A Case Study in Software Adaptation

Giuseppe Valetto and Gail Kaiser
Telecom Italia Lab / Columbia University
WOSS ‘02
November 18, 2002
Dynamic adaptation of SW

- The ability to influence the structure, state and behavior of a running complex SW system
- Can be seen as a run-time extension of maintenance practices
 - Corrective or perfective
- Strongly automated
- Our targets: systems of (legacy) systems
Dynamic adaptation of an Internet service: a case study

- An industrial Internet application
 - Thousands of users
 - QoS is business-critical

- A complex distributed service
 - Multi-channel instant messaging
 - Including legacy / 3rd party components
 - Expensive to deploy, configure, monitor manage
Scope of the case study

Dynamic adaptation aimed at:

- **Automated management**
 - Automated deployment and instantiation
 - On-the-fly configuration
 - Continuous monitoring and feedback (tune, repair)

- **Service optimization**
 - Automated scalability
 - Component re-configuration according to monitored QoS parameters
 - Component fault detection
 - System-wide repair
Results

• Beneficial impact on costs and responsiveness of service management
 – 50 to 90% optimizations

• Automation of adaptation decisions and actions provide tight control loop
 – eventually benefits perceived service quality

• Relatively little amount of code developed to adapt the system:
 – On top of the KX infrastructure code base
How we did it

• Our infrastructure: KX (Kinesthetics eXtreme)

• Feedback control loop superimposed to the target system
 – External and orthogonal
 – To preserve independence and generality
KX Architecture

SmartEvents

Effectors
- Effector
- Worklet

Legacy System

Gauges
- Event Distiller
- Event Packager

Probes
- Probelet
- Probe

Data

SmartEvents

Workflakes Control
KX decision and coordination

- Decision on the basis of:
 - Gauges’ reports
 - Codified model of the target system
- Upon decision – adaptation actions:
 - Multi-step process
 - Carried out by multiple effectors
 - That need coordination
- Effectors’ coordination is automated by a workflow engine (Workflakes)
KX and Target System

- Two points of contact:
 - Probes
 - Effectors
- Require target instrumentation
- Numerous techniques possible
- Must be minimally intrusive

- The rest of the adaptation framework is detached from the target
 - Although needs to know a great deal about it
The issue of “self”

- As in “self”-healing
- Tension between built-in adaptation provisions and external adaptation infrastructure
- Both serve the same purpose
 - “self”-healing
- But carry numerous different conceptual and engineering implications
The case for an expanded “self”

- Applies better to legacy
- Promotes separation of concerns
- Retains generality
- Makes maintenance easier
- Can cooperate with and take advantage of any built-in techniques
- Can always be “built in” onto a new system
Relevant issues for externalized adaptation

- Requires formalization and explication of a system model
 - Can be complex and labour-intensive
 - Calls for “good SE practices”
- Repertoire and integration of probes and effectors are technological challenges
- Must reconcile heterogeneity
 - With “standard” protocols and APIs
- Calls for reliability guarantees on the external infrastructure itself
Final remarks

- What are trade-offs and limits of internal vs. external adaptation provisions?
- Which techniques are better suited for the internal vs. external approach?
- What categories of target systems can be optimally addressed by each, and what characterizes them?
enable (vt): to make possible, practical, or easy

Programming Systems Lab
Columbia University

http://www.psl.cs.columbia.edu/