Architecture-Based Performance Analysis

Bridget Spitznagel
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA 15213 USA
(412) 268-8101

sprite+@cs.cmu.edu

ABSTRACT

A software architecture should expose important system
properties for consideration and analysis. Performance-
related properties are frequently of interest in determin-
ing the acceptability of a given software design. In this
paper we show how queueing network modeling can be
adapted to support performance analysis of software ar-
chitectures. We also describe a tool for transforming a
software architecture in a particular style into a queue-
ing network and analyzing its performance.

KEYWORDS
Software architecture, software performance, queueing
networks, design analysis, architecture analysis tools

1 INTRODUCTION

The software architecture of a system determines its
overall structure as a collection of interacting compo-
nents. Architectural designs are critical to the success
of most large-scale system development efforts, because
they provide a high-level view of the system that per-
mits engineers to reason about how the key require-
ments of the system will be satisfied. Among these
requirements, performance-related i1ssues are often cen-
tral.

To take a simple example, consider the mini-
architecture illustrated in Figure 1, which contains three
interacting components: a web server, a web client, and
a database. Assume that the client makes requests of
the server and receives responses asynchronously. The
server may make a request of the database in the process
of filling the client’s request.

The acceptability of this design will likely depend on
several unanswered questions concerning the overall per-
formance of the system, such as:

Draft. Submitted for publication September 1997

David Garlan
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave.
Pittsburgh, PA 15213 USA
(412) 268-5056

garlan+@cs.cmu.edu

e How well can this web site handle the anticipated
demand? What will the average response time be?
How large should buffers be?

e Given a maximum acceptable response time, what
is the highest demand the web site can handle?

e Suppose that the demand is expected to peak for
brief periods, and degraded performance during
this time 1s acceptable. How much will performance
degrade? Will the system overload or remain sta-
ble?

e Which component is the bottleneck? If the aver-
age demand increases, will it be better to upgrade
or replicate the database or the web server? How
does the transmission rate of the data affect per-
formance?

Unfortunately, most architectural designs are character-
ized informally and provide weak support for system-
level analyses. As a result, it may be difficult to answer
questions such as these with any degree of precision.

One of the stumbling blocks is that architects have a
limited arsenal of concepts and tools to carry out such
analyses at an architectural level of design. In particu-
lar, even if good estimates of performance can be deter-
mined for the components of a system, it may be very
difficult to derive overall system behavior.

Ideally what is needed is a calculus for deriving the ex-
pected performance of the system from performance-
related attributes of its parts. Fortunately, a mathemat-
ical model already exists in a similar domain. Queue-
ing network theory is used in computer systems perfor-
mance analysis to predict attributes of a system from
attributes of its parts. A queueing network processes

CLIENT SERVER

v !

DATABASE

Figure 1: An internal web site

jobs. The elements in a queueing network are hardware
devices, each of which has a queue. Jobs require service
from a set of devices and wait in a queue when a de-
sired device is busy. Each job exists in only one device
or queue at a time.

Adaptation of this technique to software architecture
performance analysis seems straightforward at first.
Hardware devices are replaced by software components.
A job is replaced by a sequence of requests for service.
Each component receives and processes requests, and
when a request is completed, the component may send
a new request for service to another component. The
path of the sequence of requests is determined by con-
verting the connections between components described
in the architecture to an acyclic directional graph.

That this adaptation is overly simplistic and incomplete
becomes evident when 1t is applied to the web site exam-
ple. The adaptation implicitly makes several assump-
tions, some of which are inappropriate for this example.
For example, it assumes that all jobs have the same
service requirements, and that connectors do not signif-
icantly affect performance. In order to apply queueing
network analysis to a software architecture, we must
examine and resolve such mismatches.

In this paper we show how to resolve these mismatches.
Specifically, we demonstrate how to adapt queuing-
theoretic analyses to the software architecture domain
so that it can be applied to a significant class of ar-
chitectural designs. We begin by briefly reviewing the
elements of queueing network theory that are relevant to
architectural analysis. Next we consider the straightfor-
ward application of this theory. Though powerful when
it can be applied, there are a number of limitations that
make it less than ideal. Then we show how the basic
ideas can be extended to handle a much broader class of
system, including those with cycles, autonomous clients,
replicated services, and connector delays. Finally, we
briefly describe our implementation of a tool that car-
ries out architecture-based performance analysis, and
outline future directions in this line of research.

2 QUEUEING NETWORK THEORY

To set the stage we begin with a brief introduction to
queueing theory. We will cover only the essentials of
product form networks!.

The basic units of a queueing network are “service cen-
ters” and “queues.” A queue is a buffer, which can have
any one of the usual queueing disciplines (first come
first served, round robin, last come first served preemp-
tive resume). A service center provides some necessary
service. Examples include a bank teller, hardware de-
vice, or database. Each service center has an associated

! For a more detailed treatment see Lazowska [8] or Sauer [9].

Exponential PDF (lambda = 1)
T T T

T
exp(-x) —

0 05 1 15 2 25 3 35 4
time ->

Figure 2: Exponential PDF, A =1

queue containing jobs to be processed by that service
center. A service center may also be “replicated” with
degree m.

A replicated service center represents m identical
providers of service, which draw their jobs from a single
queue. For example, an airline’s baggage check counter
may have one line of customers who are processed in or-
der by four ticket agents. An infinitely replicated service
center (m = oo) is also called a “delay center.” These
are sometimes used to model transmission delays.

Queueing network analysis can produce results both for
individual queues (associated with service centers), as
well as for the network as a whole.

To derive performance characteristics for individual ser-
vice centers, two important pieces of information must
be known: the average time the service center takes to
process one job (service time), and the average rate at
which new jobs arrive (arrival rate). The service time
and the time between arrivals of new jobs are usually

taken to have exponential distributions?.

An exponential probability density function with ex-
pected value 1/X is given by

f(t) = Xe™™

It is sometimes called “memoryless” because, regardless
of how much time has already passed, the expected time
left to wait, 1/A, remains the same. This renders the
history of the system unimportant, greatly simplifying
the analysis. We will be assuming exponential distribu-
tions, but will return to this issue in section 7.

From this information, results in queueing theory make
it possible to calculate for a single queue:

e The fraction of time the service center is occupied

2Sometimes the distribution is known to be non-exponential,
but close enough. It should not have a larger variance, because
the analysis will then overestimate performance.

— 1I®

" o
— 1@

Figure 3: Queueing network

(utilization).

Average time a job spends waiting in the queue.

Average queue length.

The probability that the queue length is n.

Whether the system is stable or overloaded. In an

overloaded system, the queue grows faster than jobs

can be processed; the server cannot keep up with

the demand placed on 1t.

e For a queue implemented as a finite buffer with
length B, the rate at which incoming jobs are dis-
carded due to buffer overflow (drop rate).

A queueing network i1s an interconnected group of these
queues. Jobs enter the network, receive service from
some set of the service centers, and leave. The aver-
age rate at which jobs enter the network (system arrival
rate) must be known. For each service center, the ser-
vice time must be known, as well as the rate at which
jobs arrive at its queue relative to the system arrival
rate (relative arrival rate). Tt is then possible to cal-
culate the previous list of results for each queue in the
system, and to determine expected values for

e Latency, the time for a job to be completely pro-
cessed

e Throughput, the rate at which jobs are processed

e Number of outstanding jobs in the system

e The most heavily utilized service center, likely to
become a bottleneck.

The system arrival rate and a queue’s relative arrival
rate determine the actual arrival rate seen by that
queue. If known, the relative arrival rate may simply be
specified; for example, in a simple pipeline all relative
arrival rates are 1. Otherwise it must be derived from
the probabilistic path of a job through the network. For
example, jobs leaving service center S; may be equally
likely to go on to Sy or Ss, and so on (Figure 3). These
transition probabilities must be independent of the job’s
history beyond the most recently visited service center.
They are transformed into a set of linear equations and
then solved to produce the relative arrival rates for each
queue.

Some systems process more than one kind of job. To
model jobs that have different behavior, each queue is

divided into one or more “job classes.” For the purposes
of this paper, we will not be considering cases in which
job class affects service time or the order in which jobs
are processed; job class will affect only the subsequent
path of the job. Instead of specifying transition proba-
bilities from queue to queue, transition probabilities are
now specified from job class to job class. (If each queue
has only one class, this reduces to the former simpler
case.)

For example, in the context of our example architecture
(Figure 1), it may be that a job which was class ¢; at
the web server is likely to proceed to some class in the
database’s queue, while a job that was class ¢y at the
server will always proceed to a class in the client’s queue.

3 APPLICATION TO SOFTWARE ARCHI-
TECTURE

We begin with the simplest possible translation of
queueing analysis into architectural terms. Though this
simple analysis is sufficient for some systems, it is too
weak for others. We will resolve these problems by ex-
tending the translation in the next section.

The simple translation is based on a “distributed mes-
sage passing’ architectural style. A design in this style
will already be fairly close to its queueing network
equivalent. The components in this style represent dis-
tributed processes, and will correspond to service cen-
ters. The connectors in this style are directional and
represent asynchronous message streams; messages are
queued for processing by the components.

We assume that each component has a single queue, and
that messages are processed in FIFO order; as observed
in section 2, other queueing disciplines would be per-
missible. When a component processes a message, it is
assumed to produce 0 or 1 new messages as a result.
A message entering the system thus corresponds to a
queueing network job, until the first component finishes
processing it and sends a new message to another com-
ponent; then the new message corresponds to that same
job. The job exists as a sequence in time of individual
messages, and is completed when the sequence termi-
nates, 1.e. when the component currently processing it
produces 0 new messages.

To illustrate how this can be applied, consider the fol-
lowing simplification of the original example architec-
ture (Figure 1). Jobs (or messages) arrive at the client
from outside the system. Each job visits the client, the
server, and the database, and is finished. R jobs arrive
in the system per second, so R jobs arrive in each com-
ponent’s queue per second. The three components have
service times of Sejzent, Sserver, and Sgp, respectively. In
the interest of automating the performance analysis, we
assoclate a service time property with each component,

Uetient = 9.5jobs/s x 1072 x 65 ms/job = 0.6175
Userver = 9.5 x 1073 x 20 =0.19
ug, = 9.5x 1072 x 103 = 0.9785
Petient = —Hnt 161 jobs
1-— Uclient
USST’UST .
Pserver = ——————————— = 0235J0bs
1 — Userver
[T— ddv 45.5 jobs
1 —ug
P = Pelient + Pserver T Pdb = 473JObS
47.3 jobs
= — =4,
Response 9.5 jobs/s 98s

Table 1: Calculating response time

and an arrival rate property with the system.

The utilization of each component is u; = RS;, its av-
erage queue length is ¢; = u?/(1 — u;), and its average
response time is S; /(1 — u;). The average population of
the component is p; = u;/(1 — u;), comprising jobs in
the queue and jobs receiving service. The probability
that p; > n is u?. The population of the system is the
total population of the components P = p, + pp + pe,
and the response time of the system is P/R.

Suppose that R = 9.5/second, Sciient = 65, Sserver =
20, 5S4 = 103 ms. Then we expect an average system
response time of 5 seconds (Table 1), which may be ac-
ceptable to the users. The utilization of the database
component is 98%. This component is close to over-
loaded, which means it will tend to have a long queue
and therefore a high latency. On average the queue
length will be 44 elements; there is a 27% probability
that the length will be 60 or more. If the estimated
Sap turns out to be slightly larger, the database will be
unable to keep up with its expected load. We conclude
that the system will be acceptable only if the database
1s upgraded.

While these results are useful, the technique 1s of limited
applicability for several reasons.

e In some designs, the set of services required by a
job may actually be implicit in the structure of an
architecture. However, this is not always the case.
The simple translation does not attempt to handle
architectures with cycles, in which a job can visit
the same service center more than once. Even in
an acyclic architecture, some jobs may need to visit
only a subset of the components.

e There is no notion of autonomous clients. Jobs are
assumed to arrive from outside at a known rate,
not to be generated by one or more components of
the system at rates specific to the components, as

in the original example.

e When a bottleneck is found in a system, some-
times the component responsible is replicated to
distribute its load across more than one device.
Modeling this at the software architecture level
is desirable but will require careful consideration,
since the mathematical model assumes that the in-
stances of the replicated device are not distinguish-
able. In addition, we must determine what it means
to replicate an autonomous client.

e Connectors between components can add delays,
affecting the system’s response time. They should
certainly be included in the model.

e There are further complications in understanding,
at the level of software architecture, the require-
ments and assumptions which are natural at a
mathematical level and may be inherent at a hard-
ware component level; for example, the degree to
which one service center is loaded should not af-
fect the service time of another service center, so
connectors must be asynchronous.

4 EXTENDING THE MODEL

Having observed the inadequacies of the simple transla-
tion illustrated in the previous section, we now describe
several key extensions which will make the translation
more widely applicable.

4.1 Cycles

The original architecture processed two kinds of jobs.
The first kind (“fetch” jobs) visit the client, the server,
and return to the client. The second kind (“query” jobs)
visit the client, server, database, server, and client.

To analyze the performance of this system, it is neces-
sary to attach additional information to the architec-
ture: each component will have a list of the kinds of
messages (corresponding to job classes) it services and
their transition probabilities, and the system will have
a list of the incoming job classes and their arrival rates.
As indicated earlier, these properties are used to create
a set of linear equations. Once the equations are solved
for the components’ relative arrival rates, the analysis
proceeds as before.

Here is one way the example system might be annotated
with job class information. The server can receive three
kinds of messages: fetch-msg and query-msg (from the
client) and query-result-msg (from the database). The
client can receive start-job-msg (from outside) and end-
job-msg (from the server). Suppose that 40% of jobs
are fetch and the rest are query. When the client fin-
ishes processing a start-job-msg, there is a 40% prob-
ability that 1t sends the server fetch-msg; otherwise, it
sends query-msg. When the server finishes fetch-msg
or query-result-msg, it always sends the client end-job-

msg. When the server finishes query-msg, it sends a
message to the database; when the database finishes
that message, it will send the server a query-result-msg.

4.2 Autonomous Clients

In the original architecture, jobs were initiated by the
web client instead of arriving from outside the system.
This system can easily be transformed to one in which
jobs arrive from the outside. In a more complex sys-
tem in which several components initiate jobs of vari-
ous classes, this is still possible but becomes tedious to
do by hand. It is preferable to associate the generation
of jobs with the approriate components and add this
transformation to the automated analysis.

We add to each client properties specifying the classes
and generation rates of initiated jobs. The system prop-
erties added above are no longer specified, since they
will be calculated from these client properties. The ef-
fective system arrival rate R is the sum of the genera-
tion rates of the clients, and the transition probabilities
of the arriving jobs proportionally correspond to their
generation.

One open question i1s whether generating a request
should take the usual service time, or a negligible
amount of time®. In this example, the client spends
most of its time processing and displaying the informa-
tion received from the server, and takes essentially no

time to generate requests.
4.3 Replication

There are several obvious ways to deal with a compo-
nent predicted to be a bottleneck: reduce the demand
on the system, speed up the component, or replicate the
component. These options are likely to vary in expense
and difficulty, and may not all be reasonable for a given
system. When considering these tradeoffs it is helpful to
calculate what degrees of demand reduction, speedup,
and replication will result in comparable or acceptable
performance improvement. The benefit resulting from
the first two can be readily calculated using the tech-
niques already discussed.

For the purposes of analysis, the instances of the repli-
cated component should be identical. It should not mat-
ter which instance services a particular job. This cre-
ates a problem: jobs processed by some systems do dis-
tinguish between instances of replicated components on
subsequent visits. In the ongoing example, a job initi-
ated by the web client returns to that client for final pro-
cessing and display. If this client is to be replicated, the
model will attribute the final processing to whichever

3Specifying a different service time for request generation is a
third option, but would violate an assumption needed to keep the
mathematics simple. For the purposes of this paper we will not
consider this option.

client is not busy. This could result in a slightly bet-
ter predicted response time for the system, but would
not affect the individual performance characteristics of
other components.

We must also consider the rate at which this replicated
client generates requests. One possibility is to have the
specified generation rate r represent the effective rate.
The better option is to have the specified rate repre-
sent the rate for a single instance. Then for a compo-
nent replicated m times, the effective rate is mr; if m is
changed, r still remains the same.

The individual analysis for a replicated component is
somewhat more complicated than for an ordinary com-
ponent. It would be substantially more difficult if we
did not restrict the effect of job classes to transitions
only, so that within a component the analysis may be
carried on as though all jobs are identical. In brief, the
formulas must now include the probability that m or
more jobs are already occupying the component, which
is the point at which the queue begins to grow.

4.4 Delay in Connectors

In our example, the connectors are an abstraction for
creating, sending, and enqueueing messages. So far this
has been assumed to have no significant effect on the
performance of the distributed system. In reality, trans-
mission delays may increase the response time of the
system, and should be represented.

Service centers could conceivably be used to model con-
nectors. However, this assumes that only one message
can be present in a connector at a time, and may pro-
duce inflated response times when this is not the case.
Instead we choose to model a connector as a delay cen-
ter. The arrival rate at this delay center is the same
as the arrival rate at the service center corresponding
to the component fed by the connector. Each connec-
tor has a delay time property, representing the average
time it takes a message to traverse the connector. The
connector does not have a queue.

A connector’s transmission delay affects the system re-
sponse time: the delay time of each connector traversed
by a job is added to the response time of the job. It does
not affect the performance of individual components or
the presence of bottlenecks. If there are multiple differ-
ing connectors between two components, it is necessary
to specify in the job transition probabilities which con-
nector will be taken so that the correct delay time is
used.

5 EXAMPLE REVISITED

Consider a new version of the example used in section
3. Messages traversing connectors now incur a transmis-
sion delay. Jobs are no longer required to visit each com-

ponent exactly once: each job returns to the client for
final processing, and some jobs never visit the database.
Replication is a permissible option for heavily utilized
components. To illustrate these extensions in terms of a
model, assume that the following is true for this system.

Service times are estimated as Scyen: = 65 ms,
Sserver = 20 ms, Sgy = 103 ms. The delay time Djgpng
of the connectors between the client and server is 1.5
seconds, and the delay time Dgpor: of the connectors
between the server and database is 50 ms. The client
generates two kinds of jobs, “fetch” and “query.” A
fetch visits the client, the server, and the client again;
a query visits the client, server, database, server, and
client. As noted in section 4.1, at this point the ar-
chitecture should be annotated with this text specifica-
tion rewritten as transition probabilities; we will omit
the rewrite for this example. The client generates 3
fetches/second and 7 queries/second. With this infor-
mation we can now calculate various performance char-
acteristics of the system.

The effective arrival rate of the system is the sum of all
generation rates: 10. Here we would also use the gener-
ation rates to calculate transition probabilities for the
system arrivals. Because we are assuming that genera-
tion does not require the client’s usual 75 ms of service,
the system arrivals will all be sent to the server; oth-
erwise, they would be sent to the client first to receive
service there. (Section 4.2)

Now 1t is possible to calculate relative arrival rates from
transition probabilities. The relative arrival rate at the
server is 1 x 13—0 fetch +2 x % query = 1.7. At the
database it 1s 0 fetch + 0.7 query. At the client it is
1, because the system arrivals are sent to the server to
mimic a negligible client generation time; otherwise, it

would be 2. (Section 4.1)

The relative arrival rates of the connectors are the same
as the components whose queues they feed. (Section

4.4)

Now we return to the equations of section 3. The utiliza-
tion of the database is 7 x 0.103 = 72%. The server’s is
17%0.020 = 34%. The client’s is 10 x 0.065 = 65%. The
database, closest to being a bottleneck, is of greatest in-
terest. The average queue length of the database is 1.85
messages, and its response time is 103/(1 —0.72) = 370
ms.

The average population of the system is about 58 mes-
sages: 17x1.5x2 = 51 in transit between the client and
server, one between the server and database, and the re-
mainder waiting in queues or receiving service. (Section

4.4)

The system response time for the average job is 58 /10 =
5.8 seconds. (3 seconds of this, roughly half, are due to

— ACME —= Anaysis
Tool
—— nowe

Aesop

Figure 4: Performance analysis via Aesop

the delay between client and server).

Now let us suppose that the database component is un-
der consideration for upgrade or replication. Assume
that it will be replaced by either a single instance with
a service time of 75 ms, or two identical instances, each
with service time of 110 ms. In order to make an in-
formed decision, we would like to compare the perfor-
mance of the two options while assuming the rest of the
system remains unchanged.

The first option will have an average of 1.1 messages in
the queue and receiving service, and an average queue
length of .58 messages. The second option will have 3.8
in the queue and receiving service, and a queue length
of 2.2. The utilizations are 53% and 39%. The second
option will be better able to handle periods of above-
average load. The response times are 160 ms and 141
ms. From a performance standpoint, the second option
appears to be the better choice; other factors such as
expense may also be important in making the final de-
cision. (cf. Section 4.3)

6 IMPLEMENTATION STATUS

The distributed message passing style described above
has been implemented as a style in Aesop [3]. The basic
component type is a Process, and the connector type is
a MessageStream. MessageStreams are directional.

The Aesop environment allows a user to graphically con-
struct a software architecture in this style, enter the
numbers needed for analysis in component and connec-
tor “workshops” (or property lists), and run analysis
tools on the architecture. Certain analysis results such
as the expected queue length are displayed in the work-
shops. Other results are indicated graphically. In par-
ticular, overloaded components (i.e., components that
will be unable to keep up with the anticipated demand)
are highlighted.

The style also provides an option on components to set
the degree of replication. The effect of this option is
to alter the component’s appearance and change the
predicted performance as described in section 4.3. An
example with three Processes (a client, one overloaded
server and one server replicated four times) and one
MessageStream is shown in Figure 5.

The analysis tool automatically performs the transfor-
mations described above. It reads in a text file contain-
ing an architecture described in Acme [4], and outputs

Design Edit Preferences Verify Tools Shelf

help ‘

I Components

Process

I Connectors
Client &l MessageStream
Server B
(4.000000Y) I Ports

| MessageReceive
| MessageSend

Figure 5: Aesop, distributed message passing style

an Acme description annotated with the results of the
performance analysis. Aesop exports and imports these
Acme descriptions (Figure 4).

In a typical scenario, the user begins the iterative design
process by constructing the top level design. He (or she)
estimates the service times of the components, names
the job classes, and fills in their transition probabilities.
The user then runs the performance analysis tool. Based
on the results he may replicate bottleneck components,
decompose some components and provide estimates of
service times at a lower level, or otherwise refine the
design. After making informed modifications, the user
repeats the process until an acceptable architecture is
found.

7 DISCUSSION AND FUTURE WORK

We have shown how to apply queueing network mod-
eling to software architectures in a particular style. A
naive adaptation is sufficient for a few simple architec-
tures, but proves inadequate for more interesting de-
signs. With the extensions that we have illustrated, the
adaptation becomes much more useful.

Three concerns remain. The performance predictions
are necessarily based on unreliable data: estimates must

be supplied by the user. The application above is re-
stricted to the distributed message passing style. The
underlying mathematical assumptions further restrict
the systems that can be modeled; for example, the valid-
ity of the results obtained in the example is dependent
on the service time distributions being roughly expo-
nential. Let us consider each of these in turn.

Dependence on unreliable data is unavoidable. Es-
timates made early in the design process cannot be
completely accurate, whether they are naively guessed,
based on the user’s experience, or extrapolated from
measurements of existing components. The initial per-
formance analysis cannot be more accurate than its in-
puts. However, there is no reason to take this for the
final answer. The performance analysis tool can be re-
run both as the design is altered and as more accurate
estimates become available, providing the user with in-
crementally improving feedback.

The application of queueing network analysis can be
extended to other architectural styles. The distributed
message passing style was intended to mesh with the
usual assumptions of the queueing network model. We
expect other styles to violate one or more of these as-
sumptions. As a result, further style-specific transfor-

mation of the original architecture will be necessary to
produce a tractable queueing network; also note that
for some styles queueing network analysis may not be
the most appropriate means of estimating performance.

In the pipe and filter style, for example, modeling sys-
tems with fan-out and fan-in presents a problem. Jobs
are generally assumed to exist in exactly one queue or
service center at a time, but in a branching pipe and fil-
ter system, this 1s not the case. Fortunately, techniques
exist for collapsing a subnetwork into an approximately
equivalent single composite queue, repeatedly if neces-
sary, and for allowing a job to occupy a set of service
centers simultaneously by declaring all but one “passive
resources.” Any subnetwork forming a simple pipeline
can be collapsed into a composite queue. By treating
some of the collapsed branches as passive resources, it
would be possible to approximate non-trivial pipe and
filter systems.

We believe that many other styles would be amenable to
similar adaptation of our results. However, this remains
an area for future research.

Earlier we made several mathematical assumptions, par-
ticularly concerning probability distributions of various
time intervals. It is usual to assume that the distribu-
tions are exponential (i.e., within an interval, tracking
the time since its start does not provide more infor-
mation about how much time remains). If this is not
really the case, the accuracy of the analysis described
will suffer, and the performance values obtained may be
more misleading than helpful. Results in queueing the-
ory that we have not discussed here permit the (more
difficult) analysis of queues with known nonexponen-
tial distributions. This additional analysis could also
be adapted to software architecture — following the same
approach that we have described here — thereby allowing
users to estimate the performance of systems with non-
exponential distributions. Working out the details of
using nonexponential distributions, however, is an item
for future research.

8 RELATED WORK
Two bodies of related work exist.

The first area is classical results in queueing theory. A
great deal of work has been done in queueing theory, and
many texts are available (e.g., Lazowska [8], Sauer [9],
Jain [5]). We build on this work by applying it in a dif-
ferent domain and interpreting the results in the soft-
ware design world. As we have noted, several issues
must be resolved in order to do this.

The second area 1is architecture-based analysis.
Architecture-based static analysis 1s an important and
growing area. Types of analyses include real-time sys-

tems in Unicon [10] and Aesop [3], component-connector

protocol compatibility [2], reliability block diagrams [1],
and adaptability in SAAM [6, 7]. Our adaptation of
queueing network modeling adds to the repertoire of
available static analysis tools, complementing the grow-
ing body of architecture-based notations and toolsets.

ACKNOWLEDGEMENTS

We would like to thank the developers of the Acme Li-
brary — Bob Monroe and Drew Kompanek — who pro-
vided much of the infrastructure on which our analysis
tool is based. We also acknowledge the developers of
the Aesop Environment, which provided the front end
to the tool.

This research was sponsored by the Defense Advanced
Research Projects Agency, and Rome Laboratory, Air
Force Materiel Command, USAF, under agreement
number F30602-97-2-0031, and by the National Sci-
ence Foundation under Grant No. CCR-9357792. The
U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The views
and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of the Defense Advanced Research
Projects Agency Rome Laboratory or the U.S. Govern-
ment.

REFERENCES
[1] A. Abd-Allah. Extending reliability block dia-

grams to software architectures. Technical Report
USC-CSE-97-501, University of Southern Califor-
nia, March? 1997.

[2] R. Allen and D. Garlan. A formal basis for architec-
tural connection. ACM Transactions on Software
Engineering and Methodology, July 1997.

[3] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
style in architectural design environments. In Pro-
ceedings of SIGSOFT’94: The Second ACM SIG-
SOFT Symposium on the Foundations of Software
Engineering, pages 179-185. ACM Press, Decem-
ber 1994.

[4] D. Garlan, R. Monroe, and D. Wile. ACME : An
architecture description interchange language. In

Proceedings of CASCON’ 97, November 1997.

[5] R. Jain. The art of computer systems performance
analysis. John Wiley & Sons, New York, NY, 1991.

[6] R. Kazman, G. Abowd, L. Bass, and P. Clements.
Scenario-based analysis of software architecture.
IEEFE Software, pages 47-55, November 1996.

[7] R. Kazman, L. Bass, G. Abowd, and M. Webb.
SAAM : A method for analyzing the properties of

software architectures. In Proceedings of the 16th
International Conference on Software Engineering,
pages 81-90, Sorrento, Italy, May 1994.

E. D. Lazowska et al. Quantitative system perfor-
mance : Computer system analysis using queueing
network models. Prentice-Hall, Englewood Cliffs,
NJ, 1984.

C. H. Sauer and K. M. Chandy. Computer systems
performance modeling. Prentice-Hall, Englewood

Cliffs, NJ, 1981.

M. Shaw, R. DeLine, D. V. Klein, T. L. Ross,
D. M. Young, and G. Zelesnik. Abstractions for
software architecture and tools to support them.
IEEFE Transactions on Software Engineering, Spe-
cial Issue on Software Architecture, 21(4):314-335,
April 1995.

