Patterns of Self-Management

Dave Wile
Teknowledge Corp.
Dwile@teknowledge.com
Talk Summary

• What does self-management mean to you?
 – Support for system adaptation to vary the extent to which it satisfies its designers’ desires based on the dynamic environment
 – Support for system adaptation to vary the extent to which it satisfies its users’ desires based on the dynamic environment

• What aspects of the self-management problem are you addressing?
• What aspects are you NOT dealing with?
• What domains, properties, or applications are you targeting?
• What are the top two/three new technical ideas/approaches that you are pursuing in this work?
Talk Summary

• What does self-management mean to you?

• What aspects of the self-management problem are you addressing?
 – Externalized view of self-management activities
 – Specification of add-ons needed to
 • Instrument
 • Monitor
 • Decide
 • Effect
 – Cataloging well-known idioms for these activities as patterns

• What aspects are you NOT dealing with?
• What domains, properties, or applications are you targeting?
• What are the top two/three new technical ideas/approaches that you are pursuing in this work?
Talk Summary

• What does self-management mean to you?
• What aspects of the self-management problem are you addressing?
• What aspects are you NOT dealing with [here]?
 – Refinement or implementation of concepts
 – Appropriateness of concepts in different situations
 – Variations of patterns
 – Specific domains where more appropriate idioms would occur
• What domains, properties, or applications are you targeting?
• What are the top two/three new technical ideas/approaches that you are pursuing in this work?
Talk Summary

• What does self-management mean to you?
• What aspects of the self-management problem are you addressing?
• What aspects are you NOT dealing with?

• What domains, properties, or applications are you targeting?
 – Coarse-grained systems
 • Not tightly-coupled systems
 • Not highly dynamic / rapidly evolving systems
 – Not closed-off, inaccessible systems (e.g. single monolithic applications)
 (I just have not thought about idioms there)
• What are the top two/three new technical ideas/approaches that you are pursuing in this work?
Talk Summary

• What does self-management mean to you?
• What aspects of the self-management problem are you addressing?
• What aspects are you NOT dealing with?
• What domains, properties, or applications are you targeting?

• What are the top two/three new technical ideas/approaches that you are pursuing in this work?
 – Externalized infrastructure
 – Self-Management architectural style
 – Self-Management patterns expressed in the style
Externalized Infrastructure

(Source: DASADA II proposal)
Problems

• C2-like: Best for implementation of very dynamic harnesses, where new gauges are created and swapped in and out

• Incapable of expressing direct communication
 – Obfuscates component relationships
 – Obfuscates connection types

• Cannot express implicit coupling relationships

• Difficult to reason about

ALTERNATIVE: Specific architectural style
• Sensors’ information collected by
• Gauges, and
 – Accumulating information from other gauges
 – Which are Interpreted By
• Interpreters, which are either
 – User Displays
 – Or Controllers
 • Which Configure Gauges, Sensors or Effectors
 • Or Decide which Effectors to enable
• Abstractions are used to model information, written and read by all non-system elements, i.e. all but sensors and effectors
• Some sensors’ and effectors’ activities are coupled

Self-Awareness Architectural Style
Patterns

• Examples
 – Resource allocation
 – Corruption resiliency
 – User authorization
 – Model Comparator

• Abstraction
 – Progress

• Composition
 – Authorization (revisited)
Resource Allocation

- probes watch resource consumption (allocation / deallocation)
- gauges determine average usage, looking for threshold violations.
 - These gauges may need to refer to some model for resource consumption;
 - for example, the thresholds may depend on the type of job being run.
- some decision logic determines how to reallocate resources,
 - either by adding new resources to one process or
 - removing resources already allocated to others.
Corruption Resiliency

- probes into the system that capture all safe modifications to a resource.
- (Presumably, there are also paths in the system that allow unsafe modifications)
- gauge caches the safe modifications redundantly, but almost certainly more slowly
- corruption detector
 - e.g. during the access by computing a hash code on the real store and comparing it with a cache’s code
 - the proper answers can be returned (access is redirected to the cache)
User Authorization

- of the managed system to allow questionable activities to proceed or not.
- gauge (“trying”) determines that a particular action is being attempted
- threat model is consulted and a decision is made on whether the action should be prevented or allowed to proceed
- if the decision cannot be made automatically, the user is informed via a display.
- user indicates the decision (by keyboard, mouse click, or timeout, perhaps) and effects the appropriate system response.
Model Comparator

- construct two somewhat independent models of a system
 - environmental events which drive the system collected by probes
 - E.g., an event such as “request print”
- a simulation, proceeds to determine a model response, building up the Simulated Model.
 - E.g., a finite state machine model may change from “allow requests” to “request pending.”
- system responses (from a set of probes) produce the “Actual Model”
 - E.g., the response probe might report that the system changed states to “printing.”
- comparator gauge determines whether a difference exists and the appropriate action is decided upon
 - E.g., the test would be whether “printing” and “request pending” are equivalent states.
Towards Abstraction

- Measurement event first announces the size of a set of items to be processed.
- Each time an item has been processed, a “Tick” event is reported by the instrumented system.
- A counter is increased.
- Final gauge divides the counter value by the size of the set after each tick, thus dynamically indicating the percentage of the job that has been accomplished.
Composing Patterns

- User Intervention is more general in that the user is “deciding,” not saying “Yes or No.” (A way of bundling a group of connectors and components is needed.)
- To compose User Authorization from Authorization and User Intervention requires impedance matching the “decision” events to become a “yes and no.”
- One must be specific about where patterns can be introduced.
- Compound authorization requires generalizing Authorization.
Issues

• Formalizing
• Openness / closedness of patterns
• Semantics
• Goal: codify knowledge in the self-management area
 – Categorize talks here
 – Any new ones seen?