
What is Style?

David Garlan

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

1. The Value of Style

A central aspect of architectural design is the use of recurring organizational patterns and idioms|
or architectural styles [GS93, PW92, MG92, GHJV94]. Examples include generic system organiza-
tions such as those based on dataow or layers, as well as speci�c organizational structures such
as the classical decomposition of a compiler, the OSI communication stack, and the MVC user
interface paradigm.

The principled use of architectural styles has a number of practical bene�ts. First, it promotes
design reuse: routine solutions with well-understood properties can be reapplied to new problems
with con�dence. Second, it can lead to signi�cant code reuse: often the invariant aspects of an
architectural style lend themselves to shared implementations. Third, it is easier for others to
understand a system's organization if conventionalized structures are used. For example, even
without giving details, characterization of a system as a \client-server" organization immediately
conveys a strong image of the kinds of pieces and how they �t together. Fourth, use of standardized
styles supports interoperability. Examples include CORBA object-oriented architecture [Cor91],
and event-based tool integration [Ger89]. Fifth, by constraining the design space, an architectural
style often permits specialized, style-speci�c analyses. For example, it is possible to analyze pipe-
�lter systems for schedulability, throughput, latency, and deadlock-freedom. Such analyses might
not be meaningful for an arbitrary, ad hoc architecture { or even one constructed in a di�erent
style. Sixth, it is usually possible to provide style-speci�c visualizations: this makes it possible
to provide graphical and textual renderings that match engineers' domain-speci�c intuitions about
how their designs should be depicted.

Unfortunately, the use of architectural styles is almost completely ad hoc. It is virtually im-
possible to answer with any precision what aspects of system design can/should be speci�ed by a
style, to compare di�erent styles based on their properties, to relate systems developed in di�erent
styles, to develop general-purpose tools for exploiting style, to select appropriate styles for a given
problem, or to combine several styles to produce a new one.

Evidentally what is needed (among other things) is a more rigorous basis for understanding ar-
chitectural style and ways to exploit it. In this paper I briey outline and compare three approaches
to providing such a basis.

2. Basic Properties

Before outlining the approaches, it is worth noting four salient aspects of architectural styles that
any model should account for:

� They provide a vocabulary of design elements { component and connector types such as pipes,
�lters, clients, servers, parsers, databases etc.

� They de�ne a set of con�guration rules { or topological constraints { that determine the
permitted compositions of those elements. For example, the rules might prohibit cycles in



a particular pipe-�lter style, specify that a client-server organization must be an n-to-one
relationship, or de�ne a speci�c compositional pattern such as a pipelined decomposition of
a compiler.

� They de�ne a semantic interpretation, whereby compositions of design elements, suitably
constrained by the con�guration rules, have well-de�ned meanings.

� They de�ne analyses that can be performed on systems built in that style. Examples include
schedulability analysis for a style oriented toward real-time processing [Ves94] and deadlock
detection for client-server message passing [JC94]. A speci�c, but important, special case of
analysis is code generation: many styles support application generation (e.g., parser genera-
tors), or enable the reuse of code for certain shared facilities (e.g., user interface frameworks
and support for communication between distributed processes).

3. Three Views of Architectural Style

Now let us consider three ways of understanding style.

1. Style as Language In this view a stylistic design vocabulary is modelled as a set of gram-
matical productions. Con�guration rules are de�ned as context-free and context-sensitive
rules of the grammar. A semantic interpretation can be given using any of the standard
techniques for assigning meaning to languages. Analyses are essentially those that one can
perform on architectural \programs" { namely checking for satisfaction of grammatical rules,
ow analysis, compilation, etc. Characteristic of this view is [AAG93], where a style is viewed
as a denotational semantics for architectural diagrams.

2. Style as a System of Types In this view the architectural vocabulary is de�ned as a set
of types. For example a pipe-�lter style might de�ne �lter and pipe types. If speci�ed in an
object-oriented context, hierarchical de�nitions are possible: \�lter" would be a subclass of
a more generic \component," and \pipeline-stage" a subclass of \�lter". Similarly a \pipe"
would be a subclass of a generic \connector." Constraints on these types can be maintained
as datatype invariants, operationally realized in the code of the procedures that can modify
instances of the types. Analysis can exploit the type system, to perform type checking, and
other architectural manipulations that depend on the speci�c types involved (such as code
generation). Representative of this view is Aesop, which provides an object-oriented approach
to de�ning new styles using subclassing [GAO94]. (Aesop actually goes farther by de�ning a
subclassing relationship between full styles, not just the individual types in the style.)

3. Style as a Theory In this view a style is de�ned as a set of axioms and inference rules.
Vocabulary is not represented directly, but in terms of the logical properties of elements. For
example, the fact that an architectural component is a �lter would allow you to deduce that
its ports are either input ports or output ports. Similarly the fact that something is a pipe
would allow you to deduce that there are two ends, one for reading, and the other for writing.
Con�guration constraints and semantics are de�ned as further axioms. Analysis takes place
by proving a new theorem, thereby extending the theory of the style. Representative of this
approach is the work by Moriconi and his colleagues [MQ94, MQR95].



4. Comparisons

At �rst glance, all three views of style might appear interchangeable. For example, it is possible to
view a grammar production as an object-oriented class, where the components of the production
are the instance variables of the class. Similarly, both of these views can be modelled formally (e.g.,
in Z [GD90]), hence providing a theory for the style.

But on closer examination the models have very di�erent properties along several key dimen-
sions:

� Representation of structure: In both the language and types views the architectural
structure of a speci�c system is explicit: in the former as an expression in the language (or
abstract syntax tree), in the latter an interconnected collection of objects. In the theory
view structure must be encoded as a set of assertions, distinguished from other assertions
primarily by convention. However, even in the �rst two, there are di�erences: in an object
representation the graphical structures of a system's architecture are directly represented,
while in the grammar-based approach they must be encoded in terms of the hierarchical
representation determined by the language's abstract syntax.

� Substyles: Styles can be related in various ways, but one of the most important is the
\substyle" relation. The basic idea is that one style is a substyle of another if instances of the
former can be \treated as" instances of the latter. This is important both theoretically and
practically. Theoretically it allows us to know that the results we prove about one style will
carry over to its substyles. Practically it allows us to reuse tools: if a tool can manipulate
systems of one style, then it can manipulate those of its substyles. (For example, a throughput
analyzer for a pipe-�lter system should also work on a pipeline system.) Moreover, it may
lead to techniques for de�ning new styles in terms of old ones: instead of creating each new
style from scratch we reuse old style de�nitions.

In the theoretical view a notion of substyle falls out naturally, since one can simply de�ne
substyle in terms of theory inclusion. In the case of an object-oriented model, it can also be
made to work. Each type of a new style is a subtype of a superstyle. (This is the approach
taken by Aesop [GAO94].) In the language-based view, however, it is not at all clear how
substyles would be de�ned. Generally languages are treated as stand-alone entities, with little
formal relation to any other language.

� Re�nement: In many cases a system is best described as layered abstraction, each layer
de�ned by a di�erent style. Layers are related by re�nement|that is, there exists a formal
abstraction mapping between layers, and a lower layer preserves the properties of its upper
layer (via the mapping).

The theoretical view has a natural explanation for re�nement. Moreover, as Moriconi has
shown [MQR95], is possible to use styles to factor out patterns of re�nement. To date there
has been little work in showing how either the language or types views handle re�nement.

� Automated support: Architectural design is motivated by practical concerns, and one
would hope that appropriate models of style would lead to practical tools for description and
analysis of architectural descriptions. In this respect all three views have merits, but in di�er-
ent ways. The language approach can exploit automated support developed for programming
languages: type checkers, code generators, attribute grammar evaluators, etc. The types
approach can exploit the use of object-oriented databases and tools for storing, visualizing,



and manipulating architectural designs. The theoretical view can exploit the power of formal
manipulation systems, such as theorem provers and model checkers.

So which is better? Obviously there is not a de�nitive answer to this. As this brief description
has indicated, each view has its respective merits, and all of the views complement each other.
Moreover, there remains a considerable amount of research and experimentation that is needed
to fully understand the strengths and weakness of the di�erent approaches, and, indeed, other
approaches not mentioned here.

Acknowledgement

The research reported here was sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force

Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant F33615-93-1-

1330; by National Science FoundationGrant CCR-9109469; and by a grant from Siemens Corporate Research.

Views and conclusions contained in this document are those of the authors and should not be interpreted as

representing the o�cial policies, either expressed or implied, of Wright Laboratory, the US Department of

Defense, the United States Government, the National Science Foundation, or Siemens Corporation. The US

Government is authorized to reproduce and distribute reprints for Government purposes, notwithstanding

any copyright notation thereon.

References

[AAG93] Gregory Abowd, Robert Allen, and David Garlan. Using style to understand descriptions of
software architecture. In Proceedings of SIGSOFT'93: Foundations of Software Engineering,
Software Engineering Notes 18(5), pages 9{20. ACM Press, December 1993.

[Cor91] The Common Object Request Broker: Architecture and speci�cation. OMG Document Number
91.12.1, December 1991. Revision 1.1 (Draft 10).

[GAO94] David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in architectural design
environments. In Proceedings of SIGSOFT'94: Foundations of Software Engineering. ACM Press,
December 1994.

[GD90] David Garlan and Norman Delisle. Formal speci�cations as reusable frameworks. In VDM'90:

VDM and Z { Formal Methods in Software Development, pages 150{163, Kiel, Germany, April
1990. Springer-Verlag, LNCS 428.

[Ger89] Colin Gerety. HP Softbench: A new generation of software development tools. Technical Report
SESD-89-25, Hewlett-Packard Software Engineering Systems Division, Fort Collins, Colorado,
November 1989.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Design. Addison-Wesley, 1994.

[GS93] David Garlan and Mary Shaw. An introduction to software architecture. In V. Ambriola and
G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering, pages 1{39,
Singapore, 1993. World Scienti�c Publishing Company. Also appears as SCS and SEI technical
reports: CMU-CS-94-166, CMU/SEI-94-TR-21, ESC-TR-94-021.

[JC94] G.R. Ribeiro Justo and P.R. Freire Cunha. Deadlock-free con�guration programming. In Pro-

ceedings of the Second International Workshop on Con�gurable Distributed Systems, March 1994.

[MG92] Erik Mettala and Marc H. Graham. The domain-speci�c software architecture program. Technical
Report CMU/SEI-92-SR-9, Carnegie Mellon Software Engineering Institute, June 1992.



[MQ94] M. Moriconi and X. Qian. Correctness and composition of software architectures. In Proceed-

ings of ACM SIGSOFT'94: Symposium on Foundations of Software Engineering, New Orleans,
Louisiana, December 1994.

[MQR95] M. Moriconi, X. Qian, and R. Riemenschneider. Correct architecture re�nement. IEEE Trans-

actions on Software Engineering, 1995. To appear.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40{52, October 1992.

[Ves94] Steve Vestal. Mode changes in real-time architecture description language. In Proceedings of the

Second International Workshop on Con�gurable Distributed Systems, March 1994.


