Self-Adaptation for Everyday Systems

Svein Hallsteinsen, Erlend Stav, Jacqueline Floch

SINTEF ICT
Norway
Mobile use means changing context

- When people are moving around using handheld networked devices, the operating environment for the provided services vary.
- The user activity and location change, influencing user needs.
- The capabilities of computers and networks change, influencing the service quality properties.
- Applications depend upon system resources to satisfy user needs.
- When resources and needs vary, static applications fail to satisfy user needs most of the time.
- Changing context requires adaptive applications!
Focus

Aspects of self-management we do address
- Main: software architecture, mobile computing, algorithms for system adaptation, adaptive components

Aspects we do not address
- Prog. language support, AI techniques, autonomic computing, assurance

Targeted application types and properties
- Mobile computing used in a changing environment
- Everyday systems, for which non-perfect adaptation is acceptable
- Cost effective development

Technical contributions
- Overall architecture for model based adaptation middleware, combining a system family approach with context awareness and runtime adaptation
- Uniform modelling of quality and context properties of components and composites
Overall approach to adaptive applications

- **architecture model**
 - components
 - nodes

- **adaptation middleware**
 - selects application variant
 - monitors
 - adapts
 - describes relation

- **adaptable application**
 - influence user's needs
 - mobile user
 - preferred quality
 - provided quality
 - affects operation
 - system context
 - battery
 - shared devices
 - network QoS

- **user context**
 - position
 - noise
 - light

- **user's needs**
Overall architecture

- **Application framework**
 - Architecture model
 - Component repository
 - 3. consult

- **FAMOUS middleware**
 - FAMOUS adaptation middleware
 - Resource manager
 - Context monitor

- **Adaptation manager**
 - Planner
 - 4. plans
 - 5. configure

- **Configurator**
 - 6. change

- **FAMOUS component platform**

- **Application instance**
 - Meta model
 - Component instances
 - 1. change event
 - 7. change

- **Distributed computing environment**

Key Phases:
1. change event
2. plan
3. consult
4. plans
5. configure
6. change
7. change
Property annotation of variants

Medium client variant

\[
\begin{align*}
\text{avy} &= \text{if } n.\text{nsb}>80 \text{ then } 100 \\
&\quad \text{else } 100 \times (1-(80-n.\text{nsb})/80) \\
\text{rsp} &= \text{if } n.\text{nbw}>80 \text{ then } 10 \\
&\quad \text{else } 10+100 \times (80-n.\text{nbw})/80) \\
\text{haf} &= \text{UI.o.haf}
\end{align*}
\]

Name	**Value range**	**Explanation**
ady | 1:100 | Availability of the service provided by the application
rspb | 1:100 | Response time
mem | 1:100 | Amount of memory
nbw | 1:100 | Bandwidth of network connection
nsb | 1:100 | Stability of network connection
haf | yes, no | Hand free operation
Utility function

- Selection of variant is based on a utility function
- User preferences are to decide weight each properties

utility =

if n.mem > exe.o.mem
 then 0
else
 ((if usr.n.avvy <= app.o.avvy then 1 else 1- (usr.n.avvy-app.o.avvy)/usr.n.avvy)
 + (if usr.n.rsp >= app.o.rsp then 1 else 1- (app.o.rsp-usr.n.rsp)/app.o.rsp)
 + (if ((usr.n.haf and app.o.haf) or (!usr.n.haf and !app.o.haf) then 1 else 0)) / 3
)
Remaining questions

- How accurate do we need to model to achieve useful adaptations for everyday systems?
 - Non-exact models acceptable as long as benefit are provided to the user

- Is exhaustive search for best variant too expensive?
 - Resource constrained devices
 - Depends on number of variation points in application framework

- Current approach focused on structural adaptations of components and connections within an application
 - How to extend the approach to multiple applications?
 - How to support other kinds of adaptation (e.g. adjustment of parameters with continuous range in components)?
Organization and projects

- **SINTEF**
 - Largest independent research organisation in Scandinavia with about 1700 employees

- **FAMOUS project (2003-2006)**
 - Strategic research project at SINTEF, funded by the Research Council of Norway
 - Includes a PhD work on context awareness
 - For more info: www.famous-project.net

- **MADAM project (2004-2007)**
 - EU-funded research project with industrial and university partners
 - Additional topics
 - Modelling tool support
 - Network level middleware
 - Industrial pilot applications and experiments