Dynamic Architectures: Change Notification Languages

David Wile, Teknowledge
Dwile@teknowledge
Outline

• What does "self healing" mean to you?
• What part of the self-healing problem are you dealing with?
• What part are you not dealing with?
• What applications are you targeting?
• What are the top two/three new technical ideas/approaches that you are pursuing in this work?
What does "self healing" mean to you?

- Perturbation tolerance
- Dynamic adaptation to new situation
- System “understands” its health status
 - Performance improvement as a byproduct
- Successive layers of response:
 - Autonomic: *instinctive*, immediate response to trouble
 - Guided: *planned* or dynamically-adaptive activities to repair or improve
 - Cooperative: *negotiation* process required to resolve problems
- The role of models
 - None in autonomic – models that work are compiled in
 - Planning requires abstractions to characterize “health” status
 - Reflection useful for both guided and cooperative
What part of the self-healing problem are you dealing with?

- Guided / planned responses
 - System structure models
 - Application structure models
 - Both covered by architecture modeling
 - Probe system
 - Map to application
DASADA Common Infrastructure

- Develop reusable probe/gauge/repair framework for DoD software systems developers

- Challenges for developers of systems where application and adaptation are interwoven (autonomic!):
 - Internal adaptation makes it difficult to change adaptation policy and mechanism
 - No reuse of adaptation mechanisms between applications
 - Hard to reason about adaptation mechanism or application itself independent of knowledge of the other

- Mission: Provide developers with an *Externalized Infrastructure* for
 - Monitoring their system (automatic probe placement)
 - Interpreting measurements (architectural models and gauges)
 - Adapting their system (automatic adaptation mechanisms)
Infrastructure Architecture

Architectural Models

Interpretation

Controllers

Gauges

Collection

Probes

Running System

Configuration

Effectors
Probes and gauges are placed via the control layer. Probes emit implementation-level events (ILEs)
 – “process D006 opened file ‘C:\Program Files\log.txt’ for write”
 – “process E001 used 2021.”
Gauges provide interpretations of these events
 – determine logical architectural entities are referred to
 • “Radar Tracker” (D006)
 • “Radar Analysis” (E001), for example.
 – This mapping determined by the processes that originally set up the system and probes.
 – Gauges additionally interpret implicit information from the probes
 • perhaps 2021 means 2021 microseconds.
Static Scenario continued

- Gauges are “read” by the control layer to determine action to take
 - If ILE for E001 is interpreted as “Radar Analysis took 2021 microseconds to process the last scan.”
 - And the analysis module is a function of the parameter, ScanGrain.
 - The control layer communicates to effector layer
 - Coarsen ScanGrain for Radar Analysis to 5 degrees / scan.
- Effector layer determines what physical process needs to be adapted (E001)
 - Determine what process variable of E001 corresponds to ScanGrain
 - Reset to reflect the 5 degrees / scan modification.
Dynamic Architecture Scenario

- Probes and gauges are placed via the control layer.
- Probes emit architecturally significant implementation-level events (ASILEs)
 - "process D006 spawned new process E001 of type RAN"
 - "process E001 requested socket 239."
- Gauges modify corresponding physical and logical models.
 - E001 of type RAN => identify the E001 process with (previously unidentified) logical process, “Radar Analysis.”
 - I call this process identification of physical models logical architecture models
 - “proto-architecture” -only identified modules and connectors constitute actual logical architecture.
Dynamic Scenario continued

- Same scenario as above, “process E001 used 2021,”
 - the control layer at this point may want to change the system’s running architecture by issuing a reconfiguration event to the effector layer
 - “replace Radar Analysis type RAN with RAAN” (another radar analyzer type, perhaps with a coarser scan rate).
- Effector layer again maps logical Radar Analysis component onto E001
 - also has to understand how to remove that component
 - substitute a new one of type “RAAN.”
xAcme Protocol

created (creations::
 [newComponent |
 newConnector |
 newProperty
 property::<properties:Property> …]
 context:: <instance:XMLLink >)

deleted(elementType::
 (deletedComponent |
 deletedConnector |
 deletedProperty),
 deletedElement:: <instance:XMLLink>)

attachedConnector(pairs::
 [(roleName:: <instance:XMLLink>,
 portName:: <instance:XMLLink>)]

detachedConnector(pairs::
 [(roleName:: <instance:XMLLink>,
 portName:: <instance:XMLLink>)]
xADL Protocol

Diff (changes::[(add(Add) | remove (Remove))])
Add ((component(<types:Component>) | connector(<types:Component>) | link(<types:Link>) | group(<archinstance:Group>) | componentType(< types:ComponentType >) | connectorType(< types:ConnectorType >) | interfaceType (<types:InterfaceType>))
Remove(removeID::<archinstance:Identifier>)}
Consolidation Issues

- **Hidden (xADL) vs Explicit (xAcme) structure**
 - Former allows complex structures to be altered, but requires everyone receiving the events to understand the implicit structure
 - Latter allows coarse models to be formed by anyone receiving the events (want to refine as much as possible*)

- **API vs Event model vs (Single-source) Broadcast**
 - API = single consumer event model implementation
 - Event model requires a transaction model; otherwise it is just an API
 - Single-source broadcast allows multiple listeners without synchronization issues
More Discussion Issues

• Goals for the protocol.
 What belongs in the protocol?
 – Core (Syntactic)
 – Constrained (Type checked)
 – Completed (Analyzed) *
 – Reflective (2nd Order Representation)

• Nomenclature issues.
 *Can we agree on a nomenclature * or is a Rosetta Stone appropriate?*

• How many different representations of the events are needed?
 *Is XML sufficient? (Probe Protocol *)*
Discussion Issues continued

- How rich should the event language be? *Union? Extensible core?*
- What transaction model should be used? *Explicit begin-end, nested transactions, set of changes, sequence of changes, higher-level operators encapsulating sequences - such as “change” for “remove and then add.”*
- How does one identify an architectural element uniquely?
What part are you not dealing with?

- Approaches
 - Autonomic
 - Cooperative
- Layers
 - Control
 - Repair
 - Probing (here)
What applications are you targeting?

- COTS-based
- Air Force Heads Up display – “Master Caution Panel”
Top 2/3 new technical ideas/approaches?

• Externalization
• Reflection