Network Configuration Management Via Model Finding

Sanjai Narain
Senior Research Scientist
Telcordia Technologies
narain@research.telcordia.com
Large, complex distributed systems are created via configuration

- Every component has finite number of configuration parameters. Each is set to a definite value to satisfy systemwide requirements

- System wide requirements are on e.g., functionality, security, fault-tolerance, performance

- Configuration is “machine language” for logical, system integration

- Relevance to self-managing systems:
 - Logically integrate self-managing systems into larger ones
 - Dynamically reconfigure systems to satisfy systemwide requirements
Yet, there is no “theory” of configuration

System Requirements

- Configuration Synthesis
- Requirement Strengthening
- Component Adds & Deletes
- Configuration Error Diagnosis
- Configuration Error Fixing
- Requirement Verification

These *reasoning* tasks are all manually performed.

System requirements can’t even be precisely specified, hence automation of reasoning tasks is impossible.

Leads to high cost of infrastructure ownership.
Designing Requirements Language

- **Semantic aspect**: What are intuitive abstractions (logical structures, relationships) used by system administrators?
 - FSM models of protocols are impractical

- **Syntactic aspect**: How to combine abstractions into requirements?
 - Propositional logic, definite clauses, FOL, higher-order logic, temporal logic?

- **Progress to date**: “Service Grammar”:
 - Semantic aspect: Formalize notion of “correct configuration” associated with protocols.
 - Syntactic aspect: Definite clauses

- **However, FOL is often required**
 - But theorem provers have not been very efficient
 - ….until now, with advent of SAT solvers
New Concept: Requirement Solver

System Components

System Requirements in FOL

Requirement Solver

Configurations

Δ components

Δ requirements

This is used in different ways to accomplish previous reasoning tasks

With policy-based networking, this work has to be done by system designer.

System components, e.g., hosts, servers, routers, firewalls
Implementation in Alloy

• Developed by Professor Daniel Jackson’s group at MIT

• Allows specification of:
 – Objects types, parameters and value types
 – First-order logic constraints on values
 – Scope: number and type of each object

• Given a specification, Alloy tries to find its “model”, i.e., assignment of parameters to values to satisfy constraints

• Compiles specification into Boolean formula then uses SAT solvers
Fault-Tolerant VPN (Overlay)

Phase II: Create several VPNs, one for each level of sensitivity
Phase III: Merge collections of mobile VPNs
Current VPN Configuration Process

New Cisco IOS configuration needs to be implemented at all VPN peer routers! For 4 node VPN that is more than 240 command lines.

Realistic deployment:
• 240 sites
• Can take years
• VPN services market in 2003: $18 billion
Network Components

- **Interface**
 - Physical Interface
 - Internal Interface
 - External Interface
 - hubExternalInterface
 - spokeExternalInterface

- **Subnet**
 - Internal Subnet
 - External Subnet

- **Protocols**
 - ike
 - esp
 - gre

- **Permissions**
 - permit
 - deny

- **Component Attributes**
 - **interface**
 - chassis: router
 - network: subnet
 - routing: routingDomain
 - **ipsecTunnel**
 - local: externalInterface
 - remote: externalInterface
 - protocolToSecure: protocol
 - **greTunnel**
 - localPhysical: externalInterface
 - remotePhysical: externalInterface
 - routing: routingDomain
 - **firewallPolicy**
 - prot: protocol
 - action: permission
 - protectedInterface: physicalInterface
 - **ipPacket**
 - source: interface
 - destination: interface
 - prot: protocol
List of Network Requirements

RouterInterfaceRequirements
1. Each spoke router has internal and external interfaces
2. Each access server has internal and external interfaces
3. Each hub router has only external interfaces
4. Each WAN router has only external interfaces

GRERequirements
12. There is a GRE tunnel between each hub and spoke router
13. RIP is enabled on all GRE interfaces

SecureGRERequirements
14. For every GRE tunnel there is an IPSec tunnel between associated physical interfaces that secures all GRE traffic

SubnettingRequirements
5. A router does not have more than one interface on a subnet
6. All internal interfaces are on internal subnets
7. All external interfaces are on external subnets
8. Every hub and spoke router is connected to a WAN router
9. No two non-WAN routers share a subnet

AccessServerRequirements
15. There exists an access server and spoke router such that the server is attached in "parallel" to the router

RoutingRequirements
10. RIP is enabled on all internal interfaces
11. OSPF is enabled on all external interfaces

FirewallPolicyRequirements
16. Each hub and spoke external interface permits esp and ike packets

Human administrators reason with these in different ways to synthesize initial network, then reconfigure it as operating conditions change.

Can we automate this reasoning?
Configuration Synthesis: Physical Connectivity and Routing

Router Interface Requirements
1. Each spoke router has internal and external interfaces
2. Each access server has internal and external interfaces
3. Each hub router has only external interfaces
4. Each WAN router has only external interfaces

Subnetting Requirements
5. A router does not have more than one interface on a subnet
6. All internal interfaces are on internal subnets
7. All external interfaces are on external subnets
8. Every hub and spoke router is connected to a WAN router
9. No two non-WAN routers share a subnet

Routing Requirements
10. RIP is enabled on all internal interfaces
11. OSPF is enabled on all external interfaces

To synthesize the network, satisfy R1-R11 for:
- 1 hub router,
- 1 WAN router,
- 1 spoke router,
- 1 internal subnet,
- 2 external subnets
- 1 internal interface,
- 4 external interfaces,
- RIP domain,
- 1 OSPF domain

Requirement Solver generates solution. Note that Hub and Spoke routers are not directly connected, due to Requirement 9.
To synthesize network, satisfy R1-R13 for
- previous list of components &
 - 1 GRE tunnel

NOTE: GRE tunnel set up and RIP domain extended to include GRE interfaces automatically!
Strengthening Requirement: Adding Security For Overlay Network

Router Interface Requirements
1. Each spoke router has internal and external interfaces
2. Each access server has internal and external interfaces
3. Each hub router has only external interfaces
4. Each WAN router has only external interfaces

Subnetting Requirements
5. A router does not have more than one interface on a subnet
6. All internal interfaces are on internal subnets
7. All external interfaces are on external subnets
8. Every hub and spoke router is connected to a WAN router
9. No two non-WAN routers share a subnet

Routing Requirements
10. RIP is enabled on all internal interfaces
11. OSPF is enabled on all external interfaces

GRE Requirements
12. There is a GRE tunnel between each hub and spoke router
13. RIP is enabled on all GRE interfaces

Secure GRE Requirements
14. For every GRE tunnel there is an IPSec tunnel between associated physical interfaces that secures all GRE traffic

To synthesize network, satisfy R1-R14 for
- previous list of components &
- 1 IPSec tunnel

NOTE: IPSec tunnel securing GRE tunnel set up automatically
To synthesize network, satisfy R1-R15 for previous list of components and 1 additional access server.

Note: Access server interfaces placed on correct interfaces and RIP and OSPF domains correctly extended with internal and external interfaces, respectively.
Component Addition: Adding New Spoke Router

- To add another spoke router satisfy requirements R1-R16 for previous components and one additional spoke router and related components
- Note: New subnets, GRE and IPSec tunnels set up, and routing domains extended *automatically*
To add another hub router satisfy requirements R1-R16 for previous components and one additional hub router (and related components)

- New subnets, GRE and IPSec tunnels set up, and routing domains extended *automatically*
Symptom: Cannot ping from one internal interface to another
Define Bad = ip packet is blocked
Check if R1-R16 & Bad is satisfiable
Answer: WAN router firewalls block ike/ipsec traffic
Action: Create new policy that allows WAN router firewalls to pass esp/ike packets
Summary And Future Directions

• Summary
 – Proposed a theory of configuration
 – Designed requirements language + reasoning operations
 – Developed strategies for “efficient specification”
 – Showed implementation in Alloy in context of realistic VPN

• Future directions
 – Close the loop to create self-managing systems
 – Incremental configuration
 – Scalability to thousands of nodes (efficient specification)
 – Distributed constraint solvers
 – Distributed self-management