
Towards a formal treatment of

implicit invocation

J. Dingel1, D. Garlan1, S. Jha1, and D. Notkin2

1 Carnegie Mellon University, Pittsburgh, PA 15213, USA
fdingeljgarlanjsjhag@cs.cmu.edu

2 University of Washington, Seattle, WA 98195, USA
notkin@cs.washington.edu

Abstract. Implicit invocation [SN92,GN91] has become an important
architectural style for large-scale system design and evolution. This pa-
per addresses the lack of speci�cation and veri�cation formalisms for
such systems. A formal computational model for implicit invocation is
presented. We develop a veri�cation framework for implicit invocation
that is based on Jones' rely/guarantee reasoning for concurrent sys-
tems [Jon83,Jon90,St�91]. The application of the framework is illustrated
with several examples. The merits and limitations of the rely/guarantee
paradigm in the context of implicit invocation systems are also discussed.

1 Introduction

A critical issue for large-scale systems design and evolution is the choice of an
architectural style that permits the integration of separately-developed compo-
nents into larger systems. Familiar styles include those based on remote proce-
dure call [BN84], shared variables, asynchronous message passing, etc.

One key factor determining the e�ectiveness of an architectural style is the
ability to reason e�ectively about properties of a system from properties of its
components. As a result, considerable e�ort has gone into techniques for compo-
sition based on procedure invocation [Dij76,Hoa69], shared data [CM88,OG76],
and message passing [Hoa85,Mil80,ISO87]. Even though practitioners rarely carry
out formal reasoning throughout the full design and implementation process,
they can both use the techniques as needed and also apply intuition that has
been built up during development of the supporting techniques.

One increasingly important architectural style for system composition is im-
plicit invocation (II) [SN92,GN91]1. At its heart, II is based on the idea that
a component A can invoke another component B without A being required to
know B's name. Components such as B \register" interest in particular \events"
that components such as A \announce." When A announces such an event, the
II mechanism is responsible for invoking component B, even though A doesn't
know that B or any other components are registered.2

1 In other contexts \implicit invocation" is referred to by other names, such as
\publish-subscribe" and \event multicast".

2 In this paper, as we will see, a \component" is just a procedure or method.

1

There are a number of bene�ts of using the II architectural style, and it has
been used in diverse settings such as programming environments and operating
systems and others. Mechanisms to support II are found in commercial toolkits
(e.g., Softbench [Ger89], ToolTalk, DecFuse), communication standards (e.g.,
Corba), integration frameworks (e.g., OLE), and programming environments
(e.g., Smalltalk).

However, there is currently no established basis for reasoning about II sys-
tems. In particular it is di�cult to answer questions like: What will be the ef-
fect of announcing a given event? Have enough event bindings been declared to
achieve desired system behaviour? Does a given component announce su�cient
events to permit e�ective integration? If a new component is added to an exist-
ing system, will it break the existing system? Are there the right components to
produce desired overall system behaviour?

In this paper we describe one approach to providing such a basis for rea-
soning about systems designed using the II architectural style. The basic ideas
are based on extending Jones' rely/guarantee approach to events. Speci�cally,
we augment the assertion language to allow us to express the conditions under
which a component will announce events. The overall system behaviour can then
be reasoned about by establishing invariants over the e�ects achieved by individ-
ual components together with the state of pending events (i.e., those waiting to
implicitly-invoke other computations). In order to reason with these invariants
we are also led to impose several constraints on the form of system computa-
tions to guarantee the atomicity of certain state changes. As we will discuss, the
need for these additional constraints illustrates some of the limitations of an ap-
proach based on rely/guarantee, and suggests future extensions of the techniques
described in the paper.

1.1 II Systems: utility and challenges

As sketched above, the central notion underlying II systems is that the \invokes"
relation is decoupled from the \names" (or \knows-about") relation. That is, a
component A can invoke a component B without knowing B's name. One of the
simplest examples of II is when an operating system allows user code to register
a callback procedure. For example, user code might register a procedure that
is invoked when a particular signal is raised by the kernel. This allows the user
code added control without compromising the kernel.

A somewhat more complicated example arises in broadcast message-based
programming environments (such as those derived from Reiss' Field [Rei90] sys-
tem). A collection of tools, such as a compiler, a debugger, an editor, a pro-
gram visualization tool, etc., execute together. Rather than calling one another
directly, at appropriate times they each announce potentially interesting activi-
ties. For example, the editor might announce, \procedure f was saved", while the
debugger might announce, \the breakpoint in �le x.c at line 173 was reached."
Other tools might decide to listen for particular kinds of announcements. For
example, the editor might listen for \breakpoint" announcements, so that it can

2

move the cursor to the appropriate �le and line. A centralized message server is
used to deliver announcements to the tools that have registered interest.

By having tools announce potentially interesting events, and by having tools
register interest, the conventional link between \invokes" and \names" is bro-
ken. In the example above, for instance, the debugger \invokes" the editor by
announcing a breakpoint event, but the debugger is unaware of this. Indeed,
some editors might not listen for this event, or multiple tools (even multiple
editors) might listen for it. So, not only is implicit invocation used, but the invo-
cation relation becomes one-to-many as opposed to the conventional one-to-one
in conventional direct procedure invocation approaches.3

The conventional approach to reasoning about software systems depends on
the link between invokes and names. Speci�cally, it is hierarchical and thus
will not apply directly to II systems. In the hierarchical approach there are a
set of primitives|often language constructs|that are associated with speci�c
semantics (weakest preconditions, for example). Then one de�nes pre- and post-
conditions for procedures and uses standard compositional techniques over the
primitives to demonstrate that the axiomatic conditions hold. These conditions
are in turn used as primitives to prove properties about the enclosing procedures.
And so on, until one can prove a property (often correctness) at the top-level of
the program.

If one changes one of the primitives or procedures, a bounded amount of
reasoning needs to be reapplied: basically, proofs from that point to the root of
the tree need to be redone.

At the heart of these hierarchical reasoning approaches is the notion that the
invocation relation is known statically. This is what allows reasoning about a
procedure to be done in terms of the primitives and preconditions of procedures
in which the given procedure is written. This static invocation relationship is not
the fundamental composition structure used in II, so this reasoning approach is
not necessarily appropriate for II systems.

To see why, consider an approach that attempts to reduce reasoning about
II systems to standard hierarchical reasoning using pre- and post-conditions. In
the case of a sequential II system (one in which each event-triggered procedure
is executed to completion), one would be tempted to substitute:

announce(e)

with the corresponding procedure calls of the procedures bound to e. One can
then apply standard pre-post reasoning techniques to the system.

However there are two fundamental problems with this. First, it violates
the intended goal of decoupling the reasoning about a given component from
the system in which its events are bound to other components. This is because
changing any binding requires reanalysis of the components that announce the

3 Logically, there is no reason that conventional procedure invocation need be one-
to-one. But it happens at most rarely, and the one-to-many is a natural extension
of implicit invocation. Note, however, that the operating system callback case is a
situation in which it is implicit but also one-to-one.

3

events in the changed bindings. Second, the technique is not tractable. Since
the procedures bound to an event can be invoked in any order, it is necessary
to consider all n! sequences of procedure invocations where n is the number of
procedures.

In fact, the loosely coupled nature of the components in II systems cause
them to be formally much more like a concurrent system than a sequential one
(even when there is a single thread of control). Since the procedures associated
with an event can be invoked in any order by the underlying II mechanism,
there is inherent non-determinism in II systems, similar to that of concurrently
executing processes. This suggests that it should be possible to apply techniques
for reasoning about concurrent systems to II systems. In particular, it should
be possible to enhance the interface speci�cations of II components so that they
make explicit the role that they play in a system and environmental conditions
under which they expect to function.

Thus, the central challenge in reasoning about II is to �nd ways to specify
component interfaces and together with tractable composition mechanisms for
reasoning about aggregate behaviour. This theory would allow us to determine:

{ Does a given component satisfy its interface?
{ Is a given composition well-formed (complete and consistent)?

{ Is the aggregate behaviour of a system as desired?

1.2 Related Work

There are two general areas of related work. The �rst is research on implicit
invocation systems. Most of the work on such systems has centered around de-
veloping practical mechanisms for exploiting the paradigm in real systems, such
as programming environments like Field and Softbench [Rei90,Ger89]. Our work
is inspired by the practical success of this work, and hopes to make engineering
e�orts based on it more e�ective by providing more principled basis for reasoning
about II systems.

Within the general area of II research several researchers have attempted to
provide precise characterizations of implicit invocation systems. An early sur-
vey of applications of the technique appeared in [GKN88] in which the authors
illustrated how and why the ideas of II systems are pervasive in software sys-
tems. More recently [BCTW96] produced a taxonomic survey of II mechanisms,
together with a generic object model for comparison of them. While this line of
research has led to improved understanding of the design space for II-based sys-
tems, unlike our work, it does not attempt to provide a formal basis for reasoning
about them.

Closer to our line of research, several researchers have attempted to provide
a formal characterization of certain aspects of II systems. Two of this paper's
authors produced an early characterization of II systems in Z [GN91]. More
recently, researchers in software architecture have looked at some of the formal
properties of II architectural styles [AAG95]. This research was primarily focused

4

on taxonomic issues, and does not provide an explicit computational model that
permits compositional reasoning about the behaviour of such systems.

Other researchers have looked at formal issues of event-multicast and process
groups as a mechanism for achieving fault tolerance through replication [BJ89].
This work di�ers from that on implicit invocation in that multiple recipients of
an event typically perform the same computations. This leads to very di�erent
requirements for underlying theory, since the main issue is how to add and
remove replicated servers correctly to a running system.

The second closely related area of research is the area is formal models of
concurrency. As we have said, this paper draws heavily on that work, and es-
pecially that of Jones and St�len [Jon90,St�91]. In our work we attempt where
possible to apply existing research to this new domain, and to understand the
strengths and limitations of established techniques.

In the remainder of this paper we describe a formalization of implicit invo-
cation systems that is a �rst step towards this goal. The next section introduces
a formal model for II systems. Section 3 describes the speci�cation language.
Section 4 demonstrates how II systems can be veri�ed using rely/guarantee rea-
soning. Section 5 concludes and outlines further work.

2 A formal model of implicit invocation

We describe a computational model for II systems. A syntax and an operational
semantics are given. Two concepts are crucial to the model:methods and events.

Methods A method m is a piece of (imperative) code, denoted by code(m)
or just c, also called program, that uses local and global variables. We assume
there exists a set V of global variables that can be read and written by the
entire system. Each method has its own set of local variables. The local variables
local(m) of a method m can only be read or written by the code of m and
changes to them are not visible to the outside. The bindings of local variables
local(m) = fx1; : : : ; xng are recorded in the code c itself and supersede the
bindings of global variables with the same name. To this end, c is required to be
of the form

c ::= local [x1 = v1; : : : ; xn = vn] in C

for some n � 0 where the values of the local variables are given by the declaration
list [x1 = v1; : : : ; xn = vn]. We assume that all of the x1 through xn are distinct.

C is a program of a simple imperative language augmented with primitives
for announcing and consuming events and an atomic section construct:

C ::= x := expr j C1;C2 j
if B then C1 else C2 j while B do C j
announce(e) j consume(e) j hCi

The formal semantics of these statements will be given in the next section. The
structure of a method m is illustrated in Figure 1.

5

m

local(m)

code(m)

Fig. 1. Structure of a method m

Events The main purpose of an event is to trigger other methods. Typically,
the event thus communicates a certain state change that the rest of the system
needs to know about. In other words, an event is announced if and only if a
certain state predicate is met. Events are thus a carrier of semantics. The state
predicate whose truth is communicated through an event e is called the semantics
of e, written sem(e).

An event-method-binding EM, or binding for short, associates each event e
with a set of methods that are to be triggered when that event is announced.
Formally, EM is a possibly empty set of event-method pairs (e;m). Note that
an event need not be bound to any methods and that several methods can be
bound to the same event. An event e is considered to be external with respect
to a set of methods M , if none of the methods in M issue e. (Note, however,
methods still can be bound to external events.) Events that are not external are
called internal.

De�nition 1. A system S = (M;V;EM; Ex) is a collection of methods M to-
gether with a set of global variables V , a binding EM and a set of events Ex
that is external to M . �

2.1 Operational semantics

The essential operational behaviour of an II system is that when methods execute
they may announce events. When an event is announced the set of event-method
pairs (as determined by EM) is added to an \active event" multiset. Concurrent
with method executions, event-method pairs are removed from the active event
set, causing the invocation of the associated method. In this model, we leave
unspeci�ed (i.e., non-deterministic) the policy that decides which event-method
pair will be selected from the active event set. In practice, systems institute
speci�c policies to achieve certain kinds of ordering relationships. (Later in Sec-
tion 3.1 we will see an example where it is necessary to pick a particular dispatch
policy.)

To achieve compositionality the semantics of a collection of methods will be
given subject to the behaviour of the environment the methods are executing
in. The semantics de�nes transitions between con�gurations. We �rst introduce
the components of a con�guration. Methods can either be waiting for events
or executing. To distinguish between these states each method mi is associated
with a boolean
ag ai. If ai = true, then ci, the code of method mi, is currently

6

being executed, and we say that method mi is active. ai = false indicates that
code ci is currently not being executed. In this case, method mi is called idle.

A state s, is a mapping from global variables to values, s : V ! Val. A
multiset X = fjx1; : : : ; xnjg over some carrier set Y is a mapping X : Y ! N.
x 2 X abbreviates X(x) > 0. X1 + X2 and X1 � X2 denote the union and
subtraction of two multisets respectively. Let ae be the set of active events. For
now, we assume that the announcement of events is commutative and model ae
by a multiset over event-method pairs (e;m). Whenever (e;m) 2 ae then event
e is currently active and still needs to be delivered to method m. Later, we will
encounter an example where events are not commutative and a more re�ned
data structure for events (e.g., a queue) is required.

De�nition 2. Let ci be programs, ai be boolean
ags, s a state, and ae a set
of active events. A con�guration is a 3-tuple

hh(ci; ai)i
n
i=1; s; aei

where h(ci; ai)ini=1 = h(c1; a1); : : : ; (cn; ; an)i. If the precise number of methods
is irrelevant, we will abbreviate this by h(ci; ai)ii.

A transition is of the form hh(ci; si; ai)ii; s; aei
l
�! hh(c0i; s

0
i; a

0
i)ii; s

0; ae0i
where the label l is one of fenv; prog. If l = pro then we have a program transi-
tion. Environment transitions have l = env. Intuitively, environment transitions
model transitions made by other methods in the system. �

Method semantics Before the operational semantics of the overall system can
be de�ned, we need to give a semantics for the code of a method. This semantics
is a family of local transition relations (EM;m) that is parameterized with the
current binding EM, and the method m which is currently executing. These
local transition relations link local con�gurations of the form �c; s; ae�. A local
transition

�c; s; ae� (EM;m) �c
0; s0; ae0�

means that code c transformed state s and the set of active events ae to s0 and
ae0 respectively assuming that c is executed under the binding EM, and that c
is the code of method m. The remainder of the code is c0. A local transition

�c; s; ae� (EM;m) �s
0; ae0�

additionally expresses that c terminates in one step.
The imperative constructs have the standard semantics. Assignments, for

example, are de�ned as follows:

�x := e; s; ae� (EM;m) � [sjx = n]; ae�
if e evaluates to n in s

The atomic section construct hides intermediate states:

�C; s; ae� �
(EM;m) �s

0; ae0�

�hCi; s; ae� (EM;m) �s
0; ae0�

7

where �
(EM;m) denotes the re
exive and transitive closure of (EM;m).

The event primitives announce and consume behave as follows:

�announce(e); s; ae� (EM;m) �s; ae+ fj(e;m0)j (e;m0) 2 EMjg�

That is, announce(e) causes (e;m0) to be announced only if e is bound to m0

in the current binding EM. Note that if an announced event has no methods
bound to it by EM, no pairs are added to the active event list|that is, ae is
unchanged.

Once a consume(e) is executed by method m, the event e is considered
delivered to m and the pair (e;m) is removed from the set of active events.

�consume(e); s; ae� (EM;m) �s; ae� fj(e;m)jg�

We want a local variable declaration to hide the changes of the declared vari-
ables. We adopt the standard operational treatment of local variables. If, from
a state in which the local variables carry their local values, C has a transition
to �C0; s0; ae0 �, then � local lb in C; s; ae� has a transition that leaves the
values of the local variables unchanged and stores the new values of the local
variables in the updated declaration list dl0.

�C; [sjx1 = v1j : : : jxn = vn]; ae� (EM;m) hC0; s0; ae0i

� local dl in C; s; ae� (EM;m) � local dl
0 in C0; s00; ae0�

where dl = [x1 = v1; : : : ; xn = vn] and dl0 = [x1 = s0(x1); : : : ; xn = s0(xn)] and
s00 = [s0jx1 = s(x1)j : : : jxn = s(xn)]. Termination of the body of a declaration
induces termination of the declaration.

�C; [sjx1 = v1j : : : jxn = vn]; ae� (EM;m) �s
0; ae0�

� local dl in C; s; ae� (EM;m)�s
00; ae0�

where dl = [x1 = v1; : : : ; xn = vn] and s
00 = [s0jx1 = s(x1)j : : : jxn = s(xn)].

System semantics We are now ready to de�ne the global transition relation
that describes the behaviour of the entire system.

De�nition 3. For each binding EM the transition relation�!EM is the smallest
relation satisfying

{ environment transitions:

hh(ci; ai)ii; s; aei
env
�!EM hh(ci; ai)ii; s

0; ae0i

for all ci; ai; s; ae; s0; ae0 and

8

{ program transitions:

hh(c1; a1); : : : ; (ci; ai); : : : ; (cn; an)i; s; aei
pro
�!EM

hh(c1; a1); : : : ; (c
0
i; a

0
i); : : : ; (cn; an)i; s

0; ae0i

whenever

1. ai = true and �ci; s; ae� (EM;mi) �c
0
i; s

0; ae0� and a0i = ai, or
2. ai = true and � ci; s; ae� (EM;mi) � s0; ae0� and c0i = code(mi) and

a0i = false, or
3. (e;mi) 2 ae and ai = false and a0i = true and c0 = c and ae0 = ae. �

The intuition behind the above de�nition is the following: The environment has
access to the global state and the set of active events and can change these
arbitrarily in an environment transition. A program transition can arise in three
di�erent situations:

1. If a method is active and its code is not yet terminated, then it continues to
be active and execute its code.

2. If a method is active and its code terminates, then it is set to idle, and the
code is restored.

3. If event e is active and bound to method mi that is not currently active,
then mi can be activated.

Note that an event cannot trigger a method that is already active. In other
words, at most one \incarnation" of each method is active at any time. Once
a method has been activated, its code will be fully executed before it gets de-
activated. Also note that this formulation can readily be extended to handle,
for instance, changes to the EM binding at runtime, or the use of more speci�c
method activation strategies.

When reasoning about an II system it is typically the case that one wants
to assert the establishment of some predicate once the system has reached a
quiescent state. To facilitate that we identify a disabled con�guration as one
that can make no transitions.

De�nition 4. A con�guration hh(ci; si; ai)ii; s; aei is disabled under EM if there
are no c0i, s

0
i, a

0
i, s

0 and ae0 such that

hh(ci; si; ai)ii; s; aei
pro
�!EM hh(c0i; s

0
i; a

0
i)ii; s

0; ae0i:

De�nition 5. A computation under some binding EM is a possibly in�nite se-
quence of program and environment transitions

hh(c1i ; s1i; a1i)ii; s1; ae1i
l1�!EM : : :

lj�1
�! hh(cji ; sji ; aji)ii; sj; aeji

lj
�!EM : : :

such that the �nal con�guration is disabled under EM if the sequence is �nite.
A �nite computation is also said to be terminating. �

9

Given a computation �, then C(�), S(�), AE(�) and L(�) are the obvious
projection functions to sequences of programs, states, active events and transi-
tion labels. �[i], C(�; i),A(�; i), S(�; i), AE(�; i) and L(�; i) denote, respectively,
the ith con�guration hh(cji ; sji ; aji)ij ; s; aei, the i

th vector of programs hciii, the
ith vector of
ags haiii, the ith state si, the ith set of active events aei, and the
ith label li of �. Let S�AE be the product of the two projection functions S and
AE, that is, S�AE(�; i) = (S(�; i); AE(�; i)).

Given a system S, � is a computation of S if it starts out with a set of
inactive methods.

De�nition 6. Given a system S = (M;V;EM; Ex) with M = fm1; : : : ;mng,
the set of all computations of S, comp(S), is given by all computations � under
EM with C(�; 1) = hcode(mi)ini=1 and A(�; 1) = hfalseini=1. �

3 Speci�cation language

Rely/guarantee reasoning [Jon90,St�91] has successfully been applied to concur-
rent systems. We now show this approach can be extended to our computational
model of II systems.

Predicates States are described by state predicates. As usual, these are formu-
las consisting of constants, variables, function and predicate symbols and the
standard boolean connectives. Unprimed variables will be used to refer to an
earlier system state. Note that this is not necessarily the previous state. Thus,
for each variable x, there is a primed variable x0. Primed variables cannot ap-
pear in programs. Let A be a state predicate. We write (s1; s2) j= A if A is true
when each unprimed variable x in A is assigned the value s1(x) and each primed
variable x0 in A is assigned the value s2(x). A state predicate A can thus be
interpreted as the set of pairs of states (s1; s2) such that (s1; s2) j= A. In this
case, A is called a binary state predicate. If, however, A does not contain any
primed variables, then A may also be thought of as the set of states s such that
s j= A. A is called a unary state predicate in this case.

In certain situations we also want to express how the set of active events
will be changed in the course of a transition. To this end we introduce event
predicates. The variable ae is reserved to denote the set of active events. Given
an event e, an event predicate is a boolean combination of the atomic predicates
active(e), e++ and e--. Let ae and ae0 be two multisets of active events. We say
active(e) is true in (ae; ae0) if there is a method m such that (e;m) 2 ae0, that
is, (ae; ae0) j= active(e) i� (e;m) 2 ae0 for some m. e++ expresses that e has just
been announced. e-- says that e has just been consumed. e++ (or e--) is true in
(ae; ae0) if the number of occurrences of e in ae0 is one greater (or smaller) than
the number of occurrences of e in ae. Formally, (ae; ae0) j= e++ i� ae(e;m) =
ae0(e;m) + 1 for some m and (ae; ae0) j= e-- i� ae(e;m) = ae0(e;m) � 1 for
some m. A state-event predicate is the boolean combination of state and event
predicates and is thus interpreted over 4-tuples ((s; ae); (s0; ae0)) in the obvious
fashion.

10

Speci�cations A speci�cation is of the form ' = (P;R;G;Q), where the
pre-condition P is a unary event-state predicate, and the rely-condition R, the
guarantee-condition G, the input/output-condition Q are binary event-state pred-
icates.

Let len(�) be the number of con�gurations in �. Given a set of variables
X and two states s1, s2, then s1 =X s2 denotes that for all variables x 2 X,
s1(x) = s2(x) while s1 6=X s2 denotes that there exists a variable x 2 X, such
that s1(x) 6= s2(x).

De�nition 7. Let V be the set of global program variables. Given a binding
EM, a pre-condition P , a rely-condition R, then env(V; P;R) denotes the set of
all computations � under EM, such that

{ S�AE(�; 1) j= P ,
{ for all 1 � i < len(�), whenever L(�; i) = env and S(�; i) 6=V S(�; i + 1),
then (S�AE(�; i); S�AE(�; i+1)) j= R. That is, all environment transitions
that change the value of at least one variable satisfy the rely R. �

De�nition 8. Let V be the set of global program variables. Given a binding
EM, a guarantee-condition G, a input/output-condition Q, then prog(V;G;Q)
denotes the set of all computations � under EM, such that

{ � is �nite,
{ for all 1 � i < len(�), whenever L(�; i) = pro and S(�; i) 6=V S(�; i + 1),
then (S�AE(�; i); S�AE(�; i+1)) j= G. That is, all program transitions that
change the value of at least one variable satisfy the guarantee G.

{ (S�AE(�; 1); S�AE(�; len(�))) j= Q. �

Judgements A judgement is a pair consisting of a system S = (M;V;EM; Ex),
and a speci�cation ' = (P;R;G;Q), written S j= '. A judgement is true, if
all computations � of M under EM are such that whenever � terminates and
satis�es the relies (on initial state and environment transitions), then it will also
satisfy the guarantees (on the program transitions and the �nal state).

De�nition 9. Let S = (M;V;EM; Ex) be a system. The judgement

S j= (P;R;G;Q)

is true i�

comp(S) \ env(V; P;R) � prog(V;G;Q):

�

We now de�ne executions. These are �nite computations that start and end
with an empty set of active events and restrict top-level environment interference
to the announcement of external events while the state is left unchanged.

11

De�nition 10. Let S = (M;V;EM; Ex) be a system. The set of executions of
S, exec(S), is given by

exec(S) = comp(S) \ env(V; ae = ;; REx) \ prog(V; true; true)

where REx is

(
V
x2V x

0 = x) ^ (ae0 = ae+ E) ^ (E � f(e;m)je 2 Ex ^ (e;m) 2 EMg)

and thus restricts the top-level environment to the announcement of external
events. For state-event predicates P and Q, a partial correctness triple

fPg S fQg

is true i� every execution of S that starts in a state satisfying P terminates in
a state such that Q holds. �

When considering executions the system is thus regarded not as a closed sys-
tem but one that is still subject to interference by the top-level environment.
However, this interference is limited to the announcement of external events.

3.1 Example: sets and counters

A common use of II systems is to provide loose coupling between parts of a
system that are individually responsible for updating separate portions of the
state. The EM binding is used to provide establish relationships between the
di�erent parts of the system state: speci�cally, when one part of the system
changes its part of the state, events trigger corresponding updates to other parts
of the state.

As a simple example, consider a system in which the state consists of a set
and a counter. The set has methods to insert and delete elements. The counter
has increment and decrement methods. The EM binding is then used to establish
a system \invariant" that the value of the counter be the size of the set. Formally,
consider a system S with methods M = finsert(x); incr; delete(x); decrg, global
variables V = fC; Sg, external events Ex = fadd(x); rem(x)g, internal events
fins; delg, and binding EM with

event method

add(x) insert(x)
rem(x) delete(x)
ins incr
del decr

The idea is that an element x can be inserted into or deleted from the set S
using the method insert(x) or delete(x). Analogously, the counter C can be in-
cremented or decremented using incr or decr. The methods have the following
structure. In this case EM provides the necessary binding between events an-
nounced by the methods that change the state of the set, so that the state of
the counter can be updated.

12

m : insert(x)
local(m) : ;
code(m) :

local [] in
consume(add(x));
if x 62 S then

hS := S [fxg;
announce(ins)i

delete(x)
;

local [] in
consume(rem(x));
if x 2 S then

hS := Snfxg;
announce(del)i

m : incr
local(m) : ;
code(m) :

local [] in
hC := C + 1;
consume(ins)i

decr
;

local [] in
hC := C � 1;
consume(del)i

Given one of the external events add(x) or rem(x), the corresponding method
is invoked. If necessary, the set S is updated by inserting or deleting the element
x and the corresponding event is announced. This in turn triggers either incr or
decr.

The above methods communicate by exchanging the events ins and del. These
events have the following semantics.

event e sem(e)
ins x 62 S ^ S0 = S [fxg
del x 2 S ^ S0 = Snfxg

Given a set of events E, the characteristic formula of E expresses that all
events in E get announced if and only if their semantics is met. Formally, cfE isV
e2E(e++ $ sem(e)). Making cfE part of the guarantee condition, thus allows

us to show that a given method respects the semantics of its events.
When run in an initial state in which x 62 S, insert(x) announces the event

inserted(x) precisely when its semantics is met. Similarly for delete(x) and initial
states in which x 2 S. If these preconditions are not met, both methods will
not cause any state change (the next state relation is restricted to stuttering
through the guarantee false). Unrestricted environment interference prevents us
from having any knowledge about the �nal state. Formally,

(insert(x); V;EM; Ex) j= (x 62 S; true; cffins;delg; true)

(insert(x); V;EM; Ex) j= (x 2 S; true; false; true)

(delete(x); V;EM; Ex) j= (x 2 S; true; cffins;delg; true)

(delete(x); V;EM; Ex) j= (x 62 S; true; false; true):

13

Suppose we wanted to extend our system by the external event empty, the in-
ternal event init, the methods initialize and reset and the bindings

event method

empty initialize
init reset

where

m : initialize
local(m) : ;
code(m) :

local [] in
consume(empty);
hS := ;;
announce(init)i

reset
;

local [] in
hC := 0;
consume(init)i

The external event empty causes method initialize to be invoked, which emp-
ties the set and announces the init event. This in turn triggers the reset method
which sets the counter to 0. In this extended system events are not commutative
anymore. We need to keep track of the order in which events are announced
and thus require a more re�ned computational model. More precisely, the set of
active events ae must thus be kept in a queue rather than a multiset.

4 Formal reasoning

Assume that we want to reason about the system S = (M;V;EM; Ex) and show
that it satis�es some partial correctness triple fPSg S fQSg. This section shows
how this can be accomplished.

1. We start with some local reasoning on the method level.

(a) First, we choose appropriate predicates P , R, and Q describing the ini-
tial state, the relies on the top-level environment, and the �nal state
respectively.

(b) For each method m 2 M and the corresponding \rest of the system"
Mnfmg we identify guarantees Gm and GMnfmg such that

i. whenever m is executed from an initial state satisfying P and in
an environment satisfying R _GMnfmg and terminates, then m will
change the state according to Gm and the �nal state will be such
that Q holds. Formally,

(m;V;EM; Ex) j= (P;R_GMnfmg; Gm; Q)

for all m 2 M , and

14

ii. whenever Mnfmg, the rest of the system, is run from an initial state
satisfying P and in an environment satisfyingR_Gm and terminates,
thenMnfmgwill change the state according to GMnfmg and the �nal
state will be such that Q holds. Formally,

(Mnfmg; V;EM; Ex) j= (P;R_Gm; GMnfmg; Q)

for all m 2 M .
Intuitively, the above shows that both the method m and the rest of the
system Mnfmg stick to their guarantees if the other one does.

(c) Now it is safe to conclude that whenever the entire system is executed
in an initial state satisfying P and in an environment satisfying R and
terminates, then it will change the state according to

W
m2M Gm and the

�nal state will be such that Q is met. That is,

(M;V;EM; Ex) j= (P;R;
W
m2MGm; Q):

The soundness of this step is implied by the rely/guarantee reasoning
method put forward by Jones and others [Jon83,Jon90,St�91].

2. Now we weaken the above judgement. By de�nition, every execution starts
in a state with ae = ; and the interference allowed by the top-level environ-
ment is described by REx. Moreover, we are only interested in initial states
satisfying PS . Thus, we need to show PS ^ ae = ;) P and REx) R. In
this case, we get

(M;V;EM; Ex) j= (PS ^ ae = ;; REx; true; Q):

3. Due to the semantics of announce(e), ae cannot contain events that do not
trigger anything. Thus, every disabled con�guration must have ae = ;. To
obtain the desired partial correctness property, we therefore need to show
Q ^ ae = ;) QS . In this case, it is sound to conclude that the partial
correctness property holds

fPSg S fQSg:

Following [Jon90,St�91] a more general formulation step 1 would be possible.
However, the present treatment is su�cient for our purposes.

4.1 Example: sets and counters

Let S be the system introduced in Section 3.1. By binding the inserted(x) and
the deleted(x) events to incr and decr respectively, we hope to have established a
link between the size of the set S and the value of the counter C. More precisely,
we want the triple

fjSj = Cg S fjSj = Cg

to hold.

15

1. Let I1 be given by

I1 � (jSj = C +#ins�#del)

where #e abbreviates the number of occurrences of e in ae, that is, ae(e;m)
for some m. To prove the partial correctness property above we adopt the
outlined strategy in a somewhat degenerate but su�cient fashion. We show
that I1 is an invariant for each of the methods and thus also for the entire
system. More precisely, with respect to the above strategy we let P = R =
Gm = GMnfmg = Q = I1 for all m 2 M . We can show that all methods
preserve I1.

(m;V;EM; Ex) j= (I1; I1; I1; I1)

for all m 2 finsert(x); delete(x); incr; decrg.
This part of the veri�cation reveals an important point. I1 expresses

a relationship between the state variables and the set of active events. For
this invariant to be preserved by every transition, it is necessary that every
method announce changes to the state variables that destroy that relation-
ship by simultaneously announcing the corresponding event using the atomic
section construct. If, for instance, a method �rst updates the state variables
and then announces the event at some later stage, it is likely to be impossible
to establish any non-trivial relationship between the state variables and the
pending events for that method. (We regard the need for an atomic region
construct as a limitation of our framework that compromises practicality.
Section 5 contains a more detailed discussion of this issue.)

Next, it is easy to see that for each m the rest of the system Mnfmg
also preserves the invariant.

(Mnfmg; V;EM; Ex) j= (I1; I1; I1; I1)

for all m 2 finsert(x); delete(x); incr; decrg. Thus, I1 is an invariant for all
of S .

S j= (I1; I1; I1; I1):

2. We weaken the speci�cation (I1; I1; I1; I1) to (C = jSj^ae = ;; REx; true; I1).
Note that C = jSj ^ ae = ;) I1 and REx) I1. Thus,

S j= (C = jSj ^ ae = ;; REx; true; I1):

3. We show
fC = jSjg S fC = jSjg

by arguing that I1 ^ ae = ; implies C = jSj.

Note that the above reasoning could easily be extended to handle the example
system augmented with the methods initialize and reset under the appropriate
binding.

16

4.2 Example: a �lesystem

We now consider an example inspired by the common application of implicit
invocation to software development environments, such as Field [Rei90].

Previously, a state was a mapping from variables to values. We now consider
a slightly di�erent scenario, in which the state is given by the contents and the
attributes of a �le system F . Suppose F is a set of source �les. We assume that
the �les in F correspond to an executable �le target and that make(F; target)
creates a new executable with respect to the current contents of F .

In the following, f will range over �les in F . The system F contains the
methodsM = fedit(f); compileg, the internal event modi�ed, the external events
update(f), and the binding EM with

event method

update(f) edit(f)
modi�ed compile

The semantics of the modi�ed event is

sem(modi�ed) � :fresh(target; F)

where fresh(f; F) denotes that the last modi�cation date of f is more recent
than that of all �les in F , that is, for all f 0 2 F ,

date last modi�ed(f) � date last modi�ed(f 0):

We assume that the methods are of the following form:

m : edit(f)
local(m) : buf
code(m) :

local [buf = ;] in
consume(update(f))
read(f; buf);
: : :

hif dirty(buf; f) then
save(buf; f);
if f 2 F then

announce(modi�ed)i

compile
;

local [] in
hmake(F; target);
consume(modi�ed)i

An external update(f) event causes the �le f to be edited. The edit(f) method
copies the contents of f into a local bu�er buf and if, at the end of the edit
session, the bu�er di�ers from the contents of f , then f is updated with buf.
If f also is a source �le relevant to target the modi�ed event is announced. The
modi�ed event triggers the compile method which updates the executable. Note
that the update(f) and the modi�ed event are not commutative, that is, the order
in which events are announced does matter. Again, this means that ae must be
kept as a queue rather than a multiset.

17

We would like to show that

ffresh(target; F)g F ffresh(target; F)g:

To this end, we again �rst establish an invariant. However, in contrast to the
previous example, we make use of the semantics of the modi�ed event to prove
the invariant. Let

I2 � fresh(target; F)_ sem(modi�ed)

I02 � fresh(target; F)_ active(modi�ed) _

(F 0 = F ^ :(modi�ed++) ^ :(modi�ed--)):

I2 is a tautology and thus trivially an invariant. We can show that whenever
the environment changes the state according to I02, then edit(f) will announce
modi�ed if and only if its semantics is met. Similarly for compile.

(edit(f); V;EM; Ex) j= (true; I02; cfmod; I
0
2)

(compile; V;EM; Ex) j= (true; I02; cfmod; I
0
2)

where cfmod � modi�ed++$ sem(modi�ed). Using the tautology I2 it is easy to
see that cfmod implies I02. Consequently, the relies and guarantees �t together,
and we can conclude

F j= (true; I02; cfmod; I
0
2):

Since REx implies I02, this can be weakened to

F j= (ae = ; ^ fresh(target; F); REx; true; I
0
2)

which then implies the desired result

ffresh(target; F)g F ffresh(target; F)g:

5 Conclusion and further work

We have presented a formal model of II. Using this model as a guideline, we
developed a framework that supports formal reasoning about II systems. This
framework was obtained as an extension of Jones' rely/guarantee reasoning, and
thus naturally inherits many of its bene�ts like support for compositionality
and concurrency. Several examples illustrated the use and applicability of the
proposed framework. A potential abstraction mechanism is o�ered through the
event semantics.

To allow for �ne-grained parallelism we also chose a �ne-grained operational
semantics. On the speci�cation level, however, we would like to be more abstract
and not always be forced to reason about every transition. Unfortunately, the
kind of rely/guarantee reasoning adopted here requires us to do exactly that: An

18

assertion is only an invariant if it is preserved by every transition. As we have
seen, invariants are crucial for the veri�cation. To be able to prove non-trivial
invariants, we thus had to enforce certain atomicity constraints by means of an
atomic region construct.

This is undesirable for three reasons: First, it con
icts with our ideal of �ne
grained parallelism. Second, it compromises the practicality of the framework,
since sometimes II systems are implemented without such a construct. Third,
and most importantly, it seems to be, in some sense, an unnecessary restric-
tion. Consider the set/counter example. Suppose we removed all critical region
constructs. The invariant would obviously fail, whereas the partial correctness
property would continue to hold. What is essential here is that every set update
is eventually followed by the announcement of the appropriate event. The simul-
taneity in our framework enforced by the need for an invariant is just a special
case of this. This reveals a fundamental mismatch between judgements that are
true on the one hand and judgements that can be proven in our framework on
the other hand.

Another artifact of our need for low level invariants is the explicit consume(e)
statement. On the one hand, it allows us to pinpoint changes to the set of active
events to transitions that also update the state in a speci�c way. On the other
hand, it compromises practicality and maintainability. II systems in general do
not have an explicit consume(e) statement. Instead, system runtime mecha-
nisms invoke the method bound to an event, automatically removing that event
from active event set. Moreover, the explicit consumption of events introduces
an unnecessary dependency between the event-method binding EM and the code
of a method. In particular, changes to EM must be re
ected by changes to the
consume statements.

Further work The most important focus of further work will be the develop-
ment of a veri�cation framework that does not impose the restrictions mentioned
above. Such a framework would allow, for example, the proof of the partial cor-
rectness triple of the counter example even when the insert(x) method chooses
to announce the inserted(x) after the actual update of the set. The framework
should also not depend on the explicit consumption of events. A formulation of
rely/guarantee reasoning in which relies and guarantees can be given in terms
of temporal logic formulas seems promising in this respect.

The event semantics plays only a peripheral role in this paper. However, we
envision it as a powerful abstraction mechanism that forms the basis of a two
stage process: First, it shown that events are announced precisely when they are
supposed to. In other words, using local reasoning similar to the one described
in this paper, we prove that all methods respect the event semantics. Second,
this event semantics is then used to do global reasoning, that is, the behaviour
of the overall system is reasoned about purely in terms of the events and their
semantics. To structure the reasoning, it might then be helpful to organize the
dependencies between events by means of a graph or even a Petri net.

19

References

[AAG95] G. Abowd, R. Allen, and D. Garlan. Formalizing style to understand de-
scriptions of software architecture. ACM Transactions on Software Engi-

neering and Methodology, October 1995.
[BCTW96] D.J. Barrett, L.A. Clarke, P.L. Tarr, and A.E.Wise. A framework for event-

based software integration. ACM Transactions on Software Engineering and

Methodology, 5(4):378{421, October 1996.
[BJ89] K. Birman and Th. Joseph. Exploiting replication in distributed systems. In

Mullender and Sape, editors, Distributed Systems, pages 319 { 365. Addison
Wesley, 1989.

[BN84] A. Birrel and B. Nelson. Implementing remote procedure calls. ACM Trans-

actions on Computer Systems, 2(1):356{372, February 1984.
[CM88] K.M. Chandy and J. Misra. Parallel program design: a foundation. Addison

Wesley, 1988.
[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood

Cli�s, NJ, 1976.
[Ger89] C. Gerety. HP Softbench: A new generation of software development tools.

Technical Report SESD-89-25, Hewlett-Packard Software Engineering Sys-
tems Division, Fort Collins, Colorado, November 1989.

[GKN88] D. Garlan, G.E. Kaiser, and D. Notkin. On the criteria to be used in
composing tools into systems. Technical Report 88-08-09, Department of
Computer Science, University of Washington, Seattle, WA, August 1988.

[GN91] D. Garlan and D. Notkin. Formalizing design spaces: Implicit invocation
mechanisms. In VDM'91: Formal Software Development Methods, pages
31{44, Noordwijkerhout, The Netherlands, October 1991. Springer-Verlag,
LNCS 551.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10), October 1969.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[ISO87] ISO. Information processing systems { open systems interconnection {

LOTOS { a formal description technique based on the temporal ordering of
observational behaviour. Technical Report ISO/TC 97/SC 21, International
Standards Organization, 1987.

[Jon83] C.B. Jones. Tentative steps toward a development method for interfering
programs. Transactions on Programming Languages and Systems, 5(4):569{
619, October 1983.

[Jon90] C.B. Jones. Systematic Software Development Using VDM. Prentice Hall
International, 1990. Second Edition.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume Lecture Notes
in Computer Science, volume 92. Springer-Verlag, 1980.

[OG76] S. Owicki and D. Gries. Verifying properties of parallel programs: an ax-
iomatic approach. Communications of the ACM, 19(5):279{284, May 1976.

[Rei90] S.P. Reiss. Connecting tools using message passing in the FIELD program
development environment. IEEE Software, July 1990.

[SN92] K. Sullivan and D. Notkin. Reconciling environment integration and com-
ponent independence. ACM Transactions on Software Engineering and

Methodology, 1(3), July 1992.
[St�91] K. St�len. A method for the development of totally correct shared-state

parallel programs. In CONCUR '91, pages 510{525. Springer Verlag, 1991.

20

