An Activity Language for the ADL Toolkit

Author: Andrew Kompanek

Last Modified: 09/16/99 11:35 AM 

Motivation and Background

Several notations have been developed in the software architecture community that allow the description of the possible run-time behavior of a concurrent system or family of systems.  Each provides a different (and complementary) model for describing behavior, and supports some set of analyses, either through static analysis of a description (e.g., Wright) or through simulation (e.g., Rapide).  The proposed ADL toolkit would support the construction of environments that allow a designer to take advantage of the different capabilities offered by the different ADLs, so he can choose notations and tools appropriate to a given design problem. 

One way in which the ADL Toolkit supports integration is by defining standard representations for different types of architectural description.   For example, the Acme language was introduced as a standard representation for architectural structure by providing a syntax for describing structure, with an annotation mechanism for encoding semantics as properties of the parts of a description.

Up until now, no one has proposed a standard representation describing behavior.  This is not surprising since defining a language that’s equally suitable for representing a behavioral description derived for a process algebraic description of behavior as for capturing behavior embodied in source code for a concurrent simulation is no small task.  

This paper describes a much more modest proposal – a common notation for describing the behavior of a particular system over a particular stretch of time.  By limiting ourselves to describing a particular scenario, we side-step issues relating to differences in concurrency and synchronization semantics, granularity of description and a host of other problems associated with the problem of developing a unified behavioral model.   

For lack of a better word, I’ll call this notation an Activity Language for the ADL Toolkit.  The Activity Language would allow a designer to describe the occurrences that make up a particular run-time history.  This history could be obtained by logging the activity of a simulation or the execution of a real system.  Alternatively, it could be used to capture an anticipated run-time scenario.  The activity language could be used as a standard format for documenting behavior and a variety of tools could be developed based on the language.  For example, from these descriptions, an animation tool could depict activity within a system and its evolution at run-time.  Or, the activities could be tested for particular properties – for example, whether the trace is consistent with some model of the possible behavior, or whether certain temporal constraints hold.  They could also be used to compile architectural “profiling” information that can be used as to evaluate system performance or as a way of analyzing concurrency in a system or understanding where concurrency can be introduced into a system.

The vision for this trace language is similar to that of Acme.  Where Acme provides a generic representation for structure with an annotation mechanism for defining domain specific properties of the structure, the trace language would provide a generic Activity structure composed of Events, both of which could annotated with domain-specific information that captures the meaning of an occurrence in the context of a particular model.  Just as Acme has a type system that allows the definition of domain specific element types, the trace language would provide a type system for defining activity and event types.  The notation would provide a format for exchanging event traces between tools as well as for writing tools that operate directly on descriptions represented in the Activity language, in the spirit of– a role similar to the one  Acme plays for architectural structure. 

This document includes four sections:

Requirements

Proposal

Sample Description

Issues

In the Requirements section, I informally describe how we would like to use this notation and the sort of information we’d like to be able to capture.  In the Proposal, I introduce a simple strawman syntax for the language as a basis for discussion.  In the third section, I take a simple example of a trace based on Wright, and describe with the proposed section.  In the fourth section, I outline a set of issues that emerged in the course of defining the syntax and describing the example.

Requirements

This section outlines the requirements for the notation – what sort of information we’d like to be able to encode, etc.   I’ve broken down the requirements into 5 different areas of concern:

1. Event Ordering and Timing

2. Event Identifiers/Naming

3. Event Types

4. Event Aggregation

5. Architectural Context (Architectural Reference Model)

Within these sections, I’ve listed some of the requirements that have emerged from discussion about the language.  These requirements are expressed informally:  I use the words occurrence, event and activity without defining them precisely.  I define my terms more precisely in the Proposal that follows this section.

We want to be able to capture event traces generated in a wide variety of ways.  A trace could be the product of a simulation based on abstract event language, generated by a simulation or by logging events generated by actual running system, or by a designer outlining a possible behavioral scenario for a system.  The system under study might be distributed or run on a single machine.  Obviously, the sort of information we’d like to be able to record is going to be different depending on the application – obviously, we need to support different types of event traces and different types of events.

Event Ordering and Timing

Depending on the application, different sorts of information about timing and ordering of events will be captured.  A trace derived from an abstract model of behavior might provide a ordering of events, but no timing information.  A trace obtained from a running system might include time-stamped events, but not include an explicit order.  In a distributed simulation, a trace might include partially ordered events when and/or events with timestamps derived from clocks on different hosts.

We should be able to describe instantaneous events as well as activities over time. That is, an event could represent an abstract instantaneous occurrence in time (e.g., the beginning of a communication) or an activity that occurs over some length of time (e.g., a piece of data being transmitted over a communication line or a computation being carried out).   For the rest of this document, I’ll use the term event to refer to both.

Events may overlap.  This follows from above since systems with concurrent components may generate traces with events that overlap in time. 

Events may (optionally) include timestamp information.  In some cases, we will want to talk about  when an instantaneous event occurs or the interval of an event representing an activity.  The timestamp(s) should include a value as well as a description of the scale/units (e.g., ms) associated with the value.  The timestamp may also be associated with a clock on a particular machine.

Event traces may be ordered or partially ordered or have no explicit order. Depending on what is being described and how the trace was obtained, a given trace may have an explicit total order, explicit partial order  or no explicit ordering at all. 
???We should be able to express causality.  This is an issue I don’t fully understand.  Is it enough to know one event precedes another, or do we need to capture the causal relationship?  Should causality be an explicit notion in our notation, or is it enough to be able to be able to explicitly specify properties as part of ordering relationship between events. 

Event Identifiers

Events should have unique identifiers.  Every particular occurrence should have an identifier that can be used to refer to the occurrence.  For example, a description of a trace may include a series of identical requests from a client.  Each of these requests would have a different identifier, although they would share the same class/type.   Typically, the identifier would be machine generated (e.g., by the event logger) while the class name would be meaningful to the designer.  ISSUE: How should identifiers be encoded?  Arbitrary strings (probably with a numeric suffix)? Integers?

Event Properties

Events have domain-specific properties.  Any activity/event will have properties associated with it that describe the event.  For example, for a communication, this might be the actual data transmitted, a description of the format in which the data is encoded, etc.  For a computation, this might be a set of parameters passed to a particular method/function. 

Event Types

An event instance may belong to a particular event type(s).  In  a particular domain, events may be grouped by type.  We support this with event types.  An event type specifies what properties are required to describe an instance of that type, serving the same function as element types in Acme.  ISSUE: Do we want a “trace type” too?  By having a trace type, we could support constraints over behavior… ISSUE: Do we encode the concepts of instantaneous vs. duration events and architectural-modification event as base types?

Event Aggregation

Events should be decomposable into sub-events/activities.  This can be seen as analogous to representations in Acme.  Ideally, we would like to be able to specify a mapping between an event and its sub-events.  We could use the information to perform consistency checks or to infer information about an event from its sub-events (e.g., determining the start and end of an event based on the total duration of the sub-events).  This is a big area which we haven’t explored yet.

???Events may be organized into transactions.  I don’t fully understand what transactions were intended for.

 (Architectural) Context

Events/Activities (may) occur in the context of an architectural reference mode (ARM).  In some contexts, in order for these events to be meaningful, they need to be associated with some model of the system that is being simulated or observed – that is, events may be associated with particular components and communication channels in the system.  Since traces may be used in the context of multiple ADLs, we need some sort of shared architectural reference model (ARM) and a naming scheme for referring to parts of that architecture.  This may or may not be based on Acme.  It’s likely the naming scheme can be based on a view of an architecture as tree of named objects.

A certain class of events represents run-time transformations of a system’s architecture.  Some events occur in the context of an architecture while others may actually represent changes to the reference architecture.  We also want to be able to describe events that describe a transformation of the architecture (e.g., dynamic creation of new components and connections change in component state, etc.) We do not however want to require a reference architecture – we should be able to describe behavior independent of an architecture.  

Proposal

The following is a simple strawman proposal for the activity language.  I’ve tried to make David Garlan’s proposal during our teleconference a bit more concrete by introducing a strawman syntax, and describing a trace generated from a Wright description in this syntax.  

The idea is that for a particular sort of activity (e.g., a wright event trace or a rapide poset derived from a rapide simulation), you define an activity type.  For each of the sorts of events that can occur within that activity type, you define an event type.  The type serves as a template that defines what’s required to describe events/activities of a particular type. A particular activity instance can then be tested to see if it conforms to the type.

Concepts

The activity language includes constructs corresponding the following concepts:

Activity
An activity is a description of behavior that has a logical beginning and end.  An activity may or may not actually have explicit times associated with its boundaries.  An activity is composed of a set of events and a set of ordering relations over those events.  An activity is further described by a set of properties.  For the moment, let’s ignore nesting of activities and assume one level of description.  An activity may be associated with zero or more Activity Types.  In order for an activity to be type-correct, it must satisfy its types.

Event
An event is an uniquely identified instantaneous occurrence in time that takes place within some architectural context.  It has properties that describe the event.  An event may be associated with zero or more Event Types.  These event types should be seen as claims about the event – in order for the event to be considered type-correct, it must satisfy its types.

Activity Type
An Activity type defines a family of activities.  A type defines a predicate which may be used to test whether a particular activity satisfies the type.  It defines some set of properties necessary to fully describe an instance of the type, the event types that are legal in an activity of this type, and a specification of how events are ordered within an activity of this type.

Event Type
An event type defines a particular sort of event.  It is predicate in the same way an activity type is a predicate.  An event type defines a set of properties that a legal instance of this type must define.    

Ordering Relation
A relation between two events, specifying that one event precedes another event. 

Syntax

We propose the following syntax.  Note, I’m picking a particular syntax so that I have a way of actually writing down the wright example.  I’m not making an argument for a particular syntax so much as trying to get at what needs to be included in the syntax.

Event Type

An event type is named, may extend other types by adding additional constraints that must be satisfied by an instance, and specifies an optional description of the sort of context in which an event of this type can legally occur.

 ‘Event ‘Type TYPE-NAME extends SET-OF-TYPES [ ‘occurs ‘in CONTEXT-DESCRIPTION ]

‘= ‘{ SET-OF-REQUIRED-PROPERTIES ‘}

where CONTEXT-DESCRIPTION describes where an event can occur.  This could be one of component or connector type, or in terms of who-knows-what model we decided on for the ARM.

Next, we define an activity type that defines what is necessary to describe a trace generated from the simulation of a system (or part of a system) represented in Wright.

Activity Type

An activity type defines a predicate which determines whether a particular activity instance conforms to the type.  It does this by defining the following.

1. The set of types of events that may be present in instances of this type.

2. The way in which events are ordered in an activity of this type.

3. The set of properties that are required to describe activities that conform to the type.

A full-language implementation could include a constraint language for further refining the set of activities belonging to this type.

An activity may be represented by a sequence (i.e., ordered), set (i.e., unordered) or poset (i.e., partially ordered).  We propose the following syntax :

‘Activity ‘Type NAME = { ‘Sequence | ‘Poset | ‘Set } ‘of SET-OF-VALID-TYPES 

‘with PROPERTIES-AND-CONSTRAINTS-LIST

An activity type for a particular sort of trace, scenario or history is defined by first defining (or including) a set of event types and then defining an activity type in terms of those event types.

Activity and Event Instances

A particular activity instance maintains some set of types, defines properties of the activity and is composed of a set of event instances.  The precise syntax will vary depending on whether the activity is represented as an sequence, a set, or a poset.   The idea here is that the syntax itself accomodates different representations for capturing the ordering of events.  We could allow quite a bit of flexibility here, but for simplicity I only allow three representations.

Note that I’m not particularly happy with the syntax for properties – but I do think it’s important to separate them.

For an activity made up of a sequence of events:


‘Activity NAME : TYPEREF-LIST ‘= ‘< EVENT-DECLARATIONS-DELIMITED-BY-COMMAS ‘>




[ ‘with ‘{ A-LIST-OF-PROPERTIES ‘} ]

For a set of events:

‘Activity NAME : TYPEREF-LIST ‘= ‘{ EVENT-DECLARATIONS-DELIMITED-BY-COMMAS ‘}




[ ‘with ‘{ A-LIST-OF-PROPERTIES ‘} ]

For a poset:

‘Activity NAME : TYPEREF-LIST ‘= ‘{ EVENT-DECLARATIONS-DELIMITED-BY-COMMAS ‘} 




ordered by SET-OF-PRECEDENCE-RELATIONS




with ‘{ A-LIST-OF-PROPERTIES ‘}

An event within an activity instance would look like:


`Event NAME : TYPEREF-LIST ‘occurs ‘in SOME-CONTEXT‘= ‘{ A-LIST-OF-PROPERTIES ‘}

Sample Description

Wright Description

The following is a description of a trivial client-server system in Wright.  The system is composed of a single client connected to a single server with one connector.  The connector translates requests from the client into requests of the server, and responses from the server into responses received by the client.  For simplicity, I’ve ignored termination, because this raises a number issues I’d like to defer.  What this means is that this system will run indefinitely along a rather boring deterministic course...   

Connector CSconnector

Role Client = (request!x -> result?y -> Client) 

Role Server = (invoke?x -> return!y -> Server) 

Glue = (Client.request?x -> Server.invoke!x -> Server.return?y ->


    Client.result!y -> Glue) 

Component Client

Port Send = (request!x -> result?y -> Send) 


Computation = (Send.request!x -> Send.result?y -> displayResult 

-> Computation)

Component Server


Port Receive = (invoke?x -> return!y -> Receive)


Computation = (Receive.request!x -> processRequest -> Receive.return!y ->

 Computation)

Instances

client : Client

server : Server

conn : CSconnector

Attachments

Client.Send as conn.Client

Server.Receive as conn.Server

For simplicity, assume that data associated with an event is always represented as a string.  One single request from the client followed by response from the server would look like:

client.Send.request!"question1"
Client sends request

server.Receive.request?"question1"
Server receives request

server.processRequest


Server processes request

server.Receive.return!"answer1"
Server returns result

client.Send.return?y!"answer1"
Client receives result

client.displayResult


Client displays result

Event Types for Wright Traces

We can define a set of event types using this syntax:


// Abstract base type


Event Type SimpleEventT occurs in AnyElement = { 



wrightEventName:String;



wrightEventType : enum {do, read, write};


};


// Three event types: no data, output data, input data


Event Type DoEventT extends SimpleEventT = {



Property wrightEventType = do;


};


Event Type ReadEventT extends SimpleEventT = {



Property wrightEventType = read;



Property data : String;


};


Event Type WriteEventT extends SimpleEventT = {



Property wrightEventType = write;



Property data: String;


};

Activity Type for Wright Traces

Since Wright traces are always sequences (at least if we’re describing a particular simulation rather than a set of simulations) composed of the three basic types, we have:


Activity Type SimpleWrightTraceT = 

Sequence of { ReadEventT | WriteEventT | DoEventT }


with {



// properties and constraints would go here


}

Activity Instance for the Wright Example

For Wright client server example,first we use the sequence syntax.  The order in the sequence is the order in the event trace:

Activity csSimulation : SimpleWrightTraceT = <


Event e1 : WrightEventT in client.Send = 

{ wrightEventName = "request"; data = "question1"},


Event e2 : ReadEventT in server.Receive = 

{ wrightEventName = "request"; data = "question1"; }, 


Event e3 : BasicEventT in server = 

{ wrightEventName = "processRequest"; // no data }

>

If this were represented by a set instead (suppose we didn’t care about order), we might use a syntax like:

Activity csSimulation : SimpleWrightTraceT = {


Event e1 : WrightEventT in client.Send = 

{ wrightEventName = "request"; data = "question1"},


Event e2 : ReadEventT in server.Receive = 

{ wrightEventName = "request"; data = "question1"; }, 


Event e3 : BasicEventT in server = 

{ wrightEventName = "processRequest"; // no data }


}

or, using a syntax appropriate for partially ordered sets :

Activity csSimulation : SimpleWrightTraceT = {


Event e1 : WrightEventT in client.Send = 

{ wrightEventName = "request"; data = "question1"},


Event e2 : ReadEventT in server.Receive = 

{ wrightEventName = "request"; data = "question1"; }, 


Event e3 : BasicEventT in server = 

{ wrightEventName = "processRequest"; // no data }

} ordered by {


e1 precedes e2; 


e2 precedes e3;

}

The ordering syntax could be extended to support notions of causality, or some other information about the particular nature of the precedence relationship (what else besides whether A caused B would we want to specify here?)  Q: In Wright, we might say that an initiated event causes all observed events?

1. Some Issues

Are posets and dags identical mathematical objects?  Is a poset just a set of objects plus a set of ordering relations (call it A<B) -- in my mind, just a directed graph?

Does the relation A<B mean “directly preceded by”? or simply “preceded by”?  This is really just a representation issue: is redundancy ok?   I think it boils down to whether we allow undirected cycles in the precedence graph.

Is it really A< B or is it actually A<=B?  Is there such a thing as simultaneity in the rapide model?  

Does the poset concept itself include causality?  If not, in the rapide world, when you do talk about causality, are these additional relations you specify, or are they refinements of individual ordering relations.  That is, do you say, “A precedes B” and “A causes B” or simply “A causes B” (where causes implies precedes).  I think this is more than just hair-splitting since it will affect how naturally it is to translate between your formats and whatever we decide on for the toolkit.  In fact, it’ll affect how tools are written, in general.







1
10

