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 Abstract

 Software system builders are increasingly recognizing the importance of
exploiting design knowledge in the engineering of new systems.  One way to do
this is to define an architectural style for a collection of related systems. The style
determines a coherent vocabulary of system design elements and rules for their
composition.  By structuring the design space for a family of related systems a
style can, in principle, drastically simplify the process of building a system, reduce
costs of implementation through reusable infrastructure, and improve system
integrity through style-specific analyses and checks.

 Like architectural style, object-oriented design patterns attempt to capture
and exploit design knowledge to ease the process of designing software systems
and reusing proven designs.  There are, however, significant differences in the
roles and capabilities of architectural styles and object-oriented design patterns, as
there are between architectural design and object-oriented design.  In this paper we
illustrate the relationship between software architecture and object-oriented
design, as well as the relationship between architectural styles and design patterns.
We begin by defining our terms and then proceed to compare and contrast the
various approaches with examples.
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1 Introduction

A critical challenge for software engineering is to capture system designs and reuse estab-
lished design knowledge when building new systems.  One promising approach is to focus on the
architectural level of system design.  This level of design is concerned with the gross structure of
a system as a composition of interacting parts. Key issues illuminated by an architectural design
are the assignment of functionality to design elements, protocols of interaction between the ele-
ments, scaling and portability, and global system properties such as rates of processing, end-to-
end capacities, and overall performance [SG96].

Architectural descriptions have long been recognized as an essential ingredient of a well-
designed system. These descriptions tend to be informal and idiosyncratic, consisting of box-and-
line diagrams that convey the essential system structure, together with prose that explains the
meaning of the symbols. Nonetheless, they serve as a key component in the development of most
systems, both by providing a critical staging point for determining whether a system can meet its
essential requirements and by guiding implementors in system construction.

More recently architectural descriptions are being recognized as an appropriate vehicle for
codification and reuse of design knowledge. Much of the power of architectural descriptions
comes from use of idiomatic architectural terms, such as “client-server system,” “layered system,”
or “blackboard organization.” These convey widespread, if informal, understanding of the
descriptions, and allow engineers to quickly communicate their designs to others.

In many cases, such as those mentioned above, architectural idioms represent what has been
termed an architectural style [AAG93]. As we describe later, an architectural style provides a
design vocabulary (clients and servers, pipes and filters, blackboards and knowledge sources, etc.)
together with rules for how elements in that vocabulary can be combined. In essence, a style pro-
vides a specialized design language for a specific class of systems.  Principled use of architectural
styles promises many benefits, including simplifying the process of designing and implementing a
system by focusing the design space, reducing implementation costs through reusable infrastruc-
ture, and improving system integrity with style-specific analyses and checks.

Object-oriented design and design patterns

Another approach to describing system designs is to use an object-oriented paradigm.  In its
most simple form, object-oriented design provides a way for system designers to encapsulate data
and behavior in discrete objects that provide explicit interfaces to other objects.  Groups of objects
interact by passing messages amongst themselves.  Object-oriented design (OOD) has proven to
be quite popular in practice, and sophisticated OOD methodologies provide significant leverage
for designing software [i.e. Rum+91, SM92].  There is growing recognition, however, that
although OOD provides a number of benefits, including ease of decomposing and partitioning
system elements, functionality, and responsibility, it is not, by itself, particularly well suited to
describing complex interactions between groups of objects.  Likewise, although individual objects
are often quite reusable at an implementation level, it can be difficult to capture and reuse com-
mon design idioms that involve multiple objects.
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An increasingly popular approach to addressing these limitations of object-oriented design is
to make use of design patterns.  Although the principles underlying design patterns are not inher-
ently tied to object-oriented design, much of the recent work in the area has focused on design
patterns for composing objects [GHJV95, Pree95].  Like architectural styles, design patterns pro-
vide guidance for combining design elements in principled and proven ways.

In this paper we illustrate the relationship between software architecture and object-oriented
design, as well as the relationship between architectural styles and design patterns.  We begin by
defining our terms and then proceed to compare and contrast the various approaches with exam-
ples.

2 What is Software Architecture?

The architectural design of a software system is concerned with its gross structure and the
ways in which that structure leads to the satisfaction of key system properties. In practice an
architectural design fulfills two primary roles. First, architectural design provides a level of design
abstraction at which software system designers can reason about overall system behavior: func-
tion, performance, reliability, etc. By abstracting away from implementation details, a good archi-
tectural description makes a system intellectually tractable, exposing the properties that are most
crucial to its success.  In this way an architectural design is often the key technical document used
to determine whether a proposed new system will be able to meet its most critical requirements.

Second, an architectural design serves as the “conscience” for a system as it evolves over
time. By characterizing the crucial system design assumptions, a good architectural design guides
the process of system enhancement – indicating what aspects of the system can be easily changed
without compromising system integrity. By analogy to building blueprints, an architectural design
makes explicit the “load-bearing walls” [PW92] of the software. Thus a well-documented archi-
tecture helps not only at design time, but also throughout the lifecycle of a system.  To satisfy its
multiple roles throughout the software lifecycle, an architectural description must be simple
enough to permit system-level reasoning and prediction.  Practically speaking, this limits architec-
tural descriptions to a level of detail that can fit on a page or two. Consequently, to represent archi-
tectural designs, descriptions are usually hierarchical: atomic architectural elements at one level
of abstraction are described by a more detailed architecture at a lower level.

Architectural descriptions are primarily concerned with the following four basic issues:

1) System structure: Architectural descriptions characterize a system's structure in terms of
high-level computational elements and their interactions. That is, an architecture is con-
cerned with the nature of a solution to a problem as a configuration of interacting compo-
nents.  It is specifically not about representing requirements (e.g., abstract relationships
between elements of a problem domain), nor the details of implementations (e.g, algo-
rithms and data structures).

2) Rich abstractions for interaction: Interactions between architectural components – often
drawn as connecting lines – reflect a rich vocabulary for system designers. While interac-
tions may be as simple as procedure calls or shared data variables, often they represent
more complex forms of communication and coordination. Examples include pipes (with
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conventions for handling end-of-file and blocking), client-server interactions (with rules
about initialization, finalization, and exception handling), event-broadcast connections
(with multiple receivers), and database accessing protocols (with protocols for transaction
invocation).

3) Global properties: Since a principal use of an architectural design is to reason about
overall system behavior, architectural designs are typically concerned with the entire sys-
tem. The problems addressed by an architecture are usually system-level ones, such as
end-to-end data rates and latencies, resilience of one part of a system to failure in other
parts, or system-wide propagation of changes when one part of a system is modified (such
as changing the platform on which the system runs).

3 Architectural Style

As with any design activity, a central question is how to leverage past experience to produce
better designs.  In current practice, the codification and reuse of architectural designs has occurred
primarily through informal transmission of architectural idioms. For example, a system might be
defined architecturally as a “client-server system,” a “blackboard system,” a “pipeline,” an “inter-
preter,” or a “layered system.”  While these characterizations rarely have formal definitions, they
convey much about the structure and underlying computational model of a system.

An important class of architectural idioms constitute what some researchers have termed
“architectural styles.” An architectural style characterizes a family of systems that are related by
shared structural and semantic properties [AAG93]. More specifically, styles typically provide
four things:

1) A Vocabulary of design elements – component and connector types such as pipes, filters,
clients, servers, parsers, databases, etc.

2) Design rules – or constraints – that determine the permitted compositions of those ele-
ments.  For example, the rules might prohibit cycles in a particular pipe-filter style, specify
that a client-server organization must be an n-to-one relationship, or define a specific com-
positional pattern such as a pipelined decomposition of a compiler.

3) Semantic interpretation, whereby compositions of design elements, suitably constrained
by the design rules, have well-defined meanings.

4) Analyses that can be performed on systems built in that style. Examples include schedula-
bility analysis for a style oriented toward real-time processing [Ves94] and deadlock
detection for client-server message passing [JC94].  A specific, but important, special case
of analysis is system generation: many styles support application generators (e.g., parser
generators), or lead to reuse of certain shared implementation base (e.g., user interface
frameworks or support for communication between distributed processes).

 The use of architectural styles has a number of significant benefits. First, it promotes design
reuse: routine solutions with well-understood properties can be reapplied to new problems with
confidence.  Second, use of architectural styles can lead to significant code reuse: often the invari-
ant aspects of an architectural style lend themselves to shared implementations. For example, sys-
tems described in a pipe-filter style might reuse Unix operating system primitives to handle task
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scheduling, synchronization, and communication through pipes.  Similarly, a client-server style
can take advantage of existing RPC mechanisms and stub generation capability.  Third, it is easier
for others to understand a system's organization if conventionalized structures are used. For exam-
ple, even without giving details, characterization of a system as a “client-server” organization
immediately conveys a strong image of the kinds of pieces and how they fit together. Fourth, use
of standardized styles supports interoperability. Examples include CORBA object-oriented archi-
tectures, the OSI protocol stack, and event-based tool integration.  Fifth, as we noted earlier, by
constraining the design space, an architectural style often permits specialized, style-specific anal-
yses. For example, it is possible to analyze systems built in a pipe-filter style for throughput,
latency, and deadlock-freedom. Such analyses might not be meaningful for an arbitrary, ad hoc
architecture – or even one constructed in a different style.  In particular, some styles make it pos-
sible to generate code directly from an architectural description.  Sixth, it is usually possible (and
desirable) to provide style-specific graphical depictions of design elements.  This makes it possi-
ble to provide graphical renderings of designs that match engineers' domain-specific intuitions
about how their designs should be visualized.

4 Object-Oriented Design and Software Architecture

The object-oriented design paradigm provides another abstraction for designing software.  In
its simplest form, an object-oriented design allows system designers to encapsulate data and
behavior in discrete objects that provide explicit interfaces to other objects.  A message passing
abstraction is used as the glue that connects the objects and defines the communication channels
in a design.  Although object-oriented design concepts can be used to address some architectural
design issues, and doing so is popular among software developers, there are significant differ-
ences between the capabilities and benefits of object-oriented approaches to design and the
approaches provided by an emerging class of software architecture design tools and notations.  As
the examples that follow illustrate, software architecture concepts allow an architect to describe
multiple, rich interfaces to a component and to describe and encapsulate complex protocols of
component interaction that are difficult to describe using traditional object-oriented concepts and
notations.

4.1  Examples

To illustrate the different capabilities of style-based software architecture design and state-of-
the-practice object-oriented design, consider the case of the simple system presented in figures 1-
5.  Figures 1 and 2 use common architectural notations (see ADL breakout box) to present an
architectural view of the system.  Figures 3-5 describe progressively more refined versions of the
same system using the popular Object Modeling Technique (OMT) object-oriented design nota-
tion [Rum+91].

Figure 1 presents an architectural view of the system.  The architecture for this system is
described in a “pipe-and-filter” style that specifies the design vocabulary of components and con-
nectors.  In the pipe-and-filter style all components are filters that transform a stream of data and
provide specially typed input and output interfaces.  All connectors in the style are pipes that
describe a binary relationship between two filters and a data transfer protocol.  Each pipe has two
interfaces – a source that can only be attached to a filter’s output interface, and a sink that can only
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be attached to a filter’s input interface.  Figure 2 provides a more formal definition of the pipe-
and-filter style using the Wright notation [AG96], which is based on the CSP notation and calcu-
lus.  The Wright style specification describes the semantics of the design elements that can be
used in the style (pipes and filters), along with a set of constraints that specify how the design ele-
ments can be composed when building systems in the pipe-and-filter style.  There is a direct cor-
relation between the graphical notation and the formal specification of the design elements.  Each
of the design elements in the graphical depiction of the system are typed and the type corresponds
to the type and protocol specifications given in the Wright specification.  Thus, the graphical dia-
gram actually has a firm semantic grounding for specification and analysis.  For a more detailed
description of the pipe and filter style please see [AG94].

The example system has two primary components (labelled as stage 1 and stage 2), each of
which perform a transformation on a stream of data and then send the transformed data to the next
component downstream.  The components interact via the “pipe” protocol specified in figure 2.

Software Architecture Description Languages  (breakout box)

A variety of architectural design languages (ADL’s) have been created to provide software
architects with notations for specifying and reasoning about architectural designs.  These
ADL’s focus on various aspects of architectural design and analysis and vary in flavor from
rather informal to highly formal.  For example, the UniCon system [SDK+95] focuses on com-
pilation of architectural descriptions and modules into executable code; Rapide [LAK+95]
emphasizes behavioral specification and the simulation of architectural designs; the Aesop Sys-
tem [GAO94] supports the explicit encoding and use of a wide range of architectural styles;
and various Domain Specific Software Architecture languages support architectural specifica-
tion tailored to a specific application domain [Tra94].  In addition to the ADLs described
above, which were developed specifically for describing software architectures, a number of
more general formal specification languages have been used to describe software architectures.
Examples include Z [Spiv89], Communicating Sequential Processes (CSP) [Hoa85], and the
Chemical Abstract Machine [IW95].

There is an emerging realization within the software architecture research community of
the  considerable overlap between these notations, particularly with respect to the structural
aspects of a software architecture specification.  The notations used to express the architectural
diagrams and style specification in the examples of sections 4.2 and 5.1 reflect terminology and
notations commonly found in these architecture description languages.

[GAO94] David Garlan, Robert Allen, and John Ockerbloom.  Exploiting style in architectural design environments, In
Proceedings of SIGSOFT ‘94, pages 179-185,  ACM Press, December 1994.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes.  Prentice Hall, 1985.

[IW95] Paola Inverardi and Alexander Wolf. Formal specification and analysis of software architectures using the
chemical abstract machine model, IEEE Transactions on Software Engineering, April 1995.

[LAK+95] David C. Luckham, Larry M. Augustin, John J. Kenney, James Veera, Doug Bryan, and Walter Mann.  Specifi-
cation and analysis of system architecture using Rapide. IEEE Transactions on Software Engineering, April
1995.

[SDK+95] Mary Shaw, Robert Deline, Daniel Klein, Theodore Ross, David Young, and Gregory Zelesnik.  Abstractions
for software architecture and tools to support them. IEEE Transactions on Software Engineering, April 1995.

[Spiv89] J.M. Spivey. The Z notation : a reference manual, Prentice Hall, 1989

[Tra94] Will Tracz.  DSSA frequently asked questions. Software Engineering Notes, 19(2):52-56, April 1994.
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For simplicity, the figures show only two transformations and system input and output are
ignored.

Three interesting observations about this architectural design, especially with respect to the
OMT-based design of the same system in figures 3-5, follow:  First, the protocol of interaction
between the filters is rich, explicit, and well-specified.  The Wright specification of figure 2 is
associated with the pipe connector between the two filters (and, in fact, with all connectors of type
pipe).  This specification defines the protocol for transmitting data through a pipe, the ordering
behavior of the pipe, and the various interfaces that the pipe can provide to its attached filters.
Because a primary focus of software architecture is describing the interactions amongst compo-
nents this capability is very important.  Second, both the components and connectors – filters and
pipes in this style – have multiple well-defined interfaces.  As a result, a pipe can limit the services
that it provide to the filters on each end.  Likewise, a filter can specify whether each of its inter-
faces will provide input or output, as well as the type of data passing through.  In this example, the
upstream filter can only write to the pipe, and the downstream filter can only read from the pipe,
preventing inappropriate access to connector functionality (e.g. the upstream pipe reading from
the pipe).  Finally, because there is a rich notion of connector semantics built into the style defini-
tion, it is possible to evaluate the design to determine emergent system-wide properties such as
deadlock-freedom (provided that the system contains no cycles), throughput rates, and potential
system bottlenecks.

As a contrast to the stylized architectural design presented in figures 1 and 2, let us now con-
sider the three object-oriented designs of the same system presented in figures 3-5.  These dia-
grams present progressively more sophisticated descriptions of the system.  The first OMT
diagram, given in Figure 1, provides a simple class diagram that says each filter may be associated
with other filters by a “pipe” association.  Each pipe association has a source and a sink role to
indicate directionality.  The instance diagram in figure 1 depicts the example system using this
class structure.

There are a few important points to notice about this design.  The first is that the association
between the “first-stage” and “second-stage” filters is not truly a first class entity like the filter
class and is therefore not capable of supporting an explicit sophisticated protocol description like
the pipe in the architectural example.  Rather, this is a generic association that implies the
upstream filter is capable of invoking any public method of the downstream filter.  Although
objects can be sophisticated entities in this object-oriented design paradigm (OMT), the connec-
tions between the objects are relatively impoverished for use in architectural descriptions.

A second important point  is that any object that can send a message to another object can
request that the target object invoke any of its public methods.  There is effectively a single, flat
interface provided by all objects to all objects.  As a result, it is difficult for an architectural object
to limit the services that it can provide based on which aspects of the interface a requestor is using
and the type of connection between the two objects.  Finally, it is difficult to determine emergent
system properties with an impoverished vocabulary of connections and interface constraints.  For
example, the ability to invoke any method of an associated object at any time makes it very diffi-
cult to determine the dataflow characteristics and deadlock-freedom that are relatively easily cal-
culated using the software architecture and architectural style constructs described earlier.
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first-stage : Filter
input : output

first-stage : Filter

input : output :

p : Pipe

source : sink :

Figure 1: Architectural description of a simple system described
using the pipe-and-filter style.

Style pipe-and-filter
Interface Type DataInput = (read Æ→ (data?x → DataInput

[] end-of-data → close → √))

 (close → √)
Interface Type DataOutput = write → DataOutput  close → √

Connector Pipe
Role Source = DataOutput
Role Sink = DataInput
Glue = Buf<>

where
              Buf<> = Source.write?x → Buf<x> [] Source.close → Closed<>

Bufs<x> = Source.write?y → Buf<y>s<x>
[] Source.close → Closeds<x>
[] Sink.read → Sink.data!x → Bufs
[] Sink.close → Killed

 Closeds<x> = Sink.read → Sink.data!x → Closeds
   [] Sink.close → √

Closed<> = Sink.read → Sink.end-of-data → Sink.close → √
Killed = Source.write → Killed [] Source.close → √

Constraints

∀ c : Connectors • Type(c) = Pipe

∀ c : Components • Filter(c)
where

 Filter(c:Component) = ∀ p : Ports(c) • Type(p) = DataInput

∨  Type(p) = DataOutput
End Style

Figure 2: Specification of the pipe-and-filter style using the Wright
architecture description language [AG96].

DataInput DataOutput
DataOutput DataInput

DataInput DataOutput
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Figure 4 attempts to address some of the issues raised by the Figure 3 design by making the
pipe connector a first-class object.  In this diagram we have introduced a pipe class that is used to
connect two filters.  Using the OMT notation, it is now possible to add behavioral semantics to the
pipe class by associating dynamic and functional models with it.  The pipe class also introduces
two new methods – read_from() and write_to() – that filters need to call in order to send data on
the pipe or read data from it.

One effect of placing a pipe entity between two filters is that the upstream filter no longer
knows which downstream filter is receiving and processing its data.  As a result, the upstream fil-
ter no longer has access to the downstream filter’s methods.  It can only access the pipe that con-
nects them, ensuring a significant degree of independence from the downstream filter and
transferring communication responsibility to the pipe.  Unfortunately, there is still a significant
limitation to this design.  Because the pipe object has to offer its full method interface to both of
its attached filters, both of the filters can make arbitrary use of either the write_to() or read_from()
methods.  In order to maintain proper directionality of dataflow, however, we want to be able to
specify that the upstream filter, annotated by the source role, will only make use of the write_to()
method and the downstream filter, annotated by the sink role, will only make use of the
read_from() method.  The directionality and well defined pipe behavior is thus lost, along with the
design analyses and assurances that go with it.  It is certainly possible to create filters that abide
by this protocol, but it is difficult to specify and enforce this constraint generally and explicitly
using standard object-oriented design notions.

It appears that an object-oriented approach to specifying an architectural “pipe” connector for
use in pipe-and-filter style systems, along with rules for how a pipe can be properly instantiated in
a design, will require the cooperation of multiple objects.  The emerging concept of design pat-
terns addresses this issue.  Figure 5 presents a third and final revision of the simple pipe-and-filter
architecture presented in figures 3 and 4.  This time, the pipe construct has been broken into three
interacting objects – a pipe object that controls dataflow and buffering, a source object that
attaches to the upstream filter and provides only a write_to() interface to the pipe, and a corre-
sponding sink object that attaches to the downstream filter and provides only a read_from() inter-
face to the pipe.  This solution addresses the problem of both filters having access to both
read_from() and write_to() methods of the pipe by providing intermediary objects with limited
interfaces.

By itself, however, this design does not completely mitigate the problem of access to inappro-
priate methods.  It simply shifts the problem from the filter objects accessing inappropriate pipe
methods to the source and sink objects improperly accessing pipe methods.  Because the pipe,
source, and sink methods are all encapsulated by the “pipe-connector” pattern, however, it is pos-
sible to describe a protocol by which the three objects agree to interact according to an appropri-
ate pipe protocol – i.e. only the source role may invoke the pipe’s enqueue_data() method, only
the sink role may invoke the pipe’s dequeue_data() method, and the pipe object takes care of all
queuing and buffering issues.  There are further details to this protocol that can also be encoded in
the pattern and its objects.

The advantage to the pattern approach here is that it allows us to describe relatively complex
protocols of interactions between objects that we want to encapsulate, but don’t want to encapsu-
late within a single class.  We could have described many of the constraints that the source and
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Filter

accept_input()

(Filter)
pipe

sink

source

first-stage

(Filter)

second-stage
pipe

sinksource

Filter

accept_input()

Pipe

read_from()
write_to()

source sink

(Filter)

first-stage

(Filter)

second-stage
sinksource

(Pipe)

Filter

accept_input()

Pipe

enqueue()
dequeue()

(Filter)

first-stage

(Filter)

second-(Pipe)
stage

Source

write_to()

Sink

read_from()

Pipe Pattern

(Sink)(Source)

Pipe Pattern Instance

Figure 3: Naive object-oriented design (OMT) specification of sim-
ple pipe-and-filter system architecture.

Figure 4: OMT specification of simple pipe-and-filter system
architecture.  Pipe is now a first-class design entity.

Figure 5: OMT-based specification of simple pipe-and-filter system architec-
ture.  The pipe connector is represented as a design pattern.  Con-
nector interfaces (source and sink) are now first-class entities.
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sink objects satisfy in the Filter class, but doing so would have added constraints to the filter class
that may not be generally appropriate, and may significantly decrease reusability.  It would also
have spread the interaction protocol among a wider variety of constructs, when we really want to
be able to encapsulate it to clarify the design and ease the process of reasoning about the design.
The need to use three different types of objects, connected together with a pattern specification
significantly hinders the goal of simplicity.  Although it turns out to be possible to model a “pipe”
connection using OMT and design patterns, much of the simplicity and elegance that came from
specifying a simple type-annotated arrow with the architectural notation is lost when connectors
are no longer first class entities, as in the object-oriented design paradigm.

4.2  Discussion

The primary point that these examples illustrate is that architectural designs involve abstrac-
tions that may not necessarily be best modeled as a system of objects, at least in the narrow sense
of objects as encapsulated datatypes that interact through method invocation.  This point is not
limited to dataflow styles such as pipe-and-filter.  We can easily make similar arguments about
architectural design done in a layered style, a client-server based style, a distributed database
style, or many other styles of architectural design.

Given that architectural styles can describe a broad range of different design families, it is
tempting to view object-oriented design as a style of architectural design in which all components
are objects and all connections are simple associations or aggregations (to use the OMT vocabu-
lary).  Indeed, it is possible to define object based architectural styles that provide the typical
primitive system construction facilities supported by many object-oriented design (OOD) toolsets.
This view is quite reasonable for the subset of OOD that deals with architectural abstractions.
There are, on the other hand, a number of design issues that OOD addresses directly although they
are generally considered outside the scope of architectural design.  Examples include ways of
modeling problem domains and requirements, and implementation issues such as designing data-
structures and algorithms.  These concerns are relevant to the development of software, and
should probably be taken into consideration when developing an architecture for a system, it
should not, however, be necessary to directly express and address all of them in an architectural
description.

Architectural design is concerned with compositions of systems out of components and the
interactions between them. These compositions provide an abstract view of a system that permits
system level analyses and allows a designer to reason about system integrity constraints.  Exam-
ples include deadlock-freedom and throughput rates.  These distinctive aspects of architectural
design highlight a number of important constrasts with object-oriented design. While both are
concerned with the structure of a system, in general architectural design involves a richer collec-
tion of abstractions than is typically provided by OOD.  These abstractions support the ability to
describe new kinds of potentially complex system glue (or connectors).  In addition to the pipe
connector illustrated in the examples it is also possible to define n-ary connectors such as an event
system, an RPC-based SQL query, or a two-phase-commit transaction protocol.  Architectural
abstractions also allow a designer to associate multiple interfaces with components and to express
topological and other semantically-based constraints over a design.
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Thus neither architectural design nor object-oriented design subsumes the other.  They are
both appropriate at various times in the development process and they share some common
notions and concepts.  Just as it is possible to specify an OO-based architectural style, it is possi-
ble to use an object-oriented design to implement or refine a sophisticated component or connec-
tor in an architectural design.  The fundamental issues that the two approaches address and the
abstraction mechanisms that they provide, however, are not the same.

5 Architectural Styles and Design Patterns

Two of the primary limitations of traditional object-oriented design, as discussed in the previ-
ous examples, are the difficulty involved in specifying how groups of objects interact and in spec-
ifying and packaging related collections of objects for reuse.  As the example in Figure 5
illustrated, design patterns are one approach to mitigating these problems.  The basic idea behind
design patterns is that common idioms are found repeatedly in software designs and that these
patterns should be made explicit, codified, and applied appropriately to similar problems.  A num-
ber of notations for expressing these patterns have arisen over the past four or five years, most of
which have focused on patterns for object-oriented design [e.g. GHJV95, Pree95].  The utility of
design patterns, however, extends beyond object-oriented design.  The fundamental requirements
for specifying and reusing design patterns for software design appear to be that the design domain
is well understood, supports the encapsulation of design elements, and has evolved a collection of
well known and proven design idioms.  Pattern languages then allow knowledgeable designers to
codify proven designs, design fragments, and frameworks for subsequent reuse.

Architectural styles are closely related to design patterns in two ways. First, architectural
styles can be viewed as kinds of patterns [Sha96] – or perhaps more accurately as pattern lan-
guages [Ker95].  Describing an architectural style as a design pattern requires, however, a rather
broad definition of the scope of design patterns.  An architectural style is probably better thought
of as a design language that provides architects with a vocabulary and framework with which they
can build useful design patterns to solve specific problems – much as OMT provides a framework
and notation for working with objects.  The second way that design patterns are related to styles is
that for a given style there may exist a set of idiomatic uses of it.  These idioms act as “micro
architectures”, or architectural design patterns, that are designed to work within a specific archi-
tectural style.  By providing a framework within which these patterns work, the designer using the
pattern can leverage the broad descriptive and analytical capabilities provided by the style along
with proven mechanisms for addressing specific design challenges in the form of design patterns.
The additional benefit that the use of architectural style provides in this case is that the

  In our view, patterns and architectural styles are complementary mechanisms for encapsulat-
ing design expertise.  An architectural style provides a collection of building block design ele-
ments, rules and constraints for composing the building blocks, and tools for analyzing and
manipulating designs created in the style.  Styles generally provide guidance and analysis for
building a broad class of architectures in a specific domain whereas patterns focus on solving
smaller, more specific problems within a given style (or perhaps multiple styles).  It is also impor-
tant to note that patterns need not be architectural. Indeed, many patterns in emerging handbooks
deal with solutions to lower level programming mechanisms, rather than system structuring
issues.
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Primitive Vocabulary:

Primitive
Vocabulary Informal Description Interface Constraints Properties

Components:
(ports define typed component
interfaces)

OS Process.  Processes read
input messages, send
results to  output interfaces.

at least 1 async-input-port
at least 1 async-output port
at least 0 sync-caller ports

processing-cost, rate,
input-message-type(s),
output-message-type(s)

Component for which
processes contend.

exactly 0 async ports
at least 1 sync-callee port

resource-cost

Sends messages into the
system at a predefined rate.

exactly 0 sync-ports
exactly 0 async-input-ports
at least 1 async-output-port

output-rate,
output-message-type

Connectors:
(roles define typed connector
interfaces)

async-msg-pass
Asynchronous message chan-
nel for typed messages

exactly 1 async-input role
exactly 1 async-output role

message-type

async-msg-pass-
rendevous

Like async-msg-pass, but
requires rendevous before
sending message.  N-ary
connector.

at-least 1 async-input role
exactly 1 async-output role

message-type

sync-request
Binary synchronous request
channel, typed messages.

exactly 1 sync-caller role
exactly 1 sync-callee role

message-type

Design rules (list is a subset of all RTP/C style design rules):

• Async-msg-pass connectors may only connect (process, process) or (device, process)
pairs of components.

• Sync-request connectors may only connect (process, resource) pairs of components

• All processes must have an attached input interface.

• Each connector’s input message type must match its output message type.

• ...

Style-based design analyses:

Analysis Description

Message path
typechecking

Insures only valid message types are passed along each message channel.  Provides
early detection of message type mismatch.

Rate calculation Determines how often each process can be given control and resources.

Schedulability Calculates whether this design could be scheduled on a uniprocessor with user-spec-
ified performance characteristics.

Repair heuristics If the system can not be scheduled, this analysis identifies bottlenecks and suggests
likely repairs and improvements.

Figure 6: An informal specification of the Real-Time Producer/Consumer (RTP/C) Style.

Process

Resource

Device
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5.1  Pattern and Style Examples

To illustrate the scope and purpose of architectural styles, as well as how they relate to design
patterns, consider the architectural style specification given in Figure 6.  This style, described as
the “Real-Time Producer/Consumer” style (RTP/C) is designed to assist architects putting
together real-time multimedia systems that will run on a uniprocessor computer.  Detailed
descriptions of the semantics and analyses underlying the RTP/C style can be found in [Jef93].
Figure 6 provides an informal description of the RTP/C style, emphasizing the types of (primitive)
design vocabulary used by designs constructed in the style, design rules and constraints that spec-
ify how the elements may be composed, and analyses that can be performed on the design.  The
RTP/C style definition describes a set of primitive building blocks and guidelines for putting
together a fairly broad range of systems within a reasonably well understood domain.

Even with a well defined style such as the RTP/C style, however, relatively concrete design
patterns play an important role.  The well-defined RTP/C primitive design elements and guide-
lines form a language that can be used to capture more detailed, concrete solutions to specific
problems.  The style in this case provides a well understood and defined vocabulary framework
for composing individual design elements in principled ways that support real-time analyses.  Fig-
ure 7 provides two design patterns done in the RTP/C style – the “forked-memory” pattern and the
“message-replicator” pattern.  Each pattern is depicted here using the structure for pattern descrip-
tions provided in [GHJV95].  The patterns have been trimmed of some details for simplicity and
conservation of space.  Along with a diagram, each pattern provides information describing its
applicability, consequences of use, etc.  The framework for specifying patterns given in
[GHJV95] works well for architectural patterns as well as OO Patterns.  The primary difference
between architectural patterns and the OO patterns given in the [GHJV95] book and others like it
is that architectural patterns address a a more specific set of design issues than the OO patterns.
Specifically, they address the architectural issues enumerated in section 2.  Just as OMT and
objects are used to illustrate the design patterns in most OOD patterns handbooks, the vocabulary
and rules of architectural style can be used to specify architectural design patterns.

It follows, then, that OMT and the design patterns notations from the OOD patterns hand-
books can be used to specify architectural patterns also.  In fact, a number of the design patterns in
[GHJV95] appear to be quite applicable for architectural design.  Examples include the Facade
pattern (p. 185) that provides a single interface to a collection of objects, the Observer pattern (p.
293) that specifies a mechanism for maintaining consistency amongst objects (or components),
and the Strategy pattern (p.315) that specifies a way to separate algorithmic choices from interface
decisions.  None of the listed patterns are limited to being only architectural patterns.  All have
applicability at lower levels of design (such as detailed design or implementation code).  In addi-
tion to the architectural patterns listed here there are a number of patterns in [GHJV95] that do not
address architectural issues.  Examples include the Factory Method pattern (p.107) and the Fly-
weight pattern (p. 195).  Both of these patterns deal with lower-level implementation issues than
architectures generally specify.

It appears that architectural design patterns and object-oriented design patterns are simply
instances of the more general class of all design patterns.  Unlike design patterns proper, however,
an architectural style provides a language and framework for describing families of well-formed
software architectures.  The role of style is to provide a language for expressing both architectural
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Shared-Resource Architectural Pattern

Intent: Avoid deadlock when processes share com-
mon resources.

Motivation: System-deadlock can occur when
architectural components lock shared resources in
an inappropriate order.

Applicability: Architectural designs done in the
RTP/C style where process components share
resource components and deadlock-freedom is
more important than run-time performance.

Structure:

Figure 7:  Two example architectural design patterns in the RTP/C style

sr1:
Resource

sr2 :
Resource ...

Msg-Replicator :
RTP/C Process

srm :
Resource

. . .

Participants: N RTP/C Process Components, each
connected to m or fewer RTP/C Resource Com-
ponents.  All connectors used are RTP/C sync-
request connectors from processes to resources.

Collaborations: In order to avoid deadlock, a pro-
cess Pk  can only send a request on resources sri

(locking sri) if i > j, where sj is the highest num-
bered resource currently held by Pk.

Consequences:  Using the ordered access protocol
to prevent deadlock will not generally lead to
optimal resources access or allocation.  Other
protocols may lead to better average-case perfor-
mance.

. . .

P1 :

RTP/C Process

Pn :

RTP/C Process

Message-Replicator Architectural Pattern

Intent: Send identical messages to a dynamicly
changing group of other components using a prin-
cipled protocol.

Motivation: A component’s output may need to be
sent to a variable set of components.  The set of
receiving components may change as the system
runs and constraints on the order in which recipi-
ents receive the messages may be important (as in
the case of a stock-quote and trading system).

Applicability: Architectural designs done in the
RTP/C style where the set of applicable recipients
for the output of a specific component may vary as
the system runs.

Structure:

Participants: The Msg-Replicator Process is an
RTP/C style Process component with a single
input port and a variable array of output ports.
There is a single async-msg-pass connector pro-
viding input and a set of async-msg-pass connec-
tors that send output to the recipients.

Collaborations: When this pattern is instantiated
the designer needs to select a protocol by which
the messages will be sent to the outputs.  Options
include sequentially, whereby messages are writ-
ten in a user-specified order to each output con-
nector one at a time, parallel, whereby all
messages are written to their output connectors
concurrently, or a user-specified variation on one
of these.

Consequences:  The dynamic nature of this pattern
can make some static analyses, such as dataflows
and delivery guarantees, difficult or impossible to
perform.
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instances and patterns of common architectural design idioms.  As a result, the constructs and
concepts underlying architectural style are comparable to those underlying an object-oriented
design methodology like OMT, rather than a set of design patterns such as those given in
[GHJV95].  A specific architectural style is better thought of as a language for building patterns
than an instance of a design pattern itself.

6  Conclusion and Future Work

Architectures, architectural style, objects, and design patterns represent complementary
aspects of design.  Although there is certainly some overlap among the issues and aspects of soft-
ware design that these four approaches address, none completely subsumes the other.  Each has
something to offer in the way of a complete ensemble of representational models and mecha-
nisms.
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