
HLA: A Standards Effort as Architectural Style

Robert Allen
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
rallen@cs.cmu.edu

Abstract

In this position paper we introduce a case study, the DoD “High
Level Architecture for Simulations (HLA),” and briefly discuss our
efforts to apply WRIGHT, an architectural description language, to
the HLA. Our work on HLA has focused on understanding the HLA
as an architectural style, concentrating on the Interface Specifica-
tion (IFSpec) description of the “Runtime Infrastructure (RTI)” as
the central architectural design issue. Specifically, we have used
WRIGHT, a formal architectural description language, to character-
ize the RTI and analyze a number of its properties. By providing an
analysis of the properties of the RTI as described by the IFSpec, we
can help the standards committee to determine whether the IFSpec
ensures the properties that they want and to discover inconsistencies
or other weaknessesof the specification.

1 Introduction

An important challenge to software architecture researchers is to
provide practical tools and analyses that can have an impact on im-
portant, large-scale software development efforts. Unless the value
of architectural approaches can be shown on significant problems,
rigourous software architecture will remain merely an academic
exercise.

In this position paper we introduce a case study, the DoD “High
Level Architecture for Simulations (HLA),” and briefly discuss
our efforts to apply WRIGHT [1, 2], an architectural description lan-
guage, to the HLA. Our work on HLA has focusedon understanding
the HLA as an architectural style, concentrating on the Interface
Specification (IFSpec) description of the “Runtime Infrastructure
(RTI)” as the central architectural design issue. Specifically, we
have used WRIGHT, a formal architectural description language, to
characterize the RTI and analyzea number of its properties. By pro-
viding an analysis of the properties of the RTI as described by the
IFSpec, we can help the standards committee to determine whether

Appears in: Proceedings of the Second International Software
Architecture Workshop (ISAW-2), San Fransisco, CA, 14-15
October, 1996.

the IFSpec ensures the properties that they want and to discover
inconsistencies or other weaknesses of the specification.

2 Motivation and Overview of HLA

Simulation is an important tool for the military, both in preparing
for and in carrying out its various missions throughout the world.
Simulations are used in personnel training, design and testing of
equipment, and analysis of both past and future actions. The U.S.
DoD hasmadea considerable investment in equipmentandsoftware
for simulation – one effort alone, directed at army training, cost $2
billion [3].

Given the number and complexity of these simulations, devel-
opers are faced with a daunting task: to provide software that meets
the challenges posed by the high-fidelity, real-time, physically dis-
tributed, mission-critical simulation domain, and yet to minimize
redundancy of effort across applications and maximize flexibility
of the software to be used for new, possibly unanticipated tasks.

An approach that has been applied with success in similar situa-
tions is to define a domain-specific software architectural style [4].
An architectural style guides the development of a family of soft-
ware systems by providing a common architectural vocabulary that
can be used to describe the structure of individual systems and
constraining the use of that vocabulary. Use of a style helps the ar-
chitect make guaranteesthat are critical in the particular domainand
analyze a system for properties considered of especial importance
in that style.

A typical architectural style provides both a vocabulary for the
description of architectural components, the separate computations
that are combined to form a complete system, and a system of ar-
chitectural connectors, patterns of interaction among components.
A style is often supported by infrastructure that eases the imple-
mentation of components and provides support for their interaction
via the style’s connectors.

With these potential benefits in mind, the Defense Modelling
and Simulation Office (DMSO) has undertaken the development
of the “High Level Architecture for Simulations” (HLA) [5]. The
HLA is intended to support the coordination of different simulations
with the goal of simplifying the integration task, encouraging mod-
ularization of simulations, and increasing quality of simulations and
potential for reuse.

The HLA defines a standard for the coordination of individual
simulations through the communication of data object attributes
and events. In HLA, members of afederation — the HLA term
for a distributed simulation — coordinate their models of parts of
the world through sharing objects of interest and the attributes that
define them. Each member of the federation (termed afederate) is
responsible for calculating some part of the larger simulation and

broadcastsupdates using the facilities of the Runtime Infrastructure
(RTI). Messages both from the federates,e.g. to indicate new data
values, and to the federates,e.g. to request updates for a particular
attribute, are defined in the “Interface Specification” document.
Each message is defined by a name, a set of parameters, a possible
return value, pre and post conditions, and a set of exceptions that
may occur during execution of the message.

The interface is divided into five parts: Federationmanagement,
declaration management, object management, ownership manage-
ment, and time management. The federation messages are used
by federates to initiate a federation execution, to join or leave an
execution in progress, to pause and resume, and to handle saves
of execution state. Declaration messages are used to communicate
about what kinds of object attributes are available and of interest,
while object messages communicate actual object values. Owner-
ship messages are used in situations when one federate has been
responsible for calculating the value of an object attribute but for
some reason another federate should now take over that responsi-
bility. (Example situations include when the original federate must
drop out or when some property of the object indicates that the
new federate is better able to support that object. For example, if
a unit moves from one geographic region to another, then simula-
tors responsible for modelling troops in each region might hand off
ownership of the unit’s representation object.) The fifth category,
time management, is used to keep each member of the federation
synchronized, either by maintaining correspondence of wall-clock
time, by lock-step advancementof a logical time, or by other means.

The intention of the interface specification is that the general
standard be refined into multiple implementations depending on
the various needs of particular simulation domains. For exam-
ple, different simulations would have different performance con-
straints, requirements for physical distribution, and models of time-
synchronization, depending on the scale and use of the simulation.
In addition, each federation needs to augment the standard with
its own detailed object-model to ensure semantically consistent ex-
change of data between federates.

For example, as part of the current standard development effort,
several implementation efforts, each termed aproto-federation, are
underway. One proto-federation effort is described in [6].

3 A WRIGHT Analysis of the RTI

WRIGHT is a formal language for describing software architecture.
There are two main kinds of description in software architecture —
architectural style andarchitectural configurations. An architectural
configuration is just what you would expect: a description of the
structure of a single software system, in terms of decomposition into
encapsulatedcomputations (components) and interaction pathways
among the elements (connectors). An architectural style describes
the structure and common properties of a family of systems rather
than of an individual system. A style provides a vocabulary for
describing components and a set of (possibly parameterized) con-
nectors that can be used to compose the components into configura-
tions (which are instances of the architectural style). For example,
the pipe-filter style describes the vocabulary of sequential data in-
put and output used in filter components and the pipe interaction
mechanism. A configuration in the pipe-filter style would provide
a specific set of filters that appear in the particular system being de-
scribed and bind the outputs of specific filters to the inputs of other
filters (via pipes). Thus, the configuration could be represented as
a “box and line” diagram, where the boxes are filters and the lines
are instances of the pipe interaction pattern (or connector).

In addition to the introduction of vocabulary, an architectural
style may constrain how configurations are assembled. For exam-

ple, a “pipeline” style, a specializationof the pipe-filter style, would
specify that there must be a single sequence of filters, where each
filter sends its output to the next filter in line.

While WRIGHT is capable of describing both styles and con-
figurations, and of relating the two (confirming that a particular
configuration is, or is not, an instance of a style), the HLA for-
malization has focussed on specifying the IFSpec as a style. That
makes sense because it is a guideline for clarifying the construction
and behavior of many different federations. Each federation would
be a configuration in the “HLA style”. (Or rather, the parts of a fed-
eration that are selected for a particular federation execution would
be such a configuration.)

The basic elements of the HLA formalization consist of the
introduction of a single component type, thefederate, a single
connector, theRTI, and a configuration constraint rule, that there
shall be a single RTI connector and all federates shall interact using
it.

While the overall specificationis considerably larger than canbe
shown in a short position paper, a few extracts will give the flavor.
In order to specify the properties that are required of any federate to
participate in an HLA simulation, aninterface type is introduced,
the SimInterface, that defines what the communication behavior
of the federate will be. The SimInterface introduces the various
messages that will passbetween the federate and the RTI. Messages
(represented byevents in WRIGHT) are divided into those that are
initiated by a federate, such asjoinFedExecution , which indicates
that the federation wishes to participate in the simulation, and those
that are initiated by the RTI, such asreflectAttributeValues , which is
used to inform a federate of new data values. The presence of an
overbar (as ine) indicates an event that isinitiated by the process.
An undecorated event (as ine) indicates an observation of the
activity of some other process. The various events are combined
using process-algebra operators (as in CSP [7]) to indicate any
constraints on ordering of events. An extract of theSimInterface
definition is as follows:

Interface Type SimInterface = JoinFed
u createFedExecution ! JoinFed

where
JoinFed = joinFedExecution ! NormalExecution
NormalExecution = reflectAttributeValues ! NormalExecution

...
u resignFedExecution ! §

This extract indicates that before joining an execution, the feder-
ate may need to create it (if no other federation has), and that it must
indicate the start of computation by an explicitjoinFedExecution
message. The federate is then in the conditionNormalExecution
where it can both send and receive messages from the RTI. Finally,
the federation may, during normal execution, choose to resign from
the execution (indicated by theresignFedExecution message), after
which it must not send or receive any more messages.

While theSimInterface models the behavior of a single federate,
the RTI describes how multiple federates interact. In the connec-
tor specification, theGlue provides a specification indicating how
events of one component relate to those of the others. In the extract
in figure 1, event names are prefixed withFed i to indicate that it is
an event of theith federate.

This extract of the RTI connectorspecificationclarifies the spec-
ification inSimInterface that each federate has the option of creating
the RTI execution: Exactly one of them must do so, and none of
the others are permitted to do so. Similarly, the RTI execution must
not be destroyed unless there are no joined federates, and once the
RTI is destroyed, no further interaction may take place.

2

ConnectorRTI (nsims : 1..)
Role Fed1::nsims = SimInterface
Glue = 8i : 1::nsims Fedi .createFedExecution ! WaitForSimfg

where WaitForSimfg = 8i : 1::nsims Fedi .joinFedExecution ! WaitForSimfig

8i : 1::nsims Fedi .destroyFedExecution ! §
WaitForSimActiveFeds = 8i : 1::nsims Fedi .joinFedExecution ! WaitForSimActiveFeds[fig

8i : ActiveFeds Fedi .updateAttributeValues
!hsend reflectAttrValues..i
! WaitForSimActiveFeds

8i : ActiveFeds Fedi .resignFedExecution
!WaitForSimActiveFedsnfig

...

Figure 1: An extract of the RTI Connector.

4 Impacts of Formalization E�ort

Becausewe havebeenformalizing the HLAasanarchitectural style,
analysis of our WRIGHT specification informs us about properties of
the IFSpec in general, not of any particular proto-federation. That
is, if we discover a property of the specification and prove that
it holds, it must hold for every federation that obeys the IFSpec.
If one of the proto-federation efforts discovers a problem in their
implementation, there is no intrinsic indication of whether it is fun-
damental to the IFSpec, permitted by the IFSpec but not necessarily
true of every implementation, or an indication that the prototype
implementation is in violation of the IFSpec. With the WRIGHT

specification, the analysis will indicate whether the property is in-
trinsic or only a possibility. Because the specification is formal, it is
possible to verify that the specificationdoes indeed obey the IFSpec
(e.g. that the preconditions of a messageare satisfied whenever that
message is sent).

The main impact of our formalization effort is on the IFSpec
itself. By providing an analysis of the properties of the IFSpec,
we can help the standards committee to determine whether the
IFSpec ensures the properties that they want and to discover any
inconsistencies or other weaknesses of the specification.

The impact of the formalization on the IFSpec can occur in two
places. First, it might help to suggest places where the RTI standard
needs to be changed or strengthened, and second, it can help to
provide a basis for supplemental documentation or indicate where
the documentation might be elaborated even when the standard
itself does not need to be changed.

As an example of the latter, consider “exceptions.” Part of each
message definition in the IFSpec is a list of exceptions. For ex-
ample, joinFedExecution includes the exception “federate already
joined.” As part of our preliminary attempts to formalize the HLA,
we realized that the formalization (and presumably any implemen-
tation) wasn’t possible unless we knew if these exceptions resulted
in actual message traffic or whether they were simply anomalies
that should be considered (but without explicit notification). As a
result of this observation, the new IFSpec draft clarifies this point
in the glossary, resolving the ambiguity, which could have led to
unnecessary conflicts between federation implementations.

Once we have determined enough detail about the specification
to formalize it, WRIGHT can be used to detect potential conflicts
from, for example:

� insufficient preconditions

� missing information

� race conditions

� wrong directionality (parameter v. return value, RTI v. fed-
erate initiation)

As an example of missing information, consider the example of
thedestroyFedExecution message, which indicates that the current
execution is done and that the RTI should terminate. This message
has a precondition that ensures that this message is safe to execute:
there must be no joined federates. But there is no way, using the
IFSpec as written, for a federate to determine what the set of joined
federates is. Thus, there must be some external way for a federate
to get this information before sending the message. (For example,
a federation might define a special “query” message, the federate
might be a person who also controls starting and stopping all of
the simulation federates, or the federate might simply ignore the
precondition and count on getting an exception whenever there is
anything still executing.)

One way that this example analysis might impact the IFSpec
effort is to suggest a core set of query messages that all federa-
tions must supply. If that solution isn’t satisfactory to everyone
(which wouldn’t be surprising), then some kind of documentation
(a federation developer’s guide?) might want to be considered that
would discuss these kinds of issues (“the following ambiguities in
the IFSpec are deliberate and must be resolved by any federation...
Possible solutions include...”) Obviously the formalization can’t
resolve the pragmatics of various options, but it does provide a
means of exposing possible starting points.

5 Conclusion

This paperhas briefly introduced the DoD “High Level Architecture
for Simulations,” a draft standard for the integration of distributed
simulations, and described one effort to formalize it as an architec-
tural style using the architecture description language WRIGHT.

The HLA represents a potentially important tool for the devel-
opers of simulations, and in order to meet its goals, many important
issues, not limited to those discussed above, must be addressed.
These issues include: the consistency and precision of the interface
definition; how to determine compliance with the standard while
permitting necessaryvariation both in the semantic basis of the sim-
ulation, meeting performance constraints, and differing models of
time; refinement of the standard into an implementation infrastruc-
ture; methods of analysis of federations; effect of the standard on
individual federates, including pre-existing (legacy) simulations.

These are architectural issues — the decisionsmade at this level
about the HLA and the constraints placed on individual implemen-
tations will control the structure of every simulation constructed

3

using the standard, and thus form the basis for their success or fail-
ure. It is up to us as software architecture researchers to take up
the challenge and provide sound, practical tools and techniques to
support efforts such as this one.

References

[1] Robert Allen and David Garlan. The WRIGHT architectural
description language. Technical report, Carnegie Mellon Uni-
versity School of Computer Science. in preparation.

[2] Robert Allen and David Garlan. Formalizing architectural con-
nection. InProceedings of the Sixteenth International Confer-
ence on Software Engineering, May 1994.

[3] Peter Brooks. New directions in advanced distributed simula-
tion, April 1996. Presentation at CMU.

[4] Proceedings of the Workshop on Domain-Specific Software Ar-
chitectures, Hidden Vallen, PA, July 1990. Software Engineer-
ing Institute.

[5] DMSO. Web site, URL = http://www.dmso.mil/docslib/hla/.

[6] Peter Green and Terry Griffin. Specification for the rtis hla/rti
implementation. Technical Report RTIS10951, The Real-Time
Intelligent Systems Corporation, Westborough, MA, October
1995.

[7] C.A.R. Hoare.Communicating Sequential Processes. Prentice
Hall, 1985.

4

