
Draft version 1.0

1

A Proposal for DASADA
Gauge Infrastructure Working Group

DRAFT V 1.0
June 2, 2001

ABLE Research Group
Carnegie Mellon University

1. Introduction
The DARPA Dynamic Assembly for System Adaptability, Dependability and Assurance
(DASADA) Program is predicated on the principle that we can make systems far more
robust by adding capabilities of self-observation and self-adaptation. Specifically, a
system that can observe its own behavior or other properties, and then take corrective
actions to improve itself, will be far less brittle than current statically-configured systems.

An essential part of this vision is the notion of probes and gauges. Informally, probes
are responsible for collecting low-level observations of a system, while gauges are
responsible for abstracting and interpreting information from probes (or other gauges).
Thus, by analogy with monitoring and control of physical systems, probes play the role of
sensors in a physical system, while gauges play the role of dials, warning lights, and
visual monitors. Probes are deployed in some physical system and provide data in terms
of that physical universe (e.g., software units, networks, processors). Gauges provide
information about some abstraction, or model, of the system (e.g., an architectural
model).

The distinction between “low-level” (probe) and “high-level” (gauge) observations is,
of course, a bit arbitrary. In a degenerate case one could imagine a very smart probe that
both monitors a system and provides an interpretation of it. But in general we expect that
the two technologies will be implemented by different parties: run time monitoring
experts will develop probe technologies that require detailed knowledge of a system’s
implementation and operating platform. In contrast, gauge developers will build
technologies that interpret observed data in terms of various abstract models (such as
architectural models, behavior models, security models, etc.) and their properties.

Given the breadth of possible values that might be gauged, we expect that there will
be a wide variety of gauges. Their active phases vary from design-time to deployment-
time and run-time. Some gauges may be computation-intensive, while others mainly
aggregate and translate lower-level information; some gauges are interested in a system’s
code structure, while others may report the execution status of a running system or
information about its run-time environment.

In order to achieve a form of plug and play among all these diverse probes and
gauges, it is necessary to have standards that will facilitate interoperability. A proposal
for a probe run-time infrastructure has been proposed: it defines what it means to be a
probe in terms of the kind of interface it must support and the expected run time behavior
that it will exhibit.



Draft version 1.0

2

This proposal attempts to do something similar for gauges. Specifically, it defines (1)
a common framework for describing, developing and integrating gauges, which can be
used as a standard that is shared between gauge developers and gauge consumers/inte-
grators; and (2) a common set of services that support run-time communication between
gauges and the consumers of their outputs. Our goals are (a) to simplify gauge devel-
opment and integration by providing generic (and complete) gauge specification
requirements and an API, and (b) to support cross-platform communication between
gauges and consumers.

This document consists of five sections. We first introduce the overall design of the
gauge infrastructure and provide a motivating example. In Section 2, we define gauges
and their functions. Section 3 provides a method for specifying gauges more formally. In
Section 4, we define the gauge run-time infrastructure, and the APIs for gauges and their
consumers. Various open issues are enumerated in Section 5.

1.1 Background

Detailed, dynamically-gathered measurement information is essential to ensure the
composability, dependability and adaptability of software systems. Without such
information, it will not be possible to determine whether a system should be changed, or
to locate points of failure that need to be fixed.

There are three essential parts of the story. First is monitoring: there must be some
way to observe the status of a system (whether a design- or run-time). Second is
interpretation: monitoring information must be interpreted in the context of some system
features or properties of interest. Third is reconfiguration: when problems are detected
the system must be adjusted.

In this report we focus on the second of these parts: the gauge infrastructure is
proposed as part of the measurement solution that automatically and dynamically
collects, aggregates, analyzes and reports system information.

Abstraction
/ model

Target system
/ environment

Gauge
consumers

Gauges

Probes

Gauge
reporting bus

Probe bus

report report

observation observation

Figure 1. The gauge and probe infrastructure

The overall conceptual architecture is illustrated in Figure 1. At the lowest level is a
set of probes, which are “deployed” in the target system or physical environment, and
announce observations of the actual system via a “probe reporting bus.” At the second



Draft version 1.0

3

level is a set of gauges, which consume and interpret lower-level probe measurements in
terms of higher-level model properties. Like probes, gauges disseminate information via
a “gauge reporting bus.” The top-level entities in Figure 1 are gauge consumers, which
consume information disseminated by gauges. Such information can be used, for
example, to update an abstraction/model, to make system repair decisions, to display
warnings and alerts to system users, or to show the current status of the running system.

1.2 Example

Consider the simple client/server file transfer system Simple_CS illustrated in Figure 2,
consisting of a client C, a server S, and a connector L connecting C and S. A latency
gauge G is associated with the system’s architectural model to dynamically report L’s
latency property. (In an Acme description the interpreted value is represented as L’s
latency property, L.Latency.) In order to measure the latency, G needs to know the IP
addresses of the hosts running C and S, which can be either determined statically at
design time, or bound to the IP addresses of C and S at run time. The IP addresses
required by G are “setup parameters” to be provided upon gauge creation.

C S
L

G G’
Threshold

C
S

P1 P3P2

L1
L2 L3

Probe bus

Gauge
reporting bus

latency alert

latencylatency latency

Model

Target system
/ environment

Simple_CS Gauge consumer

latency

latency

Figure 2. Gauge examples

Let us assume that in the implementation of this system, L consists of multiple phys-
ical links. G needs to deploy some probes (P1 through P3 in this case) to these physical
links in order to measure the latency of each physical link, gather the latency values
reported by these probes, and derive the composite latency of L. After deriving that
latency, G announces the value over the gauge reporting bus. Consumers of G’s events
can then obtain L’s latency value at run time, and take various actions, such as displaying
the value, evaluating whether the observed latency is problematic, or deciding whether
the connector L needs to be upgraded. In this example, we will use another gauge, G’,
that compares the latency value reported by G with a threshold value that can be set at
creation time, or through its control interface. G’ will then generate an alert whenever
L.Latency exceeds this threshold value – an event that can in turn be consumed by others.



Draft version 1.0

4

2. Gauge Definition
Gauges are software entities that gather, aggregate, compute, analyze, disseminate and/or
visualize measurement information about software systems. Software tools/agents,
software engineers and system operators consume such information, use it to evaluate
system state and dynamically make adaptation decisions. In its pure form, a gauge does
not change its associated model or control the software system directly. However, the
outputs of a gauge may be used by other entities to effect such changes.

Several principles or assumptions underlie our notion of gauges and have been used
to guide the design of gauge specification and gauge APIs. These assumptions include:

1. A gauge should be able to gather information from probes and/or other gauges.
In most cases, gauges will deploy probes and generate information based on probe
values that is meaningful in the context of some model. However, in some cases it
may make sense for a gauge to generate values that are not based on probes or
other gauges (for example, timer gauges).

2. The value (or values) reported by a gauge can have multiple consumers. A single
gauge consumer can use multiple gauges. For example, there may be gauge
consumers that simply monitor and report values to the user, and other consumers
that automatically detect impending failure and take actions to adapt the
underlying system automatically, but use the same model as the basis for both
activities. In this case, we do not want to duplicate gauges.

3. A gauge should not know the identity or number of its consumers. Gauge
consumers can collaborate, but they are not required to know of each other.

4. Different types of gauges will be developed by different parties. We expect there
to be a wide variety of gauge types, reflecting the diverse needs for system
monitoring and adaptation. We expect that in many cases a heterogeneous mix of
gauges will be operating in a distributed fashion on multiple (heterogeneous)
platforms.

5. The set of gauge consumers can change dynamically. In this way we can
dynamically adapt our monitoring infrastructure to add new observational
capability as needed.

6. A gauge can be controlled at run time to set various parameters of its operation.
Examples include parameters to control the frequency of reporting, or the parts of
the system that is being monitored.

7. Each gauge has a type, which describes the gauge’s setup and configuration
requirements, and the types of values that it reports. Gauge developers and gauge
consumers should have a contract that specifies what to provide and require from
a gauge.

8. Gauges are associated with models. Models allow gauges to interpret their inputs
and produce higher-level outputs. Moreover, gauge values must be meaningful in
some context, and the model provides the context. For example, the latency gauge
of the example above, interprets the physical observations in terms of an abstract
connector in the context of a specific architectural model.

9. A gauge instance is associated with at most one model. However, instances of the
same type gauge can be associated with different types of models For example,



Draft version 1.0

5

the information produced by a latency gauge might be associated with an
architectural model (e.g., in Acme or C2) or a UML model, but a specific gauge
instance cannot be associated with two different models.

10. Values reported by a gauge should be self-describing. By this we mean that a
reported gauge value should contain enough information for a consumer to
interpret the value without needing to obtain more information (the model used to
interpret the value, for example).

We also identify the need for certain gauge administrative entities – called gauge
managers – that will be developed to facilitate the control, management, and meta-
information query of gauges. These entities are also part of the gauge run time
infrastructure, and are described in more detail below.

2.1 Gauges vs. Probes

As mentioned above, the distinction between gauges and probes is somewhat arbitrary.
Therefore it is helpful to list the key qualitative differences between gauges and probes,
so that based on the different usages and requirements, developers can choose to
implement their monitoring software as a gauge or as a probe.

The primary difference is that gauges are associated with a system model, whereas
probes are deployed in an actual system. A probe developer/user needs to consider when
and how to deploy and install it, and thus requires detailed system implementation and
operation knowledge. On the other hand, a gauge developer/user is typically interested in
some system model. Typically a gauge will hide the details of probe deployment and
operation from the consumer of the more abstract information provided by the gauge.

A gauge is associated with a particular model to help assign meaning to the values it
produces, and how those values should be interpreted. For example, a gauge producing a
value for latency may only be producing that value in the context of a particular Acme
model, and would likely not have the same meaning in a Meta-H model of the same
system. Models may be as complex as architectural descriptions or as simple as a set of
threshold values that can be used to determine whether the system is in a safe, dangerous
or critically-impaired state. The model provides the context in which the value is
interpreted. This association between gauges and models is a key distinguishing feature
from probes.

The information reported by a gauge is mapped to properties in a model, while the
information reported by a probe corresponds to properties of the target system. For
example, in Figure 2, probe P1 reports the latency of the physical link L1, while G reports
the latency of the abstract connector L. The value reported by P1 is invisible in the
architectural model and need not be understood in this model. In general, gauges interpret
low-level observations in the context of the high-level models.

2.2 Functions of Gauges and Gauge Managers
Based on the example in Figure 2, a gauge must support the following functions:
(1) A gauge’s primary function is to report values corresponding to the properties of a

system model. In the previous example, the latency gauge G reports a value
associated with connector L’s latency property in Simple_CS’ architectural model.



Draft version 1.0

6

(2) A gauge can be configured when it is created or afterwards. For example, the latency
gauge G can be configured to collect and report information at different frequencies.
The smart gauge G’ can be configured with different threshold values.

(3) A gauge can be queried about its current state. Such information is useful for
consumers that have been created after the corresponding gauges have been created or
configured. For example, the state of G could include the IP addresses it was
connected to, and the sampling rate at which it is producing values.

(4) A gauge needs to be created before being used, and an be removed at some time later.
The gauge manager provides lifecycle and other gauge management services, as yet
undefined.

(5) A gauge manager can provide meta-information such as names and types of values
that a particular gauge type reports, as well as information about the gauge’s
configuration parameters. Such introspection support provides extra flexibility for
gauge integration, and is supported by the gauge manager in this proposal.

Optionally, a gauge can collect information from other gauges and probes. These
functions are listed below:
(6) A gauge can register its interest in values reported by probes, control these probes,

and query their meta-information;
(7) A gauge can register its interest in values reported by other gauges, control these

gauges, and query their states or meta-information.

We group these functions into orthogonal capabilities supported by different entities:
• The gauge interface, which includes gauge reporting, gauge control, and gauge

query. A gauge can optionally be a probe consumer and/or a gauge consumer.
• The gauge manager interface, which supports meta-information query and gauge

lifecycle management capabilities.

In Section 4 we address the gauge, gauge consumer and gauge manager interfaces in
detail. The probe consumer interface is described elsewhere in the “Probe Run-time
Infrastructure” documentation.

3. Gauge Specification
Given the diversity of gauges, implemented by many different parties, using different
programming languages, running on different hardware and software platforms, it is
important to be able to characterize gauges so that a system builder can determine what
types of gauges are available and what kinds of capabilities that type of gauge has. Such a
characterization could also be used by gauge developers as a functional specification
around which to base their implementations, and by the gauge run-time infrastructure to
manage gauges by providing gauge meta-information. In this section we consider how
one might specify a gauge. In brief, a gauge’s specification describes (1) its associated
model (and model type), (2) the types of values that it reports and the associated model
properties, and (3) setup and configuration parameters.

To keep the gauge specification as generic as possible, this document only defines the
requirements of a gauge specification, (i.e., what a gauge specification should describe),



Draft version 1.0

7

not a particular syntax for that specification. We expect that various model developers
will provide specific syntax for specifying gauges for those models.

3.1 Type versus Instance Specifications
Each gauge has a type. A gauge type specification describes the shared features of
instances of a gauge type. A gauge instance specification defines a particular gauge. A
gauge instance includes information about the gauge that elaborates the gauge type
specification and associates the outputs of the gauge with a particular abstract model or
elements of a model. For example an instance of the latency gauge type, illustrated in
Figure 2, would identify the IP address set-up parameters, a default “frequency of
sampling” control parameter, and indicate the model and connector for which it is
calculating a latency value.

3.2 Gauge Type Specifications

A gauge type specification is a tuple consisting of the following parts:
1. The name of the gauge type: for example, Latency_Gauge_T;
2. The set of values reported by the gauge (specified using a name and a type): for

example, the Latency_Gauge_T reports one value, Latency of type float;
3. Setup parameters (including name, type, and default value for each parameter):

for example, the Latency_Gauge_T has two setup parameters: Src_IP_Addr and
Dst_IP_Addr, which are both of type String and have no default value;

4. Configuration parameters (including name, type, and default value for each
parameter): for example, the Latency_Gauge_T has one configuration parameter
Sampling_Frequency, which is of type milliseconds with a default value of 50.
The sets of configuration parameter and setup parameter are not necessarily
disjoint. A default value should be provided for each configuration parameter that
is not in the set of setup parameters.1

5. Comments: these explain in more detail what a gauge does and how to interpret
the values (the values’ units, accuracies, etc). which provide more detail on the
functionality of the gauge.

Table 1 describes a gauge type for the gauge G in Figure 2, that measures latency
value in milliseconds, represented as a floating point number.

Gauge Type Latency_Gauge_T

Reported Values Latency: float

Setup Parameters Src_IP_Addr: String [default=””]
Dst_IP_Addr: String [default=””]

Configuration Parameters Sampling_Frequency: int [default=50]

Comments Latency_Gauge_T measures network latency of
a connector whose endpoints are defined by a
source and destination IP address.

Table 1: An example of gauge type specification

1 Currently only literal values are allowed for setup and configuration parameters.



Draft version 1.0

8

3.3 Gauge Instance Specifications

A gauge instance specification is a tuple consisting of the following parts:
1. The name and type of the gauge instance: for example, G is the name of the

latency gauge in Figure 2, which is of gauge type Latency_Gauge_T;
2. The name and type of the model that the gauge is associate with: for example, G

is associated with a model called Simple_CS, which is of type Acme;
3. Mappings from values reported by the gauge to the associated model properties.

Each mapping is a tuple of <GaugeValue, ModelProperty>, meaning that the
GaugeValue actually reflects the value of ModelProperty;

4. Setup values: these can be statically specified or dynamically provided upon
gauge creation. If no value is provided, the default value of this gauge type should
be used;

5. Configuration values: these can be statically specified or provided at run-time. If
no value is provided, the default value of this gauge type should be used.

6. Comments: to describe more details of the gauge’s function.
Table 2 specifies the gauge instance G that we discussed in the previous example.

Gauge Name: Gauge Type G: Latency_Gauge_T

Model Name: Model Type Simple_CS: Acme

Mapping <Latency, L.Latency>

Setup Values Src_IP_Addr = L.IP1;
Dst_IP_Addr = L.IP2;

Configuration Values Sample_Frequency = 100

Comments G is associated with the L Connector of the
system, Simple_CS, defined as an Acme model.

Table 2: An example of gauge instance specification

In most cases, the tuple of <GaugeType, GaugeName, ModelType, ModelName> can
be used as a unique gauge instance identifier. Naming issues are discussed later in more
detail.

3.4 The Role of a Gauge Specification

A gauge type specification can be written by a gauge consumer developer and submitted
to interested gauge developers. The gauge developers may implement gauges and gauge
managers that satisfy the specification, and deploy the gauge managers. Meanwhile, the
gauge consumer developers will model their systems and associate gauge instances with
the model (gauge instance specification). Based on the system model, they can implement
the system and write code to create the associated gauges and interact with them.

On the other hand, a gauge developer can write a gauge type specification and submit
it to a gauge repository. Gauge consumer developers can search for gauges in the
repository and use them in their systems.

The gauge type specification can be used by gauge developers as a gauge function-
ality specification. It also provides meta-information to be managed by the gauge
manager. The gauge instance specifications provide information for gauge consumer
developers to create gauges and translate gauge reporting.



Draft version 1.0

9

A guage consumer can use the gauge type name to locate a gauge manager. The
gauge name, gauge type, model name, and model type can useful in registering interest in
values reported by a gauge

4. Gauge Run-time Infrastructure

4.1 The Gauge Infrastructure Architectural Style

The gauge infrastructure consists of a gauge reporting bus and different kinds of gauges,
gauge managers, and gauge consumers. The gauge reporting bus is the primary
communication medium between gauges and gauge consumers. Gauges publish reports to
the gauge reporting bus. Gauge consumers subscribe to such information and are notified
by the gauge reporting bus.

Gauge managers provide gauge lifecycle management to create and remove gauges,
and meta-information query services for gauge introspection. The gauge reporting bus
and gauge managers are available at run time, and constitute the gauge run time
infrastructure.

Figure 3 illustrates the gauge infrastructure style by indicating types of components
and their interfaces in the gauge infrastructure architecture, as well as the kinds of
connectors over which they can interact. (Appendix A provides an Acme description of
this architectural style.) There are three types of components in the architecture: gauge,
gauge manager, and gauge consumer. Gauges and gauge managers provide services
through their interfaces (as discussed later).

Defining a standard set of interfaces for these entities in the gauge infrastructure will
provide the interoperability and plug-compatibility required when using diverse
implementations technologies to monitor systems. For each component, its interfaces
include both what the component is required to provide, and what services can be used by
the component. For example, a gauge manager is required to provide a gauge creation
service, and can use the event publishing/subscription service provided by the gauge
reporting bus. A gauge consumer is required to subscribe its interest in some gauge
reporting, and can create, delete, or configure gauges.

Gauge

Meta-info
Query

Gauge
Reporting

Gauge
Control

Gauge
Consumer

Gauge Life Cycle
MgmtGauge

Query

Connector
Types: Event based

(publish-subscribe)
PC / RPC

based

Gauge
Manager

Figure 3. The logical architecture of Gauge infrastructure:
Components and their interfaces



Draft version 1.0

10

Logically,2 two different communication models (connector types) are used in the
architecture: event-based (or publish/subscribe), and remote procedure call (RPC). The
gauge reporting interface uses event-based communication, publishing events without
knowing which interested parties will receive them. The other gauge interfaces are all
related to control and query functions, whose users must have knowledge of the target
entity (i.e., a specific gauge or gauge manager), and require a reply from the target. RPCs
or procedure calls are used by these interfaces.

To test the feasibility of this design, and provide a starting point for gauge developers,
we have implemented a prototype of the gauge run-time infrastructure that we will refer
to as the Gauge Infrastucture “reference implementation”. The implementation is in Java,
and a gauge reporting bus built on top of Siena Event Bus, some example gauges, and
their corresponding gauge managers. Details about the reference imlementation are
covered in Section 4.3.

4.2 Component/Connector Interfaces

We now discuss the interfaces to the gauge reporting bus, gauges, gauge managers, and
gauge consumers. A component interface is described as a group of functions with brief
explanations. Each parameter is associated with one of three modifiers to flag whether it
provides input via the API (in), returns a value (out), or is a combination of both
(inout).

For RPC-based functions, we use handles to hide the details of how to maintain the
peer-to-peer interaction between a local caller (or client) and a remote callee (or server).
A handle is used as a local unique reference to a possibly remote object. Thus a handle is
a proxy object that acts as if it is the actual object it refers to. For example, the gauge
creation function called by a gauge consumer returns a handle to a gauge object. The
gauge consumer can call the gauge handle’s procedures to perform operations on the
corresponding gauge.

The handle takes care of any remote interaction with the actual gauge, which may be
located remotely. Upon creation, a handle stores the identifier of the remote object, and
maintains the state of interaction when communicating with the remote object. The actual
communication between the handle and its corresponding object can be based on existing
RPC mechanism, an event bus, or some other communication mechanism.

To deal with the failure of a gauge or gauge manager interface call some error
reporting mechanism is required. However, such mechanisms are typically language
specific. In this document we simply specify a boolean value of “false” or a null
reference to indicate an occurrence of error. Specific implementations might use more
detailed error return codes or exceptions.

In some situations, multiple values must be passed as input or output parameters. We
will use two types of vectors as data containers for this purpose. A StringPairVector is an
array in which each element is a pair of strings, like <attribute, value>. A

2 At this architectural design level for the gauge infrastructure it is important to pick connector abstractions
that closely match the intended modes of communication. However, nothing prohibits the underlying
implementation from using other lower-level communication mechanisms to implement these connectors.
Indeed, as we will see, the reference implementation uses the Siena publish-subscribe bus as the transport
mechanism for both event-based and RPC-based communication.



Draft version 1.0

11

StringTripleVector is an array in which each element is a tuple of triple strings, like
<attribute, type, value>.

4.2.1 The Gauge Reporting Bus
A gauge reporting bus provides a gauge-infrastructure-specific, value-reporting channel
between gauges and gauge consumers. The interface of a gauge reporting bus includes
the following functions:

1. Subscribe for events that match the given constraints.
boolean subscribeInterest(in String eventType,

in String gaugeName, in String gaugeType,
in String modelName, in String ModelType,
in GaugeConsumer interestedParty)

The interestedParty is registered for all events that match the constraints provided
by the parameters. For the parameters, eventType is a constraint used to filter
events, currently it must be one of the following values: “reportValue”,
“reportMultipleValue”, “reportCreated”, “reportDeleted”, “reportConfigured”.
Similarly, gaugeName, gaugeType, modelName, modelType, are also event
filtering constraints, and only events that match the constraints will be delivered
to the interestedParty. A string value of “*” is treated as a wildcard (i.e., no
constraint). interestedParty is a GaugeConsumer object, which in turn needs to
provide corresponding event handling functions that will be called when new
notifications come in (see below). The return value indicates whether the
subscription was successful.

2. Unsubscribe to events.
boolean unsubscribeInterest(in String eventType,

in String GaugeName, in String gaugeType,
in String modelName, in String ModelType,
in GaugeConsumer interestParty)

The interestedParty un-subscribes for all events that match the constraints. The
event bus will not deliver such events to the InterestedParty in the future. The
return value indicates whether the unsubscription was successful.

When a gauge consumer subscribes to a certain type of events, a corresponding filter for
such events is created and associated with the consumer. The filter is uniquely
determined by the combination of eventType, gaugeName, gaugeType, modelName, and
modelType parameters. A wildcard can be used for any of these constraints, except that
we do not all five parts to be wildcards, which will subscribe for nothing. When the
gauge consumer unsubscribes its interest in certain events, any previous subscription that
matches the unsubscription.3

3. Report a single value
boolean reportValue(in String UID,

3 In the current reference implementation an unsubscription must exactly match a
subscription in order for the removal to succeed. This is a consequence of using the Siena
implementation as the publish-subscribe substrate.



Draft version 1.0

12

in String gaugeType, in String gaugeName,
in String modelType, in String modelName,

in String valueName, in String propertyName, in String value)

The values of gaugeType, gaugeName, modelType, modelName provide
descriptive information that allows interested parties to filter events of interest.
An observation about valueName, which corresponds to model property
propertyName with a value of value, is made by the announcer and will be
translated into a report on the gauge reporting bus. A return value of false
indicates that the event publishing action failed.

4. Report multiple values
boolean reportMultipleValues(in String UID,

in String gaugeType, in String gaugeName,

in String modelType, in String modelName,

in StringTripleVector values)

The values of gaugeType, gaugeName, modelType, modelName provide
descriptive information that allows interested parties to filter events of interest.
The array values contains tuples of <valueName, propertyName, value>. Each
tuple represent an observation about valueName, which corresponds to model
property propertyName, with a value of value. The array is translated into an
event notification and published on the gauge reporting bus. A return value of
false indicates that the event publishing action failed.

5. Report creation status
boolean reportCreated(in String UID,

in String gaugeType, in String gaugeName,

in String modelType, in String modelName)

Reports the creation of a gauge identified by the tuple <UID, gaugeType,
gaugeName, modelType, modelName>. A return value of false indicates that the
event publishing action failed.

6. Report deletion status
boolean reportDeleted(in String UID,

in String gaugeType, in String gaugeName,

in String modelType, in String modelName)

Reports the deletion of a gauge identified by the tuple <UID, gaugeType,
gaugeName, modelType, modelName>. A return value of false indicates that the
event publishing action failed.

7. Report configuration status
boolean reportConfigured(in String UID,

in String gaugeType, in String gaugeName,

in String modelType, in String modelName,

in StringPairVector configParams)

Reports the configuration status of a gauge. This occurs typically after a gauge is
reconfigured. The parameter configParams is an array of <configParamName,
configParamValue> pairs. Each pair provides a current configuration value for
the gauge g. A return value of false indicates that the event publishing action
failed.



Draft version 1.0

13

4.2.2 The Gauge Lifecycle

Figure 4 illustrates the lifecycle of a gauge. When a gauge manager is requested to create
a new gauge, the gauge manager will allocate resources and use the provided setup
parameters to create the gauge. Upon successful creation, the gauge will announce its
creation, and transition into a “created & active” state. It is now ready to be configured or
queried, and to report values. The gauge can be reconfigured in this state. After any
reconfiguration it will announce the effect of configuration. Finally, a gauge can be
deleted by a gauge manager. The effect of successfully deleting a gauge is that the gauge
will announce its deletion, the gauge will generate no further reporting, and future control
and query requests to the gauge will fail.

Compared with the lifecycle of probes (as described in the “Probe Run-time
Infrastructure” documentation), the gauge lifecycle is a bit simpler. Currently it is not
clear whether we should include more states/stages in a gauge lifecycle.

Created
& Active

createGauge /
reportCreated

configureGauge /
reportConfigured

deleteGauge /
reportDeleted

Key

Transition State

event / action

Deleted

Initial state

Figure 4. Gauge state machine

4.2.3 The Gauge Interface
As noted earlier, a gauge handle provides a gauge interface that encapsulates details

of remote invocation. When a gauge is created by a gauge manager a gauge handle is
returned to the gauge creator. Other interested gauge consumers can notice the existence
of the gauge by observing announcements of gauge creation/configuration/deletion. They
can then get a handle to the gauge from an appropriate gauge manager by using its unique
identifier.

The gauge interface includes the following functions:

1. Create a gauge handle
GaugeHandle(in String gaugeUID)

A new gauge handle is returned. The handle refers to a gauge uniquely identified
by gaugeUID.

2. Configure a gauge
boolean configureGauge(in StringPairVector configParams)

When this function is applied to a gauge handle its corresponding gauge will be
configured using the given parameters. The parameter configParams is an array of
<configParamName, configParamValue> pairs. Each pair provides a config-



Draft version 1.0

14

uration value for the gauge. A return value of false indicates an occurrence of
error.

3. Query the current gauge state
boolean queryGaugeState(out StringPairVector setupParams,

out StringPairVector configParams,

out StringPairVector mappings)

The gauge corresponding to the gauge handle will reply with its current state
(including its setup parameters, current configuration, and properties
corresponding to its report values). The parameters are three arrays of pairs,
which will be filled in with pairs of the form <setupParamName,
setupParamValue>, <configParamName, configParamValue> and <valueName,
propertyName>, respectively. A return value of false indicates an occurrence of
error.

4. Query the recent value reported by the gauge
boolean querySingleValue(in String valueName, out String value)

The gauge corresponding to the gauge handle will reply with its most recent value
with a name of valueName. A return value of false indicates an occurrence of
error.

5. Query the recent values reported by the gauge
boolean queryAllValues(out StringTripleVector values)

The gauge corresponding to the gauge handle will reply with all of its most recent
values. The parameter values will be filled in with tuples of <valueName,
propertyname, value>. A return value of false indicates an occurrence of error.

Finally, a gauge must report events on the gauge reporting bus via the
GaugeReportingBus reporting interface.

4.2.4 Gauge Manager

The primary motivation for including gauge managers in the gauge infrastructure
architecture is to provide a gauge lifecycle service, similar to a CORBA object factory.
Specifically, a gauge manager knows how to create new gauge instances and allocate
resources for them.

Given the diversity of possible gauges, we expect that there will be a wide variety of
gauge managers. Some of them may be generic, providing management facilities for
several types of gauges. Others may be gauge-type-specific (e.g., to be provided by the
gauge developer), and manage a specific type of gauge. A gauge manager might be
implemented as a central global server, or as multiple distributed collaborating servers.
We leave the choice of implementation approaches to their developers.

A gauge manager provides meta-facilities such as gauge creation, gauge destruction,
and gauge meta-information query. Other possible functions of gauge managers might be
gauge name/UID management, gauge registry, and gauge factory discovery. This
proposal defines a minimal set of services that a gauge manager must provide.



Draft version 1.0

15

To gauge consumers, the gauge manager interface is provided by gauge manager
handle, which include the following functions:

1. Get the handle of a gauge manager that provides services related to certain gauge
type.

GaugeMgrHandle connect(in String gaugeType)

A gauge manager handle will be returned. The handle refers to a gauge manager
that provides meta services related to gauges of type gaugeType A return value of
null indicates that no gauge manager of gaugeType could be located.4

2. Create a new gauge using the given parameters.
GaugeHandle createGauge(in String gaugeName,

in String modelName, in String modelType,
in StringPairVector setupParams, in StringPairVector mappings)

A gauge instance will be created and a handle to the gauge will be returned. The
actual gauge is associated with a model of modelName of type modelType. The
type of the gauge instance is the same as the gaugeType parameter provided when
getting the gauge manager handle. The name of the gauge is gaugeName, which
can be used in combination with gaugeType, modelType, and modelName as event
filtering constraints. The setup parameter array setupParamters is an array of
<setupParamName, setupParamValue> pairs. Each pair provides a setup value
for the created gauge. Mappings is an array of <valueName, propertyName>.
Each pair represents a mapping from valueName to propertyName. After creation,
gauge consumers can then subscribe to events generated by the gauge. A return
value of null indicates an occurrence of error.

3. Delete a gauge
boolean deleteGauge(in GaugeHandle gauge)

The gauge corresponding to the gauge handle will be destructed. A return value of
false indicates that the deletion action failed (the state of the gauge is unclear).

4. Create a new gauge using given parameters
boolean queryGaugeMetaInfo(

out StringPairVector configParamsMeta,
out StringPairVector valuesMeta)

The gauge manager referred to by the handle is queried about gauge type-related
meta-information. The valuesMeta is a vector of pairs of the form <valueName,
valueType>. Each pair represents a value that can be reported by this gauge type.
The configParamsMeta is a vector of pairs of the form <configParamName,
configParamType>. Each pair represents a possible configuration parameter. The
corresponding gauge manager will handle this query, and response with
valuesMeta and configParamsMeta. A return value of false indicates an
occurrence of error.

4 In the reference implementation appropriate gauge managers are located by publishing a gauge manager
discovery event on the Siena Bus.



Draft version 1.0

16

4.2.5 Gauge Consumers

A gauge consumer is not required to provide any functions, but it is free to call the
functions provided by gauges, gauge managers, and the gauge reporting bus.5 However,
to be a gauge consumer, it must be subscribe to gauge reporting events and process the
notifications from the gauge reporting bus.

Different consumers might have different event filters for gauge reporting. For
example, most will be interested in values reported by a specific gauge, some will be
interested in all values related to a model, and some will be only interested in values
reported by gauges of particular type. Such interests can be expressed by using the
subscription interface of the Gauge Reporting Bus.

In order for a consumer to “listen” to a the Gauge Reporting Bus, it must provide a set
of callbacks to be called when events of interest are detected by the Bus. The
implementation of these callbacks will vary from consumer to consumer.

1. Handle a report about a single value reported by a gauge
void onReportValue(in String UID,

in String gaugeType, in String gaugeName,

in String modelType, in string modelName,

in String valueName, in String propertyName, in String value)

2. Handle a report about multiple values reported by a gauge
void onReportMultipleValues(in String UID,

in String gaugeType, in String gaugeName,

in String modelType, in string modelName,

in StringTripleVector values)

3. Handle a report about gauge creation
void onReportCreated(in String UID,

in String gaugeType, in String gaugeName,

in String modelType, in string modelName)

4. Handle a report about gauge deletion
void onReportDeleted(in String UID,

in String gaugeType, in String maugeName,

in String modelType, in string modelName)

5. Handle a report about gauge configuration
void onReportConfigured(in String UID,

in String gaugeType, in String gaugeName,

in String modelType, in string modelName,

in StringPairVector configParams)

5 We anticipate that a separate proposal will elaborate on the services provided by gauge consumers for
change management, system evaluation, etc.



Draft version 1.0

17

4.3 Gauge Infrastructure Reference Implementation

4.3.1 The Layered Implementation Architecture

In this section, we describe an object-oriented implementation of the gauge infrastructure
proposal. Because the main goal of gauge the infrastructure is to enable gauge reporting,
and most of the time gauges are preoccupied with announcing information in an event-
publishing way, an event bus is chosen as the communication mechanism for both
publish-subscribe and RPC style connectors. On the event bus, caller and callee UIDs are
included in RPC request and reply events to implement a peer-to-peer connection
between a handle and its corresponding object.

…

… Gauges Consumers
Gauge
Managers

Gauges

Event Bus

…

Figure 5. An event-based implementation of gauge Infrastructure

Figure 6 illustrates the overall structure of the reference implementation. The diagram
is divided into three layers.

• The top layer includes three interfaces: Gauge, GaugeMgr, and GaugeConsumer,
which need to be implemented by application programmers. Each interface includes
functions that must be implemented by a gauge, a gauge manager or a gauge
consumer, respectively.

o The gauge consumer developer must implement the GaugeConsumer interface
for each type of gauge consumer.

o The gauge developer must implement the Gauge and GaugeMgr for each type
of gauge.

• The middle layer includes three classes: GaugeHandle, GaugeMgrHandle,
GuageRptBus and one EventBus interface. These are developed by gauge
infrastructure developers.

o EventBus6 provides the common services required of an event bus connector,
hiding the specific implementation.

o GaugeRptBus provides the gauge infrastructure event service for gauges and
gauge consumers. The GaugeRptBus is implemented on top of the EventBus
class.

o GaugeHandle is an implementation of a gauge handle built on top of the
EventBus interface. It is generic and can be used for all gauge types. Gauge
consumers can use GaugeHandle to operate a remote gauge, and gather value
reports from it.

o GaugeMgrHandle is an implementation of a gauge handle on top of the
GaugeMgrHandle interface. It is generic and can be used for all gauge types.

6 We use terminology that is consistent with Sienato describe the interface of EventBus.



Draft version 1.0

18

Gauge consumers can use GaugeMgrHandle to operate a remote gauge
manager, and gather value reports from it.

• The bottom layer includes possible communication mechanisms that can be used to
implement the EventBus. The reference implementation uses the Siena Wide-Area
Event Notification Service (developed at the University of Colorado, Boulder,
because it provides platform-independent, internet-scale support for event publishing,
subscription and filtering.

Figure 6. An OO Implementation of Gauge Infrastructure

The layered approach is a natural way to allocate responsibilities among different
developers. The interface classes (Gauge, GaugeMgr, GaugeConsumer, and EventBus)
encapsulate the differences and future changes of adjacent layer implementations. For
example, we can change the underlying mechanism by only replacing the EventBus
implementation, without affecting the existing gauge infrastructure.

4.3.2 Implementing Handles

The GaugeHandle and Gauge implementation together constitute the component
“Gauge” in the logical architecture. The GaugeMgrHandle and GaugeMgr implemen-
tation together constitute the component “Gauge Manager” in the logical architecture.

As mentioned above, handles are implemented to emulate the RPCs on top of an
event bus. To work correctly, each pair of <handle, class> must cooperate. They must
share a common understanding of event format and mini-protocols (behaviors when
seeing different notification sequences). The protocol part is actually described in Section
4.2 for each component. Currently the event format is not defined. XML is a reasonable
candidate for representing events.



Draft version 1.0

19

To implement handles, unique Ids are generated for each entity attached to the gauge
reporting bus, and used as internal UIDs between interacting components. The handle
object maintains the correspondence with a remote object using UIDs. Each function call
involving a remote object will transparently use timeouts to detect abnormal situations
and report errors.

4.4 Run Time Scenarios

Using the APIs defined above, a gauge consumer can create gauges and subscribe for
values reported by them. Figure 7 shows two simple scenarios for gauge creation and
gauge reporting.

Figure 7. Gauge creation and gauge reporting scenarios

After implementation, the gauge developer will provide gauge managers to the run
time infrastructure. Gauge consumers will be started and get the handle of a gauge
manager that manages the types of gauges in which it is interested. The gauge consumer
then uses the gauge manager handle to create gauges and return gauge handles as local
references.

The sequence diagram in Figure 7 reflects the implementation outlined in Section 4.3.
Upon creation, the gauge handle will automatically subscribe its interests in values
reported by the corresponding gauge, unpack the event and return the values to its holder
gauge consumer. GaugeRptBus object is added between the Gauge and GaugeConsumer
to help the gauge publish its reports, and the gauge consumer to receive notifications.

4.5 Limitations of current implementation

The current implementation has the following limitations:
• The event subscription/unsubscription semantics is based on the model and

implementation of Siena event notification service. The filtering constraints can
only be combinations of certain eventType, gaugeName, gaugeType, modelName,



Draft version 1.0

20

and modelType values. We don’t support the matching of event sequence patterns,
which is supported by Siena.

• The current implementation assumes that one gauge manager implementation
handles only one type of gauges.

• The current implementation assumes that the tuple of <gaugeName, gaugeType,
modelName, ModelType> can be used to uniquely identify a gauge. This might
not be true if multiple instances of the same system are running simultaneously.

5. Open Issues

5.1 Security Issues

Security can be an issue in some cases. Because one consumer’s control of the gauge can
have side effects that will influence other consumers, some gauges may want to require
that only certain consumers can access the control interface. The gauge control interface
may need to authenticate the initiator (taking the initiator as a parameter) to ensure that
only authorized consumers can successfully perform such operations.
Another alternative would be for a consumer to control all gauges via their respective
gauge managers. This would centralize the authentication, rather than having each gauge
instance implement its own security protocol.

5.2 Gauge Identification

Currently the tuple of <GaugeType, GaugeName, ModelType, ModelName> is used by
application programmers to identify a specific gauge. To maintain the uniqueness of
gauge ID, we assume that there won’t be simultaneous multiple incarnations of the same
system (with the same ModelName). Combined with the gauge specification, such a tuple
can be used by multiple consumers. This assumption is not always valid in reality.

Another way to uniquely identify an entity is to generate GUID at runtime. We
choose to use UIDs as identifiers for entities attached to the gauge reporting bus. We also
partly encapsulate the usage of UID by using handle, which can also be identified by a
naming tuple.

5.3 Gauge Location

It’s important to know where a newly created gauge should be placed: should it be near
the target system, the owner consumer or the gauge manager? The gauge manager
implements a gauge-specific placement policy. The consumer can also explicitly express
its desire by passing location information in the setup parameters, and request the gauge
factory to create new instance at a certain location. When a gauge needs to be placed on a
host other than the gauge manager’s own host, we also need to consider security issues.

5.4 Gauge Manager Location

Gauge manager location is another issue. When a gauge manager is needed, there are
different methods to discover its location: (1) gauge managers advertise their existence
and gauge consumers actively discover their locations, (2) the gauge consumer broadcasts
the request and chooses from the responding gauge managers, (3) the connection between
a gauge manager handler and its corresponding gauge manager is hardwired, and (4)



Draft version 1.0

21

develop a gauge manager discovery service to register and manage gauge managers. The
location is encapsulated in the API by assuming that the connection between the gauge
manager handle and the gauge manager is an implementation secret. The (2) approach is
used in our implementation.

5.5 Race conditions

Race conditions need to be avoided in a gauge consumer implementation. For example,
an event subscriber might miss some notification while the subscription is processed, so
the subsequent actions that depend on such notifications should be programmed to assure
their correctness.



Draft version 1.0

22

Appendix A. The Acme Specification for Gauge Infrastructure
Family GaugeFamily = {

port type gaugeLifeCycle = {};
port type gaugeMetaQuery = {};
port type publishReporting = {};
port type onNotification = {};
port type gaugeControl = {};
port type gaugeQuery = {};
port type requestGaugeControl = {};
port type requestGaugeQuery = {};
port type requestGaugeLifeCyle = {};
port type requestGaugeMetaQuery = {};
role type caller = {};
role type callee = {};
role type publisher = {};
role type subscriber = {};

Component Type Gauge = {
port report : publishReporting = {};
port control : gaugeControl = {};
port query: gaugeQuery = {};

};

Component Type GaugeManager = {
port lifeCycle : gaugeLifeCycle = {};
port metaQuery : gaugeMetaQuery = {};

};

Component Type GaugeConsumer = {
port onNot : onNotification = {};

};

Connector Type GaugeRPC = {
role theCaller : caller = {};
role theCallee : callee = {};

};

Connector Type GaugeReportingBus = {
role pub : publisher = {};
role sub : subscriber = {};

};
};

System GaugeInfrastructure : GaugeFamily = {
Component aGaugeMgr : GaugeManager = {
port lifeCycle : gaugeLifeCycle = {};
port metaQuery : gaugeMetaQuery = {};

};
component aGauge : Gauge = {
port report : publishReporting = {};
port control : gaugeControl = {};
port query: gaugeQuery = {};

};
component aGaugeConsumer : GaugeConsumer = {
port onNot : onNotification = {};
port reqControl : requestGaugeControl = {};
port reqQuery : requestGaugeQuery = {};
port reqLifeCycle : requestGaugeLifeCyle = {};
port reqMetaQuery : requestGaugeMetaQuery= {};

};
connector gaugeRptBus : GaugeReportingBus = {
role pub : publisher = {};
role sub : subscriber = {};

};
connector gControl : GaugeRPC = {
role theCaller : caller = {};
role theCallee : callee = {};

};
connector gQuery: GaugeRPC = {
role theCaller : caller = {};
role theCallee : callee = {};

};
connector gLifeCyl : GaugeRPC = {
role theCaller : caller = {};
role theCallee : callee = {};

};
connector metaQuery : GaugeRPC = {
role theCaller : caller = {};
role theCallee : callee = {};

};
Attachments {
gaugeRptBus.pub to aGauge.report;
gaugeRptBus.sub to aGaugeConsumer.onNot;
gControl.theCaller to aGaugeConsumer.reqControl;
gControl.theCallee to aGauge.control;
gQuery.theCaller to aGaugeConsumer.reqQuery;
gQuery.theCallee to aGauge.query;
gLifeCyl.theCaller to aGaugeConsumer.reqLifeCycle;
gLifeCyl.theCallee to aGaugeMgr.lifeCycle;
metaQuery.theCaller to aGaugeConsumer.reqMetaQuery;
metaQuery.theCallee to aGaugeMgr.metaQuery;

}
}


