector Pipe

Role Source hdeliver data repeatedly, signalling termination by closei
Role Sink hread data repeatedly, closing at or before end of datai
Glue hSink will receive data in same order delivered by Sourcei

Interface Type DataInput = hread data repeatedly, closing the port at or before end-of-datai
Interface Type DataOutput = hwrite data repeatedly, closing the port to signal end-of-datai
Constraints

8 c : connectors � type(c) = Pipe

8 c : components ; p : Port j p 2 ports(c) � type(p) = DataInput _ type(p) = DataOutput

End Style

Con�guration EveryOther

Style PipeFilter

: : :
End Con�guration

Figure 7: The structure of a style.

ture of a system, an architect typically also considers the dimensions of evolution permitted over
time for that product.

Third, some architectural styles are constrained in such a way that they can guarantee certain
desirable properties. By picking a style with the right properties, the architect can ensure that the
speci�c system under design will inherit those properties.

For example, if an architect is faced with a problem of transforming a sequential stream of
input in a regular way, the pipe-�lter style of systems permits the architect to decompose the
transformation into a collection of simpler transformations. By using the pipe-�lter style, the
architect knows that the simple transformations can be combined easily, without worrying about
declaring complicated interfaces or control sequences. If the system has performance constraints,
there are known techniques for analyzing the critical computation path and for distributing a
pipe-�lter system across several processors.

If, on the other hand, the system is faced with the task of maintaining a complex data store, and
with keeping it up-to-date in a potentially unreliable environment, the architect will instead look
for a database-transaction style such as X/Open [GR93]. This style of system construction permits
the architect to rely on the data integrity properties (e.g., \ACID" properties) guaranteed by the
style. Other styles range from the domain-independent, layered system style to domain-speci�c
styles for systems such as robotic controllers and employee payroll systems. (For a more detailed
discussion about architectural styles and their bene�ts see [SG96b, GAO94, AAG95].)

Specifying Styles in Wright

A style de�nes a set of properties that characterize a family of software architectures. These
properties include the use of a common vocabulary of architectural elements and restrictions on
the ways that vocabulary can be used to create architectural con�gurations. Figure 7 illustrates
the form of a Wright style de�nition. (Appendix B contains the full description.)
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Wright provides three facilities for de�ning a style: (a) component, connector, and interface
types; (b) parameterization; and (c) constraints.

3.4.1 Component, Connector, and Interface Types.

As with con�gurations (see Figure 4) a style can introduce a common architectural vocabulary by
declaring a set of component and connector types. As illustrated in Figure 7, the pipe-�lter style
provides Pipe connector type. When a con�guration is de�ned using the pipe-�lter style, Pipes are
automatically available for use.

In addition to complete component and connector types, a style may de�ne certain aspects of
a component or connector. For example, in the pipe-�lter style all components are �lters, which
use only data
ow for input and output. This commonality of �lters needs to be exposed, although
the �lter computations will di�er between di�erent �lters. Also, the names and numbers of input
and output ports will di�er from �lter to �lter. For example, in the earlier example SplitFilter has
one input and two outputs, while the UpperCase �lter has one of each.

To de�ne shared interface properties, a Wright description can introduce interface types. For
example, the pipe-�lter style introduces DataInput and DataOutput interface types for de�ning the
roles of a pipe and for later use in de�ning �lters. The details of interface types will become clearer
in Section 4, when the notations for behavior are introduced, and in Section 7.8, when the tests for
attaching a port to a role are discussed.

Parameterization

To permit additional 
exibility in de�ning new component, connector and interface typesWright,
supports parameterizing of type descriptions. Informally, this capability permits a description of
a type to leave \holes" in the description that will be �lled in when the type is instantiated for a
speci�c con�guration.

For example, in the Unix pipe-�lter style (a specialization of the example style that we have
been considering), all components have one input, named Stdin, and two outputs, named Stdout

and Stderr. The interface to all Unix �lters is the same. But the computation performed by each
Unix �lter is di�erent. Thus to describe a general Unix �lter type, we must leave a hole in the
description so that the computation can be speci�ed for the particular �lter. We can describe the
Unix �lter as a parameterized component type, as follows:

Component Unix-�lter(C : Computation)
Port Stdin = DataInput

Port Stdout = DataOutput

Port Stderr = DataOutput

Computation = C

We can then use this description to describe any number of Unix �lters:

Upper : Unix-�lter(hpass output, translating to uppercasei)
Lower : Unix-�lter(hpass output, translating to lowercasei)
LaTeX : Unix-�lter(htranslate input in .tex form to .dvi form; error messages are sent to Stderri)

Wright permits any part of the description of a type (including its ports, roles, computation,
glue, interface names) to be replaced with a placeholder, which is then �lled with a parameter when
the type is instantiated. In addition, as we will see when we discuss formal behavior descriptions,
part the behavior of a port, role, computation, or glue can also use placeholders.
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In addition to leaving simple holes in type descriptions, another way of parameterizing a type
description is by number. Suppose, for example, that a particular class of �lter system uses many
�lters that split their input among a number of outputs. SplitFilter, in Figure 2, is a good example.
But in our earlier description it has exactly two outputs. Suppose we want three, or four? For a
style to explicitly list all of the possible Split �lters with any number of outputs, we would need an
in�nitely long description. Instead, we make the number of outputs a parameter to the description:

Component SplitFilter(nout : 1..)
Port Input = DataInput

Port Output1::nout = DataOutput

Computation = hread from Input repeatedly, writing to Output1, Output2, etc. in successioni
A parameter accepting a range of integers is written \hlowerboundi..hupperboundi." hlowerboundi

indicates the smallest acceptable integer, and hupperboundi indicates the largest. If one of the
bounds is omitted (as is the case with hupperboundi in the SplitFilter), this indicates that there is
no limit in that direction. Thus, the SplitFilter can accept any positive integer as its parameter.

In the body of the Wright description, the number parameter can be used to control the
number of particular kinds of ports or roles that can appear. A port or role description that can
have multiple copies is indicated by specifying a range of integers as a subscript to its name. In
the SplitFilter example, there can be more than one Output port, depending on the value of the nout
parameter. It is not permitted to omit either bound in the use of a range on a port or role name.
(We can't have an in�nite number of ports, after all.)

Thus, the number of ports on a component is determined at instantiation time and cannot be
changed during the execution of the system. This re
ects the static nature of aWright description.
Wright assumes that, at run time, the set of components and the interaction topology do not
change. Many kinds of \dynamic" architectures (where components appear and disappear, or where
the network of communications changes during an execution) can be modelled in one of two simple
ways. First, one may include all potential elements in the system description, and then ignore those
that do not currently exist. Second, one may describe each possible con�guration as a di�erent
architecture|in e�ect, use a mini-style to describe a single system. In each case, the number of
ports, roles, components, and connectors will be �nite at any point in time.

Constraints

Interface types and parameterization facilities could equally well be used in the de�nition of a
single con�guration. If a system is large enough to contain repeated types, or if the architect wants
to emphasize commonalities between di�erent parts of a single architecture, these elements of the
language can be useful even if the system does not refer to a separate style de�nition.

But a style is more than just a vocabulary that may be used to de�ne con�gurations. It isn't
enough for the pipe-�lter style to have pipes and data inputs and outputs available to be used.
In order for a system to be in the pipe-�lter style, it must use only these elements. In a more
restrictive pipeline style, even this may not be enough. The components must be strung together
by pipes in a single line.

When an architect constructs a system as a member of a larger family of systems, exploiting
special properties of that family, or modi�es an existing system that has been validated based
on a speci�c set of assumptions, the architect will wish to refer to an explicit statement of what
constraints apply. For example, if a system happens to contain only pipes and �lters, is this
coincidence because no other constructs turned out to be necessary, or is it an intrinsic property of
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the style that is being relied on for speci�c purposes (such as simplifying the implementation basis
for the system).

To specify these kinds of constraints, a Wright style description may declare properties that
must be obeyed by any con�guration in the style. For example, the pipe-�lter style would indicate
that all connectors must be pipes:

8 c : connectors � type(c) = Pipe

In addition, the style would require that all components in the system use only DataInput and
DataOutput ports:

8 c : components ; p : Port j p 2 ports(c) � type(p) = DataInput _ type(p) = DataOutput

Each of the constraints declared by a style represents a predicate that must be satis�ed by any
con�guration declared to be a member of the style. The notation for constraints is based on �rst
order predicate logic. The constraints refer to the following sets and operators:

� components : the set of components in the con�guration.

� connectors : the set of connectors in the con�guration.

� attachments : the set of attachments in the con�guration. Each attachment is represented as
a pair of pairs ((comp, port), (conn, role)).

� Name(e): the name of element e, where e is a component, connector, port, or role.

� Type(e): the type of element e.

� Ports(c): the set of ports on component c.

� Computation(c): the computation of component c.

� Roles(c): the set of roles of connector c.

� Glue(c): the glue of connector c.

In addition, any type that has been declared as part of the style's vocabulary may be referred
to by name. As we saw in the examples above, the pipe-�lter style introduces Pipe, DataInput, and
DataOutput, and the constraints of the style refer to these types by name.

Here is a more complex example of a constraint. It indicates that a con�guration must have a
\star" topology.

9 center : components �
8 c : connectors � 9 r : Role; p : Port j ((center ; p); (c; r)) 2 attachments

8 c : components � 9 cn : connectors ; r : Role; p : Port j ((c; p); (cn; r))2 attachments

The �rst predicate indicates that there must be a component \center" that participates in every
interaction of the system. The second predicate indicates that every component must participate
in some interaction, thus guaranteeing that every component is connected to \center".

4 Specifying Behavior

We have illustrated how to specify the structure of an architecture, and how an architectural style
can be used to describe a family of similar structures. But thus far our speci�cations of the meaning
of the architectural types and of the behavior of the elements has been informal. What precisely
does it mean to say that the pipe ensures that \Sink will receive data in the same order delivered
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by Source?" How does a component signal end of data on a DataOutput port? How can we specify
which participant is in control at any point in an interaction and what are the restrictions on the
order in which things happen?

The behavior and coordination of components is speci�ed in Wright using a notation based
on CSP [Hoa85]. CSP is a notation for specifying patterns of behavior and interaction. We will
begin by provided a brief, informal introduction to CSP. (The interested reader should consult a
text on CSP for more detailed explanations.)

Events

The basic unit of a CSP behavior speci�cation is an event. An event represents an important
moment or action. For example, end-of-data is an event for the Sink of a pipe. Similarly, the write

event represents the delivery of data by the Source. The same event can occur many times in a
complete behavior. For example, the source of a pipe can write data many times.

Because we are interested in how di�erent components control interactions, we add notation to
CSP to distinguish between initiating an event and observing an event. An event that is initiated
by a process is written with an overbar: The speci�cation of the DataOutput port would use the
event write to indicate that it initiates this event. The DataInput port, on the other hand, observes
end of data, so in its speci�cation this event would be written without an overbar: end-of-data. We
also refer to initiated events as signalled events: The pipe mechanism, for example, signals end of
data, so its event would be written end-of-data.

A special event in Wright is
p
, which indicates the successful termination of a computation.

Because this event is not actually a communication event, it is not considered either to be initiated
or observed. When we refer to an event but don't care whether it is initiated or observed, we will
say that a process engages in the event. Thus, processes indicate correct termination by engaging
in
p
.
An important property of events is that they can carry data. If a process supplies data, this is

considered output, and written with an exclamation point. For example, the source of data for a
pipe supplies data when it writes to the pipe using write!x. If a process receives data, this is input,
and written with a question mark: e?x. Notice that output is usually signalled (e!x) and input is
usually observed (e?x).3

Processes

In CSP patterns of event behavior are (for historical reasons) called processes. Processes are
described by combining events and other, simpler processes. The most primitive process is STOP,
the process that does nothing.

The simplest way of constructing a new process is sequencing. Given a process P and an
event e, the process e!P is the process that �rst engages in the event e and then behaves as P. For
example, we de�ne the success process, x, to be p!STOP, the process that successfully terminates
immediately.

Another form of sequencing is the \;" operator. This combines two processes in sequence. P ; Q
is the process that behaves as P until P terminates successfully and then behaves as Q. For example
(e!f!x) ; (g!x) = e!f!g!x.4 If the process P does not terminate, then P ; Q acts as P forever.

3This is not always the case, however. Consider a component that reads data from a variable. While the component
initiates this event, it inputs data. Similarly, the glue of the variable connector represents the delivery of the value
as an observed output event (i.e. an output event that it does not initiate).

4We use the convention that ! associates to the right: e!f!P = e!(f!P).
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If sequencing were the only operator, it would not be possible to describe very interesting
behaviors. The only processes would be those that engage in a single string of events, of a �xed
length, and then stop. In order to describe more complex behaviors, we need naming, state, and
alternatives.

By naming processes, we can describe behavior patterns that occur repeatedly. For example,
consider the following process de�nition:

P = e!P

The process named P performs the event e and then acts as the process P. This is a recursive
de�nition. The overall behavior of this process is to do e over and over again, without ever stopping.
Named processes can also be introduced into other processes using where:

f!P where P = e!P

This process does a single f and then repeats e over and over.
We can add state to a process de�nition by adding subscripts to the name of a process: Pi is a

process with a single state variable, i . For example,

P1 where Pi = count!i!Pi+1

is a process that counts: count!1, count!2, count!3, etc.
Sometimes, however, we want a process to have di�erent behavior depending on the value of

its state variables. For example, we might want a circular counter, that counts to three and then
resets: 1, 2, 3, 1, 2, ... A state dependency is introduced with a conditional de�nition, written by
adding a test on the state variables:

PV = Q
p(V )

de�nes a process P over variables V only when the boolean expression p(V ) is true. For example:

P1 where Pi= count!i!Pi+1

i < 3
P3 = count!3!P1

de�nes the circular counter.
Another important way of extending the behavior of a process is through alternatives. The �rst

kind of alternative is a process that recognizes the possibility of two behaviors in its environment.
This is termed deterministic or external choice. It uses the operator . The process e!P f!Q is
the process that will behave as the process P if it �rst observes the event e and will behave as the
process Q if it �rst observes the event f. This is called deterministic choice because the behavior of
the process is entirely determined by what the environment does. Deterministic choice is typically
made between observed events.

The second kind of alternative is a process that makes an internal choice about which of two
behaviors to perform. We call this non-deterministic or internal choice and use the operator u.
The process e!P u f!Q is the process that will either initiate e and then act as P or initiate f and
then act as Q.5 The process itself decides which to do, without consulting the environment. Thus,
non-deterministic choice is typically made between initiated events.

5Both alternative operators bind more closely than sequencing. Thus, e!P f!Q = (e!P) (f!Q).
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To make processes more 
exible, the sequencing and choice operators can also be quanti�ed
over a set: 8 x : S hopiP(x). This operator constructs a new process based on a process expression
and the set S , combining its parts by the operator hopi. For example,

8 i : f1; 2; 3g Pi = P1 P2 P3:

If the sequencing operator `;' is used the result is some unspeci�ed sequencing of the processes:

8 x : S ; P(x) = 8 x : Su(P(x) ; 8 y : S n fxg ; P(y)):

Thus, 8 i : f1; 2; 3g ; Pi = (P1; P2; P3) u(P1; P3; P2) u(P2; P3; P1) u(P2; P1; P3) u(P3; P1; P2) u(P3;
P2; P1).

Examples

Given these notations, we can now specify the behavior of architectural elements precisely. As a
simple example, consider the basic procedure call connector.

The basic idea of a procedure call is that there is one party, the Caller that initiates the procedure
call invocation. The other party, the De�ner, carries out the de�ned computation, and then returns.
This pairing can be carried out multiple times.

A formal Wright speci�cation of this interaction (ignoring data) is as follows:

Connector Procedure-call

Role Caller = call!return!Caller u x
Role De�ner = call!return!De�ner x
Glue = Caller.call!De�ner.call!Glue

De�ner.return!Caller.return!Glue

x
There are three elements of this de�nition worth noting. First, the Caller and the De�ner use

di�erent alternative (or choice) operators to indicate their di�erent roles. The Caller decides whether
to initiate a procedure call or not, and so it uses the non-deterministic choice operator. The De�ner,
on the other hand, o�ers the option of a procedure call, so it uses deterministic choice. It is up to
the other parties (in this case the Caller) to determine whether a call or termination will occur.

Second, because the Glue mediates the interaction between multiple participants, its speci�ca-
tion must indicate which role's event is indicated in any situation. This is done by pre�xing each
event by the name of a role. So Caller.call indicates that the Caller component executes the call, and
De�ner.call indicates the De�ner component being noti�ed of the call.6

Third, theGlue indicates how the behavior of the roles combines to form a complete interaction.
Each of the two main branches of theGlue process indicate how an event of one participant triggers
another event in the other participant. Because the Glue does not take the point of view of any
one of the roles, its use of initiated and observed events is complementary to that of the roles: If
a role initiates an event, it is observed in the Glue. If a role is to observe an event, it must be
initiated by the Glue.

Thus, \Caller.call!De�ner.call!Glue" indicates that the De�ner will observe a call event following
its initiation by the Caller. \De�ner.return!Caller.return!Glue" indicates that the Caller will process
a return following the signal by De�ner.

6In practice, these are actually a single occurrence in the software system, but for technical reasons Wright

treats events in di�erent roles to be distinguishable events.
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This particular glue structure, where an event that is initiated by one role (thus, observed by
the glue) is always echoed at another role, is quite common in connector interactions. In fact, it
is so common that many architecture description languages do not permit any other form of glue.
We do not wish to restrict the kinds of interaction patterns that can be described in Wright to
just this simple class, but we can provide \syntactic sugaring" to simplify glue descriptions for
common cases.

As a more interesting example, consider how we might complete the formalization of the pipe-
�lter style. The earlier speci�cation of a DataOutput port was informal: hwrite data repeatedly,
closing the port to signal end-of-datai. This can be formalized as follows:

Interface Type DataOutput = (write!x ! DataOutput) u (close ! x)
A DataOutput port has two events with which it communicates, write and close. Both of these

events are initiated by the component, and so they are written with an overbar. The component
decides between the two events, as indicated by the u operator. If the component chooses to write,
it provides a data element (indicated by the !x), and then makes the choice again (it behaves as
DataOutput). If the component chooses to close, then it must terminate without writing again (x is
the only option following close).

Formalizing the DataInput port is slightly more complicated. Informally, we said hread data
repeatedly, closing the port at or before end-of-datai. This seems to indicate a similar kind of choice
between reading and closing. But when we attempt to read, there might not be any data available
(end-of-data may have been reached). In this case, wemust close. All of these situations are covered
in the formal de�nition:

Interface Type DataInput = (read!(data?x!DataInput end-of-data!close!x)) u (close!x)
In order to fully de�ne the interaction represented by the Pipe connector, we need to specify three

behaviors: The Source role, the Sink role, and the Glue. Not surprisingly, since they were designed
to go together, the Source and Sink role de�nitions use the DataOutput and DataInput de�nitions
respectively. The Glue, which indicates how the behaviors of the two sides are combined to form
a complete interaction, is more complicated. It must constrain the read and write events so that the
Sink receives exactly the data that the Source has produced. Furthermore, theGlue must coordinate
the closing of the pipe by the Source with signalling end-of-data to the Sink. The following de�nition
accomplishes this:

Glue = Openhi
where Openhi = Source.write?x!Openhxi

Source.close!Closedhi
Sink.close!Capped

Openshxi = Sink.read!Sink.data!x!Opens
Source.write!y!Openshxihyi
Source.close!Closedshxi
Sink.close!Capped

Closedshxi = Sink.read!Sink.data!x!Closeds
Sink.close!x

Closedhi = Sink.read!Sink.end-of-data!Sink.close!x
Sink.close!x

Capped = Source.write!x!Capped

Source.close!x
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This de�nition recognizes three main situations in the interaction: both ends of the pipe are
open (represented by the process Open), the Source has closed (represented by Closed), or the Sink has
closed (represented by Capped). Once both parties have closed, no further interaction is possible, so
the Glue becomes x. While there is a possibility of data 
ow (i.e. the Sink has not closed), the data
available is kept as state associated with the process (either Open or Closed). A write event by the
Source adds to the queue of data, and a read event by the Sink removes from it. Once the Source has
closed, and there is no more data available, the Glue will be in the state Closedhi. In this situation,
the Sink will be informed of end-of-data, and then only close is possible.

Notice how in this connector, the Glue does more than simply match up events in the various
roles. Anywhere a pipe is used in an architecture, there is an additional bu�er that is added to
the system, containing the data that has been written by the source, but not yet read by the sink.
At the same time, the connector retains its abstract task of showing how the computations of the
various participants are combined to form a larger computation: The purpose of the pipe connector
is to allow the architect to ignore this bu�ering of data and concentrate on �nding or constructing
the �lters necessary to achieve the desired data transformations.

The SplitFilter can also be completed using formal behavior speci�cations and the pipe-�lter
style:

Component SplitFilter(nout: 1..)
Port Input = DataInput

Port Output1::nout = DataOutput

Computation =Transfer1
where Transferi =Input.read!(Input.data?x!Outputi .write!x !Transferi+1

Input.end-of-data !Close)
1 � i � nout

Transfernout+1 = Transfer1
Close = Input.close!8 i : 1::nout ; Outputi .close!x

5 The Behavior of Wright Con�gurations

Now that we can describe the structure of an architecture and assign behaviors to each of the
elements, we need to address two important questions: (a) What do the behavior patterns imply
about the system as a whole? and, (b) How can we decide if a description is valid? This section
addresses these questions by showing how the descriptions are combined and by giving rules that
must be obeyed by legal Wright descriptions. This section is intended to give enough information
about these issues for the practical user of Wright. Technical details appear in Section 7.

As we saw in the previous section, behaviors are speci�ed by combining events into patterns
called processes. There is a process for each of the elements of a Wright description, one for each
port, role, computation and connector glue. Of these, the port and role speci�cations represent the
interfaces to the components and connectors, while the computation and glue represent the overall,
actual behavior of the components and connectors, respectively. In this section we explain how
these processes work together to de�ne the behavior of the con�guration and how they can help us
to determine whether the con�guration contains inconsistencies.

5.1 Parallel Composition

Abstractly, we think of the behavior of an architectural con�guration as consisting of the behaviors
of the individual components, each operating independently except that they are coordinated by
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the glue of the connectors to which they are attached. That is, the computation of each component
forms a part of the overall behavior, where the order in which the computations occur and the
transfer of data from one to the other is coordinated by the connectors.

The basic technique used in CSP to model the combination of coordinated processes is parallel
composition. Two processes are composed in parallel (indicated in CSP with the operator k) by
having both processes control which events can occur. If both processes agree on an event then the
event can occur. For example, consider two processes, P and Q:

P = (e !f !P) (g!P), and
Q = e!(f !Q h !Q).

What will happen if we combine these in parallel, as PkQ? At �rst, P permits either e or g. But
Q may only engage in e, so this is what will happen. Once e has occurred, Q may now engage in
either f or h. But now P is only capable of f, so f occurs. After the he; fi sequence, both P and Q are
in their original states, so the sequence repeats. Thus, the process PkQ is equivalent to the process
R = e!f!R.7

5.2 Alphabets

In most systems each component is involved in only a small subset of the total set of events of the
system. In these situations a process that does not make any reference to a system event should
not interfere with other components that do engage in that event For example, if we have a system
with two �lters in a pipeline (see Figure 8), then the �rst component (labelled A) should not have
any control over the computation to be performed by the second (labelled B). A's only in
uence on
B should be via its use of the connector, C. So we can't simply put the computations in parallel and
give each computation full control over the events in the system. Let's look at a simple example
to clarify this problem. Consider three CSP processes, A, B, and C, and think of them as the two
components and connector in Figure 8.8

A = a!A u x
C = a!c!C x
B = c!b!B x

The intent of this system is as follows: the component A will engage in the event a some number
of times and then decide to terminate. The component B is capable of executing the event b

any number of times, or terminating. B will execute b whenever it observes c. The connector C is
responsible for ensuring that whenever a occurs, c follows. Thus, for each a, the connector transmits
a c, and this triggers a b event in B. The overall e�ect should be that there will be exactly one b

for each a. This models a kind of connector where one component triggers a particular behavior
in another component; for example, in a component that reacts to the receipt of a message from
another component.

But what if we combine these processes in parallel: AkCkB? If every process controls every
event, then nothing can happen! Initially, process A wants to do the event a. This is �ne with C,
but B wants to do the event c �rst. So a can't happen �rst. But neither can c, because neither A

nor C agrees to this.

7In CSP, two processes are equivalent when they represent exactly the same pattern of behavior. Details of
equivalence and its more 
exible cousin, re�nement, appear in Section 7.1.

8Because this is a simple example to show the properties of CSP, and not really a full Wright example, we are
ignoring the initiate/observe distinction for events.
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A B

Figure 8: A and B interact only via C.

To address this issue, CSP uses the concept of an alphabet. The alphabet of a process (written
�P) is the set of events over which it has an in
uence. In a parallel composition, a process controls
those events in its alphabet and ignores the others. In our example, the alphabet of A is the set
fag, the alphabet of B is fb; cg, and the alphabet of C is fa; cg. Thus, in the composition AkCkB,
the event a can occur �rst, because B doesn't have it in its alphabet. Both A and C react to it
occurring, but B ignores it. Once a has occurred, then B and C can agree on c, and A ignores it.
After that, either a or b can occur, since none of the processes will prevent them. A and C agree on
a, and B can do b on its own.

The problem of process alphabets in CSP is quite similar to the problem of scoping often
encountered in system design. When we consider a particular aspect of a software system, a
procedure call or the state of some variable, say, how do we determine how much of the system we
have to look at in order to cover all of the in
uences on the part we are interested in? In some
programming languages there is no easy way to avoid looking at all of the code in the system. If
we use techniques such as data abstraction or have a software architecture, then there are clear
scoping boundaries that we can use to limit the potential e�ect on each other.

5.3 Application to Wright

Let us now apply the notion of parallel composition to Wright speci�cations.
We want to set up the formal interpretation so that a component's Computation interacts

only according to the constraints of the connector Glue to which it is attached. That is, each com-
putation should proceed independently of the other components, except that the events published
in the interface (the ports) should be coordinated via the glue processes of the attached connectors,
as we would expect from Section 3.

Basically, we combine the behavior speci�cations of each instance of an architectural element
in the system via parallel composition, as we discussed above. That is, there will be a process for
each component instance and one for each connector instance. But there are two di�culties:

1. Behavior speci�cations are associated with a type, not an instance: How can we combine
multiple uses of a type in single system?

2. The types' speci�cations are context-independent: How can the attachment declarations be
used to ensure that the right interactions take place? If we look at the way behaviors are
speci�ed in a component's computation and a connector's glue, none of the event names match
up. The glue will refer to an event with a role name, and the computation will refer to it by a
port name. Recall from the pipe-�lter example (Section 4) that in the pipe Glue, the events
describing the output of a �lter are Source.write and Source.close. But in a Computation, the
events describing the output of one particular �lter, say the SplitFilter, are Outputi .write and
Outputi .close. If we just combine these using k, they won't match up.

Both of these are problems that are common whenever types are used in software engineering,
and whenever any attempt is made to reuse elements, either within a single system or across
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multiple systems. In object-oriented de�nitions, for example, one must distinguish between class
and instance variables, depending on whether the value is to be shared by object in a class or there
is a separate variable for each individual object. By the same token, if we wish to replace one
runtime library with another, either the two libraries must be forced to use exactly the same set of
procedure names, or the program must be changed in order to incorporate the new library. These
solutions are often costly, if not impossible. By using local names in the Wright speci�cation
these problems are avoided.

Wright's local event names are converted into CSP's global events using renaming functions. A
renaming function takes a process and changes all of the names of its events. For example, consider
a function shift that shifts each event by one letter, a to b, b to c, etc. When shift is applied to
a process, P = a!b!P, the result is a process with the same structure, but with di�erent event
names: shift(P) = b!c!shift(P).

We use two di�erent kinds of renamings to combine the types' behavior speci�cations into an
overall behavior of a Wright con�guration. The �rst is used to make multiple copies of the
speci�cations for instances. These functions add the names of the instances to each event name,
and are called labelling functions. Thus, an instance of the SplitFilter named Splitter would refer
to its events with the name Splitter. So we would get Splitter.Left.write, Splitter.Left.close, etc. Thus
multiple instances of a type will not interfere.

The second kind of renaming matches up the names of attached ports and role. If we have an
attachment declaration,

Splitter.Left as P1.Source

for example, these functions make sure that all of the events for the Left port in the Splitter's
computation match up with the events from the Source role of the P1 glue. Thus Splitter.Left.close

would be the same event as P1.Source.close after the attachment renaming functions are applied.
To see how does this works out consider a simple example. Suppose we want to make the three

processes A, B, and C from above into actual Wright components and connectors. They would
look something like this:

Configuration ABC

Component A-type

Port Out = a!Out u x
Computation = Out.a!Computation u x

Component B-type

Port In = c!In x
Computation = In.c!b!Computation x

Connector C-type

Role Origin = a!Origin u x
Role Target = c!Target x
Glue = Origin.a!Target.c!Glue x

Instances

A:A-type
B:B-type
C:C-type
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Attachments

A.Out as C.Origin

B.In as C.Target end ABC.

The resulting CSP process is the following:9

A = A.Out.a!A u x
k C = A.Out.a!B.In.c!C x
k B = B.In.c!B.b!B x

6 Validating Descriptions

We have shown howWright can be used to express the structure and behavior of a software archi-
tecture, as well as to describe the constraints on a family of systems that form an architectural style.
Speci�cally, we have seen how Wright allows us to describe connectors explicitly, distinguishing
di�erent connectors with di�erent protocols over events, clarifying what parties are responsible for
initiating those events, and showing what parts of an interaction are visible to each participant.
We have also seen that Wright permits the computation of each component to be described in
terms of signi�cant communication events, and divides the interface of each component into several
distinct interactions. Finally, the parameterization and style constraint facilities permit individual
descriptions to be generalized to a pattern of interaction or computation, and to place more global
restrictions on how systems can be assembled.

As a formal speci�cation language, however, Wright has value beyond enabling architects to
write down an architectural description. Another important aspect of the language is its support
for analysis and reasoning about the system thus described.

There are many kinds of analysis that one might consider at the architectural level of design,
including analyses include functional correctness of the system, potential for expansion to meet
increasing demands, contention for critical resources, and probable cost to implement subsystems.
Each of these analyses rests on di�erent properties of the described system, and would be suitably
supported by di�erent architectural formalisms.

Two criteria for an architectural description that underly all of these analyses, however, are
consistency and completeness. Informally, consistency means that the description makes sense;
that di�erent parts of the description do not contradict each other. Completeness is the property
that a description contains enough information to perform an analysis; that the description does
not omit details necessary to show a certain fact or to make a guarantee. Thus, completeness is
with respect to a particular analysis or property.

Consistency and completeness are fundamental to architectural analysis because without them,
none of the other analyses makes sense. Consistency is necessary before the description can be said
to describe an actual system. If one part of an architectural description indicates one thing, and
another part the opposite, surely one of them is wrong.

Because the architectural level of design is fundamentally focussed on questions of structuring
and composition, consistency among parts is especially critical at this level of design. The principles
that ensure that a system will function as a coherent entity must be built in as part of the overall

9In fact, the CSP interpretation removes the initiate/observe markings on events so that they will synchronize.
They have been left in here to make the connection to the Wright description clearer.
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1. Port-Computation Consistency (component)

2. Connector Deadlock-free (connector)

3. Roles Deadlock-free (role)

4. Single Initiator (connector)

5. Initiator Commits (any process)

6. Parameter Substitution (instance)

7. Range Check (instance)

8. Port-Role Compatibility (attachment)

9. Style Constraints (con�guration)

10. Attachment Completeness (con�guration)

Figure 9: Summary of Tests

structure; if the abstract description is inconsistent, any re�nement or implementation of it will
likely retain that inconsistency.

Completeness is important to an architectural description because an analysis can only be based
on what we actually know about a system. If an architect analyses the communication behavior of
a component, but the system description leaves out part of the interface, what good is the analysis?
For example, an analysis of contention for a resource can only be applied if all of the parts that
access that resource are known.

The problem of completeness is especially critical for the architect because of the importance
of abstraction at this level of design. There is always a tension between the need to include critical
information that is necessary to guarantee important system properties and the risk of cluttering
the architecture with constraints and details that can make the architecture unwieldy and di�cult
to work with.

In the next sections, we discuss the questions of the consistency and completeness of a software
architecture instance description. For each of these properties, we show how Wright addresses
these issues and structures analysis of an architectural description to highlight any inconsistency or
incompleteness, and how simple tests can be applied to guarantee that an architectural description
is both consistent and complete. The discussion that follows is not completely formal; the main
point is to discuss the kinds of criteria that must be met and to show how Wright approaches
these problems. Formal details of all de�nitions and checks can be found in Section 7.

For reference, a complete list of the consistency and completeness tests is shown in Figure 9,
along with an indication of to what each test applies in parentheses.

6.1 Consistency

In the description of an architectural instance, the property of consistency is important for each
element of an architectural description: the components, the connectors, and the con�gurations.
For each of these elements we must ask ourselves how we can tell if a description is consistent.
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Components

When we say that a description is internally consistent, we mean that none of the parts of the
description contradicts any of the other parts. That is, whenever two parts of the description
overlap, describing the same property or behavior, the two parts must agree. If one part of the
description describes something not covered by another part, there is no possibility of contradiction.

As we have seen, for a component description the parts consist of an interface, decomposed into
a number of ports, each of which describes an interaction in which the component participates,
and a computation, which describes the full internal behavior of the component. To determine the
consistency of a component description, we must determine whether the computation violates the
constraints of the interface. That is, to the extent that a computation is involved in carrying out a
particular interaction, the computation must obey the rules of interaction de�ned by the port.

Recall that we do not view the collection of ports as representing a full speci�cation of the
component, which must then be veri�ed. The purpose of the ports is to ensure that the component's
behavior in an interaction meets the requirements of the interaction, and therefore we only care
that the computation is consistent with the ports: If the computation is consistent with the port,
and the port is compatible with the role, then the computation is compatible with the connector.

Also recall that a port speci�cation indicates two aspects of a component. First, it indicates
some aspect of the component's behavior, and second, it indicates the expectations of a component
about the system with which it interacts.

In Wright we can compare the behavior of the component with the behavior of a port by
checking whether the port represents a projection of the component's overall behavior. A port is a
projection of the component if the component acts in the same way as the port when we ignore all
events not in the port's alphabet. For example, consider the following speci�cation:

Component Double

port In = read?x !In close!x
port Out = write!x !Out u close!x
Computation = In.read?x !Out.write!(2*x) !Computation In.close!Out.close!x

In this speci�cation, the port In is a projection of the Computation over the events that are
pre�xed with the name In (i.e. In.read and In.close). Out is a projection of the Computation over
the events that are pre�xed with the name Out (i.e. Out.write and Out.close). When we say we ignore
a given set of events, we really mean that we hide them from the external environment, treating
them as internal choices: If we hide In.close and In.read, then the deterministic choice between them
in the Computation becomes an internal, or non-deterministic choice between the visible events
that follow them: Out.write!Computation u Out.close!Computation. This, of course, matches
the port Out.

The second aspect of a port, indicating expectations about the environment, is illustrated by
the following example. Suppose we attempt to attach Double's In port to an interaction that might
initiate events other than read and close? For example, a role might state:

role FailingIn = read?x!FailingIn close!x fail!x

This speci�cation indicates that a component �lling this role might also be informed of a failure,
after which it would be expected to stop using the port. The Computation of Double doesn't
handle the fail event, and the system would break if Double found itself in a situation where the fail

event occurred.
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Fortunately, the interface of Double (port In) clari�es the situation. It indicates that Double may
not be used in the interaction represented by FailingIn, because the port speci�cation shows that
Double expects either In.read or In.close, while the role indicates that In.fail should also be handled.
So, as we will see later in the section on attachments, FailingIn does not meet the expectations of
Double, and can not be attached to the In port: the speci�cation of Double does not have to deal
with the fail event.

So if a port speci�cation does not refer to an event, the component is not required to handle
it. But there are situations in which it might be appropriate to have a component speci�cation
describe behaviors that it does not expect to occur. One such situation occurs with generalized
computation or reuse. It might be simpler to describe a computation by including all cases, not just
those that are covered by the interface. Or, we might want to reuse a more general computation
speci�cation. For either of these reasons, the port speci�cation might only cover a subset of the
situations that the component can actually handle.

For example, suppose we have a server that calculates square-roots over all integers|including
negatives. If we want to use it in a situation where complex answers are not acceptable, we would
need to change the interface to indicate that only positive integers may be delivered by the client.
It doesn't make sense to have to change the algorithm used internally by the server just to match
the new, more restrictive interface.

Another reason a computation description might cover situations that don't appear in the
interface is bullet-proo�ng. We might want to describe the behavior of the component Double in
the face of failure, even though the interface speci�es that the system must avoid it. This might
be useful, for example, if there is a risk that the implementation of another component is broken.
Here is an extended speci�cation of Double:

Component Double

port In = read?x !In close!x
port Out = write!x !Out u close!x
Computation = In.read?x !Out.write!(2*x) !Computation In.close!Out.close!x In.fail!x

In this speci�cation, Double promises that if it observes a fail event on port In, then it will terminate
immediately, and not attempt to use In or send any more output to Out.

But wait! Now the Computation process doesn't project into the Out port as we expect.
Consider the computation ignoring In events, which we will name CompOut:

CompOut = Out.write!(2*x) !CompOut u Out.close!x u x
The non-deterministic choice of x means that Double may terminate without sending a close event
on Out. The port speci�cation Out, on the other hand, indicates that termination must be signaled
with close.

But of course this isn't really a fair test. The whole point of leaving fail out of the In port
speci�cation was to indicate that the component doesn't have to worry about it happening. That
is, the simple projection CompOut can only terminate without closing if the environment violates
the assumption of port In that In.fail events will not occur. Therefore we must use a modi�cation
of the projection test to determine port/computation consistency:

Test 1 (Port/Computation Consistency) A port speci�cation must be a projection of the Com-
putation, under the assumption that all other port interfaces are obeyed by the environment.

We say that an interface is obeyed if the system supplies only those sequences of events which
are covered by the port process. The technical details of this test (as for all of the tests described
in this part) are given in Section 7.
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Connectors

A connector represents a potential interaction among components. While the Glue indicates how
the participants will be coordinated, the roles describe how the participants are expected to behave.
Thus, the connector description must ensure that the coordination of the Glue is consistent with
the expected behavior of the components, as indicated by the roles. We must ensure that the
participants in the interaction will not become disastrously out of synch so that they are no longer
truly communicating.

Suppose that there are two components in a system, a client and a server. Suppose also that
the server provides a necessary value for the computation of the client, but it must receive an
initialization signal before it can begin computation. The client, unaware of this, immediately
requests the value from the server. Inevitably, this will result in disaster for the system: The server
might return a bogus value, compromising the client's calculations, it might crash, disrupting other
computations in progress, or it might simply ignore the client, leaving it stranded waiting for a
return value. In any case, it is clear that we cannot say that the client and server are communicating
in any meaningful way.

Because Wright is based on CSP, this kind of error, where participants in an interaction
cannot agree on the next appropriate event, can be detected as deadlock. A CSP process is said to
deadlock when it may refuse to participate in all events, but has not yet terminated successfully
(by participating in the

p
event). Conversely, a process is deadlock-free if it can never get into a

deadlock situation.
The situation described between the client and server would be detected in the Wright sit-

uation as deadlock in the overall interaction between the client and server components. Because
the server is waiting for an initialization event, while the client is only willing to provide a value
request deadlock will result. While this could be detected in the behavior of the overall Wright

con�guration, using the Computation processes of two actual component instances together with
the Glue of the client-server connector, we can use the structure of Wright to detect it using
only the information of the connector type speci�cation. This is because the roles contain enough
information to detect the problem: If we use the roles as stand-ins for the components, (i.e. put
them in parallel with the Glue) then they will deadlock, just as the components will. If they do
not, but the components do, then there must be either an incompatibility between the roles and
the ports on the components (indicating that the restrictions of the roles are not met by the com-
ponent), or an inconsistency between the component's port and its computation, which is detected
by test 1. Thus, inconsistencies between the participants in an interaction and the coordination of
the Glue are detected by the following rule:

Test 2 (Connector Deadlock-free) The Glue of a connector interacting with the role processes
must be deadlock-free.

Another kind of inconsistency is also detectable as deadlock: if a role speci�cation is internally
inconsistent. In a complicated role speci�cation, there may be errors that lead to a situation in
which no event is possible for that participant, even if the Glue were willing to take any event.
This is avoided by another test:

Test 3 (Roles Deadlock-free) Each of the roles in a connector must be deadlock-free.

Notice that while this additional check is necessary for roles, the fact that theGlue is involved in
every event in an interaction means that no separate rule is necessary for it: If the Glue deadlocks

26



then the composition of the Glue with its roles will deadlock, and therefore test 2 is su�cient to
check internal Glue consistency.

Another kind of inconsistency can arise when we consider control of the interaction. What if all
of the participants agree on what should happen next, but they can't agree on which component
should do it? This kind of problem might occur, for example, if two components must communicate
a value.

Suppose the developers agree that they will use a procedure call to pass the value between two
components. Everything is �ne, right? But what if they both choose to declare a procedure that
can be used to communicate the value? One of the components declares a procedure that will
deliver the value as a result, expecting the other party to \pull" the value, and the other declares
a procedure that will accept a new value as a parameter, expecting the �rst component to \push"
the value. The system will compile just �ne, but when the system is executed, neither procedure
will ever be called, because they will both wait for the other component to initiate the action. A
similar problem occurs if both components assume the other component will declare a procedure
and so they attempt to invoke a procedure. In this case, there will be no procedure available to call.
The full system will not even link properly (although each individual component will compile).

While our example here is detected in the implementation as the common de�nition-use problem,
this kind of con
ict about initialization is not limited to cases in which one party must de�ne an
interaction and the other uses it. If there is a more complicated interaction speci�ed by the
connector (such as an event broadcast system or a networking protocol), it may be the case that
neither party de�nes the interface, and they must determine which of them uses which part of the
mechanisms available. For example, if two components use an event mechanism to send a message,
and neither ever registers a callback the same problem as two declared procedures will arise, but
the linker will be unable to detect the problem.

To detect these con
icts, it must be possible to distinguish between a component that controls
an activity and one that simply observes, or reacts to, it. Wright makes a distinction between
initiated and observed events precisely to avoid this problem. Recall that in Section 4, we introduced
an annotation on events to distinguish initiated events (with an overbar) from observed events
(without an overbar). Initiated events are intended to represent those events where the described
process takes some action, such as sending a message or invoking a procedure. Observed events
represent situations where the process expects some other party in the environment to take action,
and expects to react to the action (e.g. they might receive a message from some other party, or be
invoked as a procedure).

A given event only makes sense, avoiding control con
icts, if there is exactly one process for
which the event represents an action, and all other processes are observers of the event. Thus, there
must be a single initiator of every event:

Test 4 (Single Initiator) For every event in a connector type speci�cation, exactly one of the
roles or the Glue must initiate the event. All other processes must either observe it or omit it from
their alphabet.10

A �nal rule for connectors ensures that the initiate and observe notations on events are used
consistently: we require that the initiator commits to an event. Consider the following extract from
a possible Wright speci�cation:

Role Invalid = e!P f!Q....

10Of course, if one of the participants is the initiator of the event, then it must not also observe the event, or there
could still be situations where no component is the initiator of the event.

27



In this speci�cation the fact that e and f are initiated indicates that Invalid is the cause of these
events. The component �lling this role is responsible for making sure that they occur. But the
operator indicates that the environment decides which of them will occur. How can this be?
How can the environment control whether they happen while the component ensures that they do
happen? In our view, this doesn't make sense, and the \initiator commits" rule ensures that such
speci�cations do not arise.

Test 5 (Initiator Commits) If a process initiates an event, then whenever it does so, it must
commit to that single event without in
uence by the environment. By committing to the event,
the process ensures that refusal by the environment to accept this event must result in a potential
deadlock.11

Con�gurations

Now that we have a notion of consistency for component and connector types, how can we determine
if an architectural con�guration is consistent? Essentially, we must determine whether the instance
declarations and attachments combine to use the type declarations in meaningful ways.

Instance Declarations Since the only information added to a type by an instance declaration is
the name of the instance and the value of the actual parameters, the question of consistent instance
declaration boils down to two questions: (a) Is the name of the instance unique? and, (b) Have we
supplied reasonable actual parameters? If a type declaration leaves a placeholder in its de�nition,
then the instance declaration that supplies the element to be �lled in must result in a reasonable
declaration. For syntactic placeholders (such as role/port names) the only possible con
icts are
the introduction of naming clashes (we don't want a connector to have two di�erent roles with
the same name, for example). For process placeholders (such as parameters that stand in for the
Computation declaration, for example), con
icts can arise because the de�nition supplied with
the instance declaration con
ict with the �xed part of the type de�nition, or because two di�erent
parameters result in a con
ict. These can be checked by substituting the actual parameters for
their placeholders and then applying the type-based checks described above.

Test 6 (Parameter Substitution) An instance declaration of a parameterized type must result
in a valid non-parameterized type when the actual parameters are substituted for the formal param-
eters.

In the case of numeric parameters, there is a special obligation for the type de�ner. Since there
may be limits placed on the values that are permitted (by the range declarations) we require the
type to guarantee that these limits are adequate to simplify the previous test to the following:

Test 7 (Range Check) A numeric parameter must be no smaller than the lower bound, if de-
clared, and no larger than the upper bound, if declared.

What this means is that a type parameterized by number represents a family of types, one type
for each possible parameter value. Every member of the family must be a consistent type. The
reason that we can make this requirement for numeric parameters, but not, in general, for other
parameters, is that there is no simple syntactic way of restricting the values that may be supplied
for these other parameters.

11Technically, the process must refuse all other events. Note that this rule applies to component processes as well.
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Attachments As we discussed above, an important reason to provide speci�c de�nitions of role
protocols is to answer the question \what ports may be used in this role?" At �rst glance it might
seem that the answer is obvious: simply check that the port and role protocols are equivalent. But
we also want to be able to attach a port that is not identical to the role.

The reason for this is that ports specify the interaction patterns of a single, concrete communi-
cation, and therefore are quite speci�c about what will occur, while roles specify the constraints on
a general, abstract set of communications, and therefore specify a range of interactions. Consider,
for example, the output interaction port of the component Double described earlier:

port Out = write!x !Out u close!x

This interface indicates that the component will provide data via the write event some unspeci�ed
number of times, and then close. It might be used to feed another part of the system in an interaction
that covers exactly that situation:

Role Source = write!x !Source u close!x

So far so good. But what if we want to use another component, Gen3, instead of Double?

Component Gen3 =
Port Output = write!1 !write!2 !write!3 !close!x
Computation = write!1 !write!2 !write!3 !close!x

The port Output and the role Source are not an exact match (i.e. they are not the same process).
But we should be able to use Gen3 in this interaction because it does supply data using write some
(now speci�ed) number of times and then close. So we can't use a rule of simple substitution.

On the other hand, we do need make sure that the port ful�lls its obligations to the interaction.
For example, we wouldn't want to use a component as Source if it didn't ever send the close event.
For example the port

Port BadOut = write!x !BadOut u x
should not be acceptable.

We would like to be able to guarantee that an attached port process always acts in a way that
the corresponding role process is capable of acting. This can be recast as follows:12

Test 8 (Compatibility) When in a situation described by the role protocol, the port must always
continue the protocol in a way that the role could have.

This means that the port must handle all of the observed events that the role speci�es, but may
possibly handle more, and that when choosing among events to initiate, the port must select from
the set speci�ed by the role, but may disallow options permitted by the role.

12This test is probably more clearly understood in its formal statement. See the discussion of Compatibility in
Section 7.
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Satisfying Style Constraints

So far, we have discussed tests that apply to Wright descriptions independent of what style is
selected for the architectural description, or even if the con�guration has no declared style. As we
noted in Section 3.4, however, a style description can impose additional constraints on any instance
descriptions that are declared to be in that style. Recall that these are described as predicates over
the instances.

A system con�guration is consistent with its declared style if it obeys each of these constraints.
That is, the style constraints represent a proof obligation on the architect, who must show that
they are true for the described system:

Test 9 (Style Constraints) The predicates for a style must be true for a con�guration declared
to be in that style.

There is, of course, a much more outrageous form of inconsistency that can arise from the style
constraints: If the constraints contradict each other or describe only illegal systems, there will not
be any legal instances of the style! For example, what if we have two constraints that contradict
each other:

8 c : Components ; p : ports(c) � type(p) = DataOutput
9 c : Components ; p : ports(c) � type(p) = DataInput

The �rst predicate states that every component has only DataOutput ports, and the second
predicate states that at least one component has a DataInput port. Since no port can be both, there
can not be any system that obeys both these constraints: The style is inconsistent.

6.2 Completeness

As we discussed in the introduction to this section, completeness is considered to hold with respect
to particular properties or analyses. While a description may be complete with respect to one
analysis, such as freedom from deadlock, it may be incomplete along another dimension, such as
timing or datatype consistency.

Wright handles completeness in di�erent ways, depending on what property is being consid-
ered. For some properties, such as communication dependencies between components, Wright

builds completeness into the semantics of the language: All communications dependencies in an
architecture are covered in a Wright description by de�nition. If a dependency is omitted, then
it does not exist in the system.13

For other properties, an incomplete description appears as an inconsistency in the architecture:
If a glue description omits state values that are necessary to guarantee freedom from deadlock, then
the connector, as described, will have the potential to deadlock (which is de�ned as an inconsistency
in test 2 above). In the Pipe connector, for example, if the glue did not keep track of whether the
Source role had signalled a close event, a deadlock could arise when the Sink role requests a data
value that can never be delivered. The Sink will block forever, since the glue does not not have
the information to deliver an end-of-data signal. This kind of completeness check di�ers from the
completeness that is built into the language, because a check is necessary, but it is covered by the
tests already described.

13Of course, there can still be an inconsistency between the architectural description and the implementation of
the system as it is built. In this case, we would say that the implementation and the architecture describe di�erent

systems; practically, it may simply be that the architecture has omitted a detail.
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With respect to some properties, Wright is inherently incomplete. The CSP formalism on
which Wright is based does not contain any information about the timing of events, for example.
Because there is no information about this in the description, the formalism must necessarily be
considered incomplete with respect to any analyses that depend on it. If this kind of information
is critical to an application, then it could be added as annotations to the Wright structure, but
Wright as it exists does not include this information.

Another category of completeness with which we need to concern ourselves is intermediate
between properties that are completely covered by the consistency checks and those that cannot
be described in Wright at all. These are properties of completeness that can be detected using
the Wright formalism but that are not covered by the consistency checks.

One important kind of completeness that falls into this category is the completeness of a con-
�guration. When we describe a collection of components and connectors, how do we determine
if the described system is capable of functioning without the addition of more parts? It may be
that while all of the instances and attachments that are present are consistent, there is a critical
attachment that has not been made. In this case, a component might depend on observing events
that will never occur, or an interaction might fail because there is a participant missing.

On the other hand, there are often ports on components that do not need to be attached, such
as a monitoring or logging interface on a database, and there are interactions that can continue
even when one of the participants is missing. So we cannot simply outlaw unattached ports or
roles.

To detect this kind incompleteness while maintaining as much 
exibility as possible, we intro-
duce another test on a con�guration. If a port, for example, is unattached, then it must not depend
on observing particular events, and it must not expect to be able to initiate any events. In e�ect,
it must be able to behave as the process that simply halts, i.e., x.

Test 10 (Attachment Completeness) Every unattached port (role) in a con�guration must be
compatible with the role (port) x.

As with con�guration descriptions, there are many forms of completeness that can be considered
for a style description. The most important form of style completeness can obviously not be tested
entirely within theWright formalism, because it depends on information that cannot be captured
in any formalism: Does the style description, type de�nitions and predicates, completely cover
the intentions of the style developer? That is, do the constraints exactly include desired systems
and exclude undesired systems? This question corresponds roughly to the question of whether
a program is \correct." It can only be answered formally in terms of some other requirements
speci�cation, and even then it is only as good as that other document.

There is another, simpler, form of completeness that can be addressed within Wright. We can
ask whether the style constraints are su�cient to guarantee consistency. That is, can we prove that
whenever the style constraints hold (test 9), all other consistency properties also hold (tests 1-8)?
If this property, which we will call consistency-completeness, holds, then users of the style will �nd
their task greatly simpli�ed.

7 Semantics of Wright

Thus far we have described Wright and its consistency and completeness tests informally. We
now describe the formal basis forWright, elaborating the details of the tests and providing formal
de�nitions for the concepts that were introduced earlier.
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7.1 CSP: Traces, Failures, and Divergences

Before we go into the details of Wright's semantics, we need to review the semantics of CSP, the
basic notation for behaviors in Wright. CSP is based on the concepts of alphabets, traces, and
refusals. The CSP model used here is as described by Hoare [Hoa85].

Formally, a CSP process is modelled as a triple, (A;F ;D), where A is the process' alphabet, F
is its failures, and D is its divergences.

We have already seen how the alphabet of a process is important to understanding what be-
haviors a process controls. The alphabet of a process is the set of events in which the process may
engage. The alphabet of a process P is often written �P.

The second element of the CSP model of a process is its failures. The failures of a process are
pairs of traces and refusals. Each trace is a sequence of events, and each refusal is a set of events.
Thus, we write: failures(P) � seq�P� ��P.

The traces of a process are those sequences of events that are permitted by the process. The
process P = a!P b!P, for example, can generate the traces hi; hai; hbi; haai; habi; hbai, etc. The
entire set of traces is indicated by traces(P).

The behavior of a process is not fully determined by its traces. Recall that when describing a
process we were careful to distinguish between internal, or non-deterministic choice, and external,
or deterministic, choice. In the �rst case, the environment is expected to o�er a set of events to
the process, and the process itself controls which of the events will occur. Because the environment
can also prevent any event from occurring (by excluding that event from the o�ered events), we say
that a process has the ability to refuse any of the alternatives by selecting a di�erent one. If the
process uses deterministic choice, on the other hand, it cannot refuse any of the events, because
the environment can now force any one of them to happen.

Refusal of events is modelled by the process' failure pairs. The �rst element of a single failure
pair is a trace of the process and the second element is a refusal of the process after it has engaged
in that trace.

Notice that a failure is a trace and a set of events. Also, there can be more than one refusal for a
given trace. This is because a process may be able to refuse some combinations of events separately,
but not all in combination. For example, the process Q = a!Q u b!Q can refuse the event a or
the event b, but not both at the same time. Thus, it has failures (hi; fag) and (hi; fbg), but not
(hi; fa; bg). The process R = a!R u b!R u STOP, however, does have the failure (hi; fa; bg)
because the choice of STOP would mean that neither event can occur even if both are o�ered.14

The �nal part of the CSP process model is its divergences. The divergences are those traces
after which the process is equivalent to CHAOS, de�ned as follows:

CHAOSA = STOP u (8 x : A u x!CHAOSA)

This process is termed divergent because it is the most unconstrained, unpredictable process:
It can either refuse or accept any event at any time. The past behavior of the process is no help in
predicting its future behavior.

Divergences are used to represent catastrophic situations or completely unpredictable programs
(such as those containing in�nite loops without any communication events). For simplicity, we will
not emphasize the possibility of divergence in our discussion ofWright. None of the de�nitions and
proofs rely on an assumption of absence of divergence, however, so this is not a major omission. For

14Formally, we de�ne STOP to be the process that immediately refuses all events in its alphabet: STOPA =
(A; f(hi;�A)g;�). The A subscript is omitted when the alphabet is obvious.
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example, no divergent process is deadlock-free and therefore we know that no consistent Wright

connector or component contains any divergences.
Because we augmented the basic CSP notation with a special annotation for events, to indicate

whether they are initiated or observed, we must also augment the CSP model to make this distinc-
tion about its alphabet. The subset of P's alphabet which is initiated is �iP, and the subset that
is observed is �oP.

15

7.2 CSP Re�nement

As we saw previously, when we described tests that apply toWright speci�cations, we need a way
to compare two processes that are not identical. A CSP process describes a pattern of behavior,
and we would like to be able to substitute another behavior in its place if it matches that pattern.
We want, in e�ect, a re�nement relationship that guarantees that one process satis�es all of the
properties of another, possibly as well as some other properties of its own.

One way of thinking about satisfaction of properties is to ask whether an external observer
could possibly tell that one process had been substituted for another. Consider two processes P

and Q. Let's try to decide whether P is a re�nement of Q. What can we, as external observers, do
with P to determine if it is di�erent from Q? We can execute any of the traces that are part of
Q's behavior pattern and then o�er it di�erent combinations of events. If we are dealing with Q

we know that it can only refuse a set of events if it is in the failure set of Q. Q can only accept an
event (i.e continue a trace) if the new, extended trace is part of its trace set.

Now, suppose P always obeys these constraints, i.e. it never refuses a set of events unless that
set is in the failures of Q and it never accepts a trace unless it is in the traces of Q. Then we will
never be able to detect that the process is P and not Q. Hence, P has all of the properties of Q that
we care about: P is a re�nement of Q.

Thus, P is a re�nement of Q whenever its failures are a subset of Q's failures. Any traces of Q
appear in the �rst element of the failure pair, and so subsetting failures ensures that P's traces are
a subset of Q's. The refusals are the second element of the failure pair, and so Q's refusals are also
respected by P.

De�nition 1 (Re�nement) A process P = (�P; failures(P); divergences(P) is a re�nement of Q
= (�Q; failures(Q); divergences(Q), written Q v P, if �P = �Q and failures(P) � failures(Q) and
divergences(P) � divergences(Q).

In the following examples, it is assumed that the alphabet of both P and Q is fe; fg:
1. Q = e!Q u f!Q v P = e!P

2. Q = e!Q u f!Q v P = e!P f!P

3. Q = e!Q u f!Q 6v P = e!P

In example 1, process P removes all of the traces involving f from Q. It may do so because the
non-deterministic choice in Q means that f is always in the refusal set, even though it is also in the
traces. In example 2, process P does not change the traces of Q, but it removes f from the refusals,
reducing non-determinism. In example 3, P is not a re�nement of Q, because it refuses f when Q

does not.
15Notice that these subscripts mark the locus of control (initiated/observed), not the direction of data
ow (in-

put/output). Remember that, typically, input events are observed (and therefore appear in �o) and output events
are initiated (and therefore appear in �i).

33



7.3 Using CSP to Model Wright

Having described the formal basis for CSP, we can in turn use CSP as a formal basis for Wright.
We show how the notations used inWright can be combined, �rst into processes representing com-
ponent and connector types, and then into a single CSP process representing the entire instantiated
system.

Recall that we introduced notations for component types, connector types, instances of com-
ponents and connectors, and attachments. Component type descriptions are divided into the port
speci�cations and the computation. Connector type descriptions are divided into the role speci�-
cations and the glue. Each of these elements is described by a behavior description based on CSP.
Also, type declarations can be parameterized.

Now we will shift our use of CSP from a notation to a model. That is, instead of using CSP
as a part of the Wright notation, relying on the event declarations and operators, we will use
the underpinnings of CSP (alphabets, traces, refusals) to give meaning to the entire Wright

notation. That is, for each element of the Wright notation (component type, connector type,
attachment declaration, etc.), we will de�ne a mapping from that part of the Wright syntax to a
corresponding CSP process or operator. We will then show how these elements of CSP are combined
to give meaning to an entire Wright description, in e�ect, providing a denotational semantics for
Wright. On the basis of this formal de�nition, Wright descriptions can be precisely analyzed
and we can prove (or disprove) properties of the described system.

Our strategy for giving meaning to aWright description will be to take the basic CSP processes
that represent each of the parts of the description and to combine them via the CSP k operator.
A major hurdle to this is that the semantics of CSP provide for global event names. That is, the
way that two CSP processes indicate that they interact is by sharing identical event names. If
two processes are combined that share event names, then interaction can occur. Conversely, if
the processes use di�erent event names, no interaction can occur. Global name matching is not
an appropriate model for an architectural notation, because we want to make the communication
pathways explicit (by declaring connectors and attachments) so that the parts can be separately
structured and analyzed. To accomplish the structuring and explicit declaration of events, we must
ensure that event names in Wright declarations act as local names. That is, if an event name
is declared in two di�erent component types, these do not refer to the same CSP event. On the
contrary, we must ensure that these are di�erent events, and that the communication occurs only
via connectors.

On the other hand, we must ensure that when a communication pathway is speci�ed, with a
combination of connector instances and attachments, interaction does occur. That is, if a connector
instance is attached to a component instance, the corresponding events in their process must result
in interaction; at the CSP level, they must represent the same event (by name).

To accomplish this mapping of local Wright events to global CSP events, we use a technique
of event renaming. This is accomplished via functions that transform one set of event names to
another set of event names. These functions can then be applied to a process, resulting in a new
process that has the same behavior pattern, but uses di�erent events.

De�nition 2 (Renaming) If f is a function from events to events, and P = (A;F ;D) is a CSP
process, then f (P) = (A0;F 0;D 0) where A0 = f �A�, F 0 = ft 0 : seqA0; r 0 : �A0 j (9(t ; r) 2 F j t 0 =
f � t) ^ r 0 = f �r� � (t 0; r 0)g and D 0 = fd 0 : seqA0 j (9 d : D j d 0 = f � d)g.
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7.4 Component and Connector Types

The basic building block of a Wright description is the type declaration. These specify the
behavior patterns that we use to construct the overall meaning of a Wright system description.

Our use of the type descriptions in constructing the behavior of a Wright system instance is
quite simple: As we discussed in the informal introduction toWright, we use only the Computa-
tion or Glue speci�cations to represent the behavior of the component or connector, respectively.
These provide enough information to understand how each part contributes to global behavior. As
we discussed in Section 6.1, and will see in more detail in later sections, this does not mean that the
role and port speci�cations are unnecessary. They will come into play when we analyze the type
speci�cations for consistency, and they will help us determine whether a particular attachment (for
example) is legal without exhaustive analysis of the system.

Also, the initiate/observe annotations on events are not used in constructing the CSP process
that determines a type's behavior. In order to ensure that what one element initiates, another
observes, the two versions of an event are considered identical in the CSP behavior process. Recall
that these markings are used to check whether a given connector is legal. The distinction will
also be kept when checking a Computation against its ports (so that a computation may not
substitute an initiated event when the port had declared it to be observed, for example).

The only complication in using the Computation or Glue speci�cation as a CSP process
from which we can construct a system's meaning is if there are parameters that are used in the
de�nitions. If the parameter is a process parameter, the actual parameter de�nes a process that
has the name of the formal parameter. (i.e. if the formal parameter name is P, then the actual
parameter is taken to de�ne a process named P.) This de�nition is then considered part of the
de�nition of the speci�cation process. Any other kind of parameter (e.g. a numeric parameter) is
interpreted by textual substitution of the actual parameter into the component or connector type
de�nition.

7.5 Instances and Attachments

The overall CSP process representing the behavior of a Wright speci�cation is constructed by
combining one process for each declared instance in the system. There is one process for each
component instance, representing its computation, and one process for each connector instance, to
synchronize the communication along the declared paths. Each process is placed in parallel, using
the CSP k operator.

As we indicated in the previous section, the basic pattern for each process is the Computation
or Glue process for the instance's type. This process must then be modi�ed in order to create
the desired synchronization patterns. Because CSP uses global event names, we must modify the
processes using renaming. As we discussed in Section 5.3, the problem with CSP's global events
is two-fold: First, there may be multiple instances of any given type, so there may be undesired
interactions if we introduce multiple copies of a given process. Second, the event names used by
each component or connector type are local | the events in a Glue process use event names based
on the role name, while events in a Computation process use events based on port names. It is
likely that desired synchronizations (i.e. those indicated by attachments) will not occur without
modifying the base event names.
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Instances

To overcome the problem of undesired sharing of event names, each process in the CSP model
of a Wright system is renamed so that the name of the instance is pre�xed to the local event
names. For example, a component whose Computation refers to an event Port.event in its type
de�nition and is given the instance name C would use the event name C.Port.event instead. This is
accomplished through a special kind of renaming, relabelling:

De�nition 3 (Relabelling) For a process P and a name L, L:P = fL(P), where fL(e) = L.e for all
events e 6= p

, and fL(
p
) =

p
.

Relabelling is su�cient to construct processes to represent each component instance. We sim-
ply use a relabelled version of the Computation associated with the component type. For a
declaration \N : CT," where the component type CT has a computation process P, we will use
the relabelled process N:P. This has the e�ect of giving each event of component instance N a
three leveled structure: The component name, the port name, and the local event name (N.P.e). If
the computation uses any internal events (not associated with any port) these will have two level
names: the component name and then the event name (N.e).

Attachments

Each component instance is an independent computation, and it therefore makes sense to isolate
one component's events from another, but what about connectors? The purpose of a connector is
to provide an interaction pathway. If we simply isolate the events by making them unique to the
connector instance process, then no interaction will occur. It will not be enough simply to relabel
the connector process. Instead, we must ensure that the event names used in the connector glue
are matched to the event names used in the components whose interaction it is describing. Thus, if
a connector instance C has a role R, which is attached to a component port N.P, we need to ensure
that each event R.e in the component glue is renamed N.P.e, since that is the name used in the
component instance.

Before applying any relabeling to cause this desired sharing of events, we must �rst ensure that
there will be no undesired sharing of events based on role or event name clashes. As for components,
we can use relabelling to avoid undesired sharing of event names for connector instances. All
connector type processes are initially relabelled with the name of the connector instance. Thus,
our starting point for renaming a connector to ensure interaction paths will be event names of the
form Conn.Role.e. The desired e�ect is that such an event will be renamed Comp.Port.e whenever
there is an attachment \Comp.Port as Conn.Role".

To achieve this, we use another special form of renaming function:

De�nition 4 For any names N,N',M, M',

R(N;M)

(N';M')(e) =

(
N'.M'.e' if e = N.M.e'

e otherwise

In the case of the attachment above, we would thus use R(Conn;Role)
(Comp;Port). We will call this function

an attachment function. In the next section we show how these functions are applied to the
connector instance processes to ensure that the behavior model of a Wright con�guration uses
the communication pathways laid down by the connector instances and attachment declarations.
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7.6 Con�gurations

Now we have all of the parts necessary to model the behavior of a con�guration speci�cation.
Each component instance declaration has a corresponding process (the relabelled computation of
its type). Each connector instance has a corresponding process (again, the relabelled glue of its
type). Each attachment declaration has a renaming function (the attachment function). We can
now combine these in a single model:

De�nition 5 (Con�guration Behavior) If a con�guration declares component instances Cp1:CpT1

... Cpn :CpTn , where each component type CpTi has computation process CpPi, connector instances
Cn1:CnT1 ... Cnm :CnTm , where each connector type CnTi has glue process CnPi, and attachment
declarations with attachment functions R1 .. Rk , let R = R1 � ::: � Rk . Then the behavior of the
con�guration is the CSP process (8 i : 1::nkCpi : CpPi) k (8 j : 1::mkR(Cnj : CnPj )).

7.7 Style Constraints

In Section 3.4 we introduced the concept of style-speci�c constraints inWright. These are used to
control the properties of any system in that style, and can be used to guarantee that a system has
particular properties or that it can be constructed using specialized techniques. The constraints
that we discussed before were syntactic: They referred to the topology of instances and attachments
or constrained elements based on the named types.

Using the underlying CSP model, we can extend our notion of style to permit semantic con-
straints on systems. For example, some styles may depend on a particular relationship existing
between two di�erent ports on each component. A database component might have a logging port
that records all incoming communication, for example. We could certainly describe a database
component type that logs all transactions, by providing a particular database protocol and enu-
merating all of the messages that would go into the log, but this constrains the components too
much: The style may not care about the speci�c database protocol, but only about the fact that
logging will occur. The style speci�er should be able simply to require that data be logged, without
indicating how it is achieved. A possible speci�cation could look like this:

8C : components ; e : �oC; t : traces(C) j e = last(t) � ff : �C j thf i 2 traces(C )g= fLog.log!eg
This speci�cation states that whenever a component C observes an event e, it will immediately

record that event on port Log. It does not constrain the component in any other way: The compo-
nent may have any number of other ports, and the alphabets on those other ports are unconstrained.

In order to support these semantic constraints, we add the following predicates to the constraint
language described in Section 3.4. In each case, we use an element (component, connector, port,
or role) and its behavior process interchangeably. Constraints refer to processes before renaming.

� �P: the alphabet of process P.

� �iP: the subset of �P that is initiated.

� �oP: the subset of �P that is observed.

� Traces(P): the traces of process P.

� Failures(P): the failures of process P.

� Refusals(P): f(hi; r) : Failures(P) � rg (the immediate refusals of P).
The use of semantic constraints will be illustrated in the case studies, in later chapters.
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7.8 Formal Speci�cations of Tests

Our �nal task to complete the formalization of Wright is to elaborate on the formal de�nition of
the tests from Section 6. While we will restate some of the tests formally, for others we will de�ne
those parts of the test which were left informal (such as the de�nition of deadlock-freedom). In
each case, the de�nitions in this section together with the statement of the test in Section 6 will
formally de�ne the test.

Port/Computation Consistency

The �rst test is for Port/Computation Consistency. As we described in Section 6.1, the purpose of
this test is to ensure that the ports, viewed as partial speci�cations of the component, are consistent
with the Computation, which we view as a more complete speci�cation. The basic idea of the
test was to ensure that the port was a projection of the computation into its alphabet.

Recall from Section 3.1 that the port speci�cation had two purposes: As a requirement on the
component and as an assumption about the environment. The requirement is that the component
ful�ll the behavior described by the port. This is tested by projecting the component into the port's
alphabet and testing whether it is a re�nement. The assumption is about what the environment
(i.e. the other parties of the connector to which it is attached) will do during the interaction.

How can we test the requirement aspect of a port while taking advantage of the assumptions? If
we ignore the assumptions in the requirements test, many reasonable computations will be excluded;
the test will be too strict. We must separate out the assumptions indicated by the ports and allow
the computation to take advantage of them.

The key to this separation is that the assumptions that a component makes about event be-
havior at its ports are based on the observed events in the port process. Any initiated events are
declarations about what the component will do, not assumptions about the environment. Thus, if
our test limits its comparison of the behavior of the component and the port to those traces that
match the observed event patterns of its ports, we will have covered all of the requirements of the
port while taking advantage of its assumptions.

Formally, we can use a deterministic version of a process to restrict a second process to the
traces of the �rst. If we have two processes (with identical alphabets), P and Q, which operate
in parallel | P kQ | then the combined process will have no traces that are not also a trace of
Q. If Q is deterministic, then any non-determinism in the combined process will correspond to
non-determinism in P. That is, any internal choices that are made by P will still be present in the
combined process, except those that would have resulted in a trace that is prevented by Q, and no
internal choices will be introduced as a result of the interaction with Q.

Thus, for any process Q, if we can construct a process det(Q) but that has exactly the same
traces as Q that is deterministic, then a process P kdet(Q) will have at most the traces of Q, but
all of the decisions will be made by P.

So, to model the component's Computation process computing in the environment indicated
in the ports assumptions, we must do two things: First, we must take the ports and construct
a process that is restricted to the pattern of observed events. This extracts out the assumptions
portion of the port speci�cation. Second, we must take this new process and make it deterministic.
This ensures that we are testing the decision-making of the Computation speci�cation, not the
non-determinism of the ports. These constructions are de�ned as follows:

De�nition 6 For any process P = (A;F ;D) and event set E, P� E = (A \ E ;F 0;D 0) where
F 0 = f(t 0; r 0) j 9(t ; r) 2 F j t 0 = t � E ^ r 0 = r \ Eg and D 0 = ft 0 j 9 t 2 D j t 0 = t � Eg.
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In this de�nition, a trace projection (t � E) indicates a trace which contains all of the elements
of t that are in the set E , in the same order, without any of the elements that are not in E . Thus
hacadbcbci � fa; bg = haabbi.
De�nition 7 For any process P = (A;F ;D), det(P) = (A;F 0;�) where F 0 = f(t ; r) j t 2
traces(P) ^ 8 e : r � thei =2 traces(P)g.

The function det(P) has the same traces as P, but it has fewer refusals. In fact, it has only
those refusals that are necessary to make it a consistent process (i.e. it refuses events that do not
correspond to permitted traces). Thus, which event occurs at any point is fully controllable by the
environment: det(P) is deterministic.

We use the projected, deterministic port processes to interact with the Computation. We
can then test this restricted form against each port, to see if the Computation meets the re-
quirements of the port. The re�nement test ensures that the internal decisions (as modelled by
non-determinism) match those indicated by the port process speci�cation.
Test 1 (Port/Component Consistency) For a Component with computation process C and
ports P and P1: : :Pn , C is consistent with P if:

P v (Ck8 i : 1 : : :nk det(Pi � �oPi )) � �P

Deadlock Freedom

Tests 2 and 3 are for consistency in a connector. These two tests seek to identify situations where a
group of parties to the interaction disagree on how the interaction should proceed or where one of the
participants might drop out of the communication in the middle. The two tests are based on freedom
from deadlock. A process is said to deadlock if it refuses all events without having terminated (i.e.
having engaged in

p
). Deadlock usually arises because interacting processes disagree about what

event should occur next. This is the kind of deadlock that we want to avoid when we test for
deadlock in the Glue/Role composition. Deadlock in a directly-speci�ed process (i.e. one that
does not involve the composition of distinct processes) usually indicates one of two things: either an
error by the speci�er (the speci�cation does not describe the intended computation) or an internal
error in a computation (for example, a catastrophic situation that should not arise). By testing
the roles in isolation, we avoid this internal deadlock.

We say that a process is deadlock-free if it can never deadlock. That is, the process must always
either be willing to continue its computation or be in a condition of successful termination.16

De�nition 8 (Deadlock-Freedom) A process P = (A;F ;D) is deadlock-free if for every trace t
such that (t ;A) 2 F, last(t) =

p
.

Initiator Rules

There are two rules for connectors involving the distinction between initiated and observed events.
The �rst, called \single initiator," takes advantage of the initiated/observed distinction to ensure
that it is clear at every stage of the protocol which party is responsible for continuing the interaction.
The rule states that there must be a unique party, either a role or the glue, that initiates each event:
Test 4 (Single Initiator): A component with glue process G and role processes R1 : : :Rn , has
single initiators if �iG; �iR1; : : : ; �iRn partition the set (�G [ �R1 [ : : :[ Rn) n f

pg. Further, it
must be the case that �iG \ �oG = � and 8 j : 1::n � �iRj \ �oRj = �.

16Recall that x = p!STOP, and so in e�ect we require that the only stopped process is x.
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The second rule, \initiator commits," ensures that the initiated/observed distinction is mean-
ingful. The intent is that an initiator of an event acts as the single cause of the event, with the
�nal decision of whether or not that event will occur. (Of course, its decision is informed by the
protocol up to that point. We simply mean that the initiating process does not share immediate
control over that one event.)

Formally, the initiator commits rule is enforced by requiring that the process refuse all other
events whenever it chooses to engage in an initiated event:
Test 5 (Initiator Commits): A process P = (A;F ;D) obeys initiator commits if for every trace
t and event e 2 �iP such that thei 2 traces(P), (t ;A n feg) 2 F .

The problem of initiator-commitment, and this formal statement of the rule, is complicated by
the possibility of internal concurrency. Suppose that a component (for example) is implemented as
two independent threads. One of the threads carries out a computation and then initiates an event
at one port. Meanwhile, the other thread is waiting to respond to an event that it will observe
on another port. In this case, the component does not really control which of the two events will
occur �rst; there is a race condition between the computation of the one component thread and the
observation of the event in the other. It should therefore be considered reasonable for a component
to violate the strictest form of initiator-commits described above, provided that each sequential
sub-process of the computation does obey it.

Concurrent components with a clear substructure that can be analyzed for initiator-commits
will arise, for example, when the architecture of a system is simpli�ed by encapsulating some part
of it as a larger component. In this case, the computation of the new component will be described
in Wright as a system con�guration.

Compatibility

In order to understand the compatibility test, we must understand the relation between a port
and a role. The port is a speci�cation of the component, as it is seen from the point of view of
a single interaction. That is, it describes a part of the actual behavior of the component. The
role, on the other hand, acts as a placeholder representing the range of potential participants in
the interaction described by the connector. That is, the role also represents a component, but a
potential component, rather than an actual component.

In its job as description of a potential computation, the role does two things. First, it is a
speci�cation of the range of decisions and behavior traces that the component may have. As such,
this is similar to the job of the port, but for a class of components rather than a single component.
Second, it circumscribes the behaviors over which the connector's rules are expected to apply.
That is, it limits the scope of the interaction to those situations that could actually arise given the
constraints of the other participants in the interaction.

Consider an analogy to an abstract data type's preconditions and postconditions. A stack type
has (say) two methods, push and pop. At �rst glance, any combinations of pushes and pops are
possible, and the methods' postconditions describe what will happen regardless of whether they
alternate, all pushes come before all pops, or there are no pushes at all, but only pops. The
preconditions narrow the speci�cation of the data type to a more constrained situation, however:
there must be no more pops than pushes. If this rule is broken, then the data type is not guaranteed
to work. That is, the type de�ner may assume that this condition is met, and the type user must
assure that it is met.

The traces of a role act in a similar manner to the preconditions of the abstract data type. When
the role process describes traces that vary among a set of observed events, then the component that
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�lls the role may assume that one of those observed events will occur, and no others. Even if the
component speci�er chooses to describe its behavior outside of these constraints (just as the stack
de�ner may indicate what happens if an empty stack is popped), the actual behavior will always
fall within the constraints. It is the job of the other participants in the connection to ensure that
it does (and the other rules, notably connector deadlock-free and initiator-commits, enforce this).
Thus, the e�ective speci�cation of a component in an interaction is the port process restricted to
the traces of the role process.

Recalling that trace restriction is handled through the deterministic version of a process, we
therefore test the process Pkdet(R) for compliance to the role speci�cation. There is only one
additional complication before we can apply the re�nement test: The re�nement test only applies
over processes with identical alphabets. To solve this, we augment each process with the missing
events:

De�nition 9 For any process P and event set A, P+A = PkSTOPA.

We can now de�ne compatibility with complete precision:
Test 8 A port P is compatible with a role R, written \P compat R," if

R+�Pn�R v P+�Rn�Pkdet(R):

8 Conclusion

In this report we have presented theWrightArchitectural Speci�cation Language. To summarize,
the main features of Wrightare its support for precise description of architectural structures and
their abstract behavior, the ability to de�ne architectural styles, and a set of consistency and
completeness checks for architectural description.

Throughout the description we have focused primarily on the nature of the language itself|
its key features, analytic potential, and semantics. Descriptions of the application of Wrightto
speci�c systems and styles can be found in related reports and papers.

Current work on Wrightis centered around three activities. First, we are carrying out several
industrial case studies. The most substantial of these is a speci�cation of the High Level Architec-
ture (HLA) for distributed simulation. Second, we exploring new formal issues with Wright,
including architectural re�nement and recon�gurable architectures. Third, we are developing
Wrighttoolset. Currently under development are tools to translateWrightinto ACME ??, a con-
verter from a subset ofWrightRapide [LAK+95], and a graphical browser forWrightspeci�cations.
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A Wright BNF

BNF for Wright

SpecList := Spec | SpecList Spec;

Spec := Configuration | Style;

Style := "Style" Name

TypeList

"Constraints"

ConstraintList

"End Style";

TypeList := Type | TypeList Type | null ;

Type := Component | Connector | InterfaceType;

Component := "Component" SimpleName [ '(' FormalParams ')' ]

PortList

"Computation = " ProcessDescription;

Connector := "Connector" SimpleName [ '(' FormalParams ')' ]

RoleList

"Glue =" ProcessDescription;

PortList := Port | PortList Port | null ;

Port := "Port" ProcessName '=' ProcessExpression;

RoleList := Role | RoleList Role | null ;

Role := "Role" ProcessName '=' ProcessExpression;

ConstraintList := ConstraintExpression

| ConstraintList ConstraintExpression

| null;

Configuration := "Configuration" Name

"Style" Name

TypeList

"Instances"

InstanceList

"Attachments"

AttachmentList

"End Configuration";
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InstanceList := Instance | InstanceList Instance | null ;

Instance := NameList ':' TypeUse;

AttachmentList := Attachment | AttachmentList Attachment | null;

Attachment : Interface "As" Interface;

Interface : Name '.' Name;

TypeUse := SimpleName [ '(' ActualParams ')' ];

InterfaceType := InterfaceypeHead Name '=' Expression;

InterfaceTypeHead := "Interface Type" | "Process" | "IntType";

Name := Identifier [ '{' ActualParams '}' ]

ProcessName := ProcessID [ '{' ActualParams '}' ]

ProcessDescription := ProcessExpression

| CompositeProcess;

CompositeProcess := Configuration

"Bindings"

BindingList

"End Bindings"

BindingList := Binding | BindingList Binding | null;

Binding := Interface "As" Name;

FormalParams := FormalParam | FormalParams ';' FormalParam;

FormalParam := NameList ':' ParamTypeExpression;

ParamTypeExpression := "Interface Type"

| "Process"

| "IntType"

| "Computation"

| "Glue"

| "Port"

| "Role"

| "Component"

| "Connector"

| "Attachments"

| "Integer"
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| RangeExpression

| SetExpression;

ProcessExpression := "Tick"

| ProcessExpression ';' ProcessExpression

| ProcessExpression "->" ProcessExpression

| ProcessExpression "Where" DeclList

| ProcessExpression '||' ProcessExpression

| ProcessExpression '[]' ProcessExpression

| ProcessExpression '|~|' ProcessExpression

| "forall" FormalParams '[]' ProcessExpression

| "forall" FormalParams '|~|' ProcessExpression

| "forall" FormalParams ';' ProcessExpression

| "forall" FormalParams '||' ProcessExpression

| EventName '?' VarName

| EventName '!' VarName

| ProcessName

| "Computation" [ '(' Name ')' ]

| "Glue" [ '(' Name ')' ]

| ProcessName ':' ProcessExpression

| '(' ProcessExpression ')';

VarName := Name;

EventName := EventName '.' EventName | Name;

LogicalExpression :=

"not" LogicalExpression

| LogicalExpression "or" LogicalExpression

| LogicalExpression "and" LogicalExpression

| "forall" FormalParams '.' LogicalExpression

| "forall" FormalParams '|' LogicalExpression '.'

LogicalExpression

| "exists" FormalParams '.' LogicalExpression

| "exists" FormalParams '|' LogicalExpression '.'

LogicalExpression

| Term "==" Term

| Term "!=" Term

| Term '<' Term

| Term '>' Term

| Term '<=' Term

| Term '>=' Term

| '(' LogicalExpression ')'

| Term "in" ParamTypeExpression

| Term "not in" ParamTypeExpression;

ConstraintExpression := LogicalExpression;
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Term := Name | '(' Term ',' Term ')' | ProcessName | '(' Expression ')';

SetExpression :=

SetExpression 'union' SetExpression

| SetExpression 'intersection" SetExpression

| SetExpression 'setminus' SetExpression

| SetExpression 'cross' SetExpression

| 'power' SetExpression

| '{' ActualParams '}'

| '{' FormalParams '|' LogicalExpression [ '.'

LogicalExpression] '}'

| '{' FormalParams [ '.' LogicalExpression] '}'

| '(' SetExpression ')'

| SetExpression '^' SetExpression;

MathExpression :=

MathExpression '+' MathExpression

| MathExpression '-' MathExpression

| '(' MathExpression ')'

| Term;

RangeExpression :=

MathExpression ".." MathExpression

| MathExpression ".."

| ".." MathExpression;

Expression := ProcessExpression

| SetExpression

| MathExpression

| LogicalExpression;

AnyName := ProcessName | Name;

DeclList := Declaration | DeclList Declaration;

Declaration := AnyName '=' Expression [ "When" LogicalExpression ];

NameList:= Name;

SimpleName := Identifier;

ProcessID : String;

ActualParams := Expression | ActualParams ',' Expression | null;
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B A Complete Example

We de�ne a pipe-�lter system that capitalizes every other character read from an input stream. The
system consists of three �lters: Split, Capitalize, and Merge. The �rst sends alternative characters
to the second �lter which capitalizes them. The third merges the two streams.

The de�nition is in two parts. First we de�ne the PipeFilter Style. Then we de�ne the speci�c
system in that style.

B.1 The PipeFilter Style

Style PipeFilter

Interface Type DataOutput = (write!x ! DataOutput) u (close ! x)
Interface Type DataInput = (read!(data?x!DataInput end-of-data!close!x))

u (close!x)

Connector Pipe

Role Source = DataOutput

Role Sink = DataInput

Glue = Openhi
where Openhi = Source.write?x!Openhxi

Source.close!Closedhi
Sink.close!Capped

Opens^hxi = Sink.read!Sink.data!x!Opens
Source.write!y!Opens^hxi^hyi
Source.close!Closeds^hxi
Sink.close!Capped

Closeds^hxi = Sink.read!Sink.data!x!Closeds
Sink.close!x

Closedhi = Sink.read!Sink.end-of-data!Sink.close!x
Sink.close!x

Capped = Source.write!x!Capped

Source.close!x

Constraints

8 c : Connectors � Type(c) = Pipe

8 c : Components ; p : Port j p 2 Ports(c) � Type(p) = DataInput _ type(p) = DataOutput

End Style

B.2 The System

Con�guration EveryOther

Style PipeFilter

Component SplitFilter(nout: 1..)
Port Input = DataInput

Port Output1::nout = DataOutput
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Computation = Transfer1
where Transferi =Input.read!(Input.data?x!Outputi .write!x !Transferi+1

Input.end-of-data !Close)
1 � i � nout

Transfernout+1 = Transfer1
Close = Input.close!8 i : 1::nout ; Outputi .close!x

Component MergeFilter(nin: 1..)
Port Input1::nin = DataInput

Port Output = DataOutput

Computation = Transfer1
where Transferi =Inputi .read!(Inputi .data?x!Output.write!x !Transferi+1

Inputi .end-of-data !Close)
1 � i � nin

Transfernin+1 = Transfer1
Close = Output.close!8 i : 1::nin ; Inputi .close!x

Component UpperFilter

Port Input = DataInput

Port Output = DataOutput

Computation = Input.read !
((Input.data?x !Output.write!(cap(x))) !Computation

(Input.end-of-data !Input.close !Output.close !x))

Instances
Split:SplitFilter(2)
Merge:MergeFilter(2)

Upper:UpperFilter
P1, P2, P3 : Pipe

Attachments

Split.Output1 as P1.Source

Upper.Input as P1.Sink

Split.Output2 as P2.Source

Merge.Input2 as P2.Sink

Upper.Output as P3.Source

Merge.Input1 as P3.Sink

End Con�guration
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C Mechanical Checking

An important motivation for this work is the potential for automating the analysis of architectural
descriptions. In particular, we would like to be able to use tools to automate the tests thatWright

de�nes for well-formed architectures.
For suitably constrained subsets of Wright this is possible. In particular, if one restricts

process notation so that only a �nite number of processes are used, then it is generally possible to
use tools for exhaustive state exploration (such as model checkers) [BCM+90] to verify properties of
the processes and to check relationships between processes. In particular, we can use the emerging
technology of automated veri�cation tools for process algebras, such as using FDR [FDR92].

FDR is able to check whether one process is a re�nement of another. Thus provided we can
express our tests as checks of the form P v Q , for appropriately constructed �nite processes P and
Q , we can use the tool.

To illustrate, suppose we wish to check compatibility between a port

DataRead = get! DataRead u x

and a role

User = set!User u get!Useru x
First, to use FDR we must translate our notation to �t the variant of CSP used in this tool.

Recall that in our notation the processes are: These are encoded in FDR17 as:

DATAREAD = (get -> DATAREAD) |~| TICK

USER = (seta -> USER) |~| (get -> USER) |~| TICK

To test the compatibility of DataRead with User , we must determine whether

User+(�DataReadn�User) v DataRead+(�Usern�DataRead) k det(User)
The �rst part of the translation requires us to augment the alphabet of User , constructing a

process USERplus = User+(�DataReadn�User). However, because �DataRead � �User , it follows
that User+(�DataReadn�User) = User+fg = User :

USERplus = USER

To encode DataRead+(�Usern�DataRead), we must encode the interaction with STOPfsetg:

DATAREADplus = DATAREAD [jfsetagj]STOP

Next we encode det(User). To do this, we change the internal u to the external :

detUSER = (seta -> detUSER) [] (get -> detUSER) [] TICK

This leaves only the encoding of the interaction DataRead+(�Usern�DataRead) k det(User)
DATAREADpD = DATAREADplus [jfseta,get,tickgj] detUSER

17We use the event name seta instead of set to avoid a name clash with a reserved keyword of FDR.
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The translation process that we have just illustrated is relatively straightforward to automate.
We have done so with using the Synthesizer Generator structure editor for Wright as a front end,
and implementing the transformations using the attribute grammars provided by the tool [RT89].
The only non-trivial part is calculating det(P) for a process P .18

Roughly, the construction of det(P) is carried out by replacing all occurrences of u with
as we have shown in our example. This simple construction is complicated by the fact that a
process P Q can be non-deterministic if P and Q accept a common set of events. For example,
\P = a!b!STOP a!c!STOP" is non-deterministic: after the initial event a, one of b or c
will be accepted by not both. In this case, det(P) = a!(b!STOP c!STOP). Thus, we must
construct a process so that whenever the initial events of P and Q di�er in P Q , the process is
restructured as an external choice \e!(P(e) Q(e))[]f!(P(f ) Q(f )):::"

To complete the analysis for compatibility, FDR is simply given the command:

Check "USERplus" "DATAREADpD"

This causes FDR to check whether USERplus is re�ned by DATAREADpD . If it is not, FDR
will print a counterexample, which indicates what trace of events led to a discrepancy between the
two processes (i.e., a trace that could cause one process to deadlock, but not the other).

As with compatibility checking, other properties such as port-computation consistency, and
connector deadlock-freedom can be checked by tools such as FDR.

18Although a tool like FDR maintains such information internally, the version of the checker that we are using does
not currently make it available to the tool user.
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