A Tool for Event-Based Architecture Simulation

Shu Kit Chan

May 1999
School of Computer Science

Carnegie Mellon University

Advisor: David Garlan, Andrew Kompanek
Abstract

Software architecture provides a high level model of a complex system that can be used as the basis for analysis and decision making about a design. A software architecture description provides a way of hiding implementation details from the developers, so that they can focus on higher level issues before the system has been built. This project involved the design and implementation of a tool to carry out the simulation of a software architecture model that describes the behavior of a system in terms of the pattern of events in which its components engage. The tool is based on the Wright software architecture description language, which is based on the Communicating Sequential Processes (CSP), a formal language for describing processes in terms of events. The tool is based on two parts. The first part is responsible of transforming a model described in Wright into a process described solely in CSP that captures the behavior of the system. The second component is the simulator that generates a running simulation based on the CSP description. The simulation component may be integrated with visual design and debugging environment. The tool allows developers to better understand the behavior of their systems at the architectural level without implementing the system.

0. Overview

The increasing size and complexity of software systems is an important and common issue faced by many software developers. As software systems become more complex, the overall system structure, i.e. software architecture becomes a crucial design issue. Software architecture provides a model or a level of abstraction at which developers can reason about their software systems. It also hides the implementation detail from the developers, so that they can focus on higher level issues before actually implementing the system. This allows architects to put more effort in the structure and design of the system to satisfy the requirements. It can also be used in critical analysis and decision-making and help study system properties, such as synchronization, performance and correctness without building the entire system.

Very often, system information is captured in the software architecture and static analysis can be used to evaluate system properties, such as performance and correctness. However, while a static analysis of behavior can be used to verify some property of a system, it can sometimes be difficult for developers to reason about, especially if the specification is unfamiliar. A dynamic, interactive runtime simulation of architecture provides a useful complement to static analysis because it provides a mechism for user-driven exploration, in contrast to the automatic exploration of a static analysis tool. This user-driven exploration can help developers better understand and communicate about a system. Moreover, it provides an extremely useful tool for debug descriptions as they’re written and refined.

This project investigates an event-based method for software architecture simulation. It describes the use of event model to produce run-time simulation of architecture. The work and implementation will be based on the Wright architectural description language that is based on the formal method of Communicating Sequential Processes (CSP) to describe the behaviors of components and connectors.

Section 1 states the goals of the project and the approach to provide runtime simulation of software architecture model. It also provides background information for the Wright and CSP language and the importance of it in simulation. Section 2 describes the high level structure of a proposed simulation system. It also describes the specification and other capabilities that it supports. Section 3 describes the mechanism of transforming Wright description into CSP process, which is an important process before the actual simulation and illustrated it with an example. It also specifies the tools that are going to be adapted in order to implement this mechanism and a detailed implementation plan. Section 4 describes the simulation algorithm that the tool will perform in order to produce the dynamic runtime simulation. It also describes the semantics of CSP that is the basis of the simulation algorithm. It then investigates the implementation plan of the algorithm. Section 5 describes the future work that needs to be done on various issues of the project. Section 6 provides a brief conclusion and review of this paper.

1. Goal & Approach

The objective is to provide developers with a method of producing dynamic runtime simulation from static description of software architecture model. Software architecture models are often specified in terms of an Architecture Description Language (ADL), such as Wright and Acme. These models specified many details of the system, such as structure, hierarchical decomposition, system properties as well as behavioral information. So it is necessary to pick out only the information related to the system behavior from the description of the architecture. Then simulation can be generated based on this system behavioral information.

Wright is an architecture description language based on a formal description of the abstract behavior of architectural components and connectors of system, using CSP notation. So it can easily be analyzed and provides the behavior of the overall system. It also provides a practical formal basis for the description of architectural configurations and styles as well as other features to enhance the description of software architecture model. Moreover, it provides a collection of static checks to determine the consistency and completeness of an architectural specification. So developers can combine the information provided by these static checks and the dynamic runtime simulation to better understand the software system. The details about the syntax and application of Wright are described in [1].

In order to provide runtime simulation, a high level structure of a simulation tool is proposed. The system should take software architecture model described in Wright as input. It should perform transformation and analysis necessary to capture the behavior of the overall system. It should also generate simulation and control the progress of it through the interaction with users. This simulation tool can act as a component and can be integrated with other components to provide animation of the dynamic runtime simulation of the software architecture model.

The ProBE tool developed by the Formal Systems is also capable of simulating CSP process. However, the simulation tool described in this paper is developed as a reusable component that can integrate with other components to provide graphical view of the behavior of systems.

2. High Level structure of the Simulation System

2.1. Approach

The simulation is based on the CSP process describing the overall system behavior, but not the Wright description. So the simulation system tool must first translate the Wright description of a system to CSP process capturing the behavior of it. It can be made generic with the introduction of different translators of different ADL. So software architecture model described in ADL other than Wright can be annotated with system behavior information and translated into CSP process of the overall system behavior. However, CSP is not an ADL and cannot be used to describe software architecture. Since CSP is not an ADL, information about structure will be lost during this translation. In order to make the simulator useful as part of an architectural simulation environment, we use a naming scheme for processes and events that can be used to map them back to the original architecture.

Based on the CSP process capturing the overall system behavior, a simulator component is responsible to generate simulation and control the progress of it. It can interact with the users and receives information on the control of the progress of the simulation. It should also be able to broadcast the details of the simulation so that other components in the environment can listen to these broadcast and work together to provide animation of the simulation.

2.2. Model of the Simulation Tool

The simulation tool consists of a translator and a simulator. Figure 1 shows the structure of the entire system. The solid arrows represent dataflow while the dashed arrows represent the control flow. The software architectural model described in Wright is translated into CSP process representing the overall system behavior and then the CSP process is used in the simulator to generate a simulation. The simulator is responsible for simulation generation. It has an internal representation of the overall system CSP process. The modulator inside is responsible for the control of simulation, with the interaction with users and broadcasting of events for other components.

The translator is responsible for the capturing of the behavior of the system described in Wright into CSP description. We focus only on the translation of Wright description into CSP description in this project because the specification of system behavior in Wright is based on CSP. Different translators can be built to translate behavior captured in other ADLs, when there is a meaningful way to carry out the translation.

The output from the translator is used as input to the simulator component. The simulator builds an internal representation of the system behavior model based on the input of CSP description. During the runtime simulation, the modulator returns to the users a menu of possible events that can occur based on the internal representation of system behavior model. The simulator presents the choices to user and let the user to choose the event that should occur. The simulator should then return this event to the modulator for it to evaluate the internal model due to the occurrence of this new event. At the same time, the simulator should broadcast this event out.

Visualization environment can integrate with the simulation tool and listen to these broadcast events. These additional components can provide graphical animation of the simulation based on events that are broadcast to them or history table of the events.

Figure 1. The Structure of the Simulation Tool

2.3. Event specification, Log of Sequence and Backtracking

In the simplest form, the simulation tool should do random tracing in which the simulator chooses the simulation events randomly according to the choice menu. However, the tool can be of even greater use if it can stop the simulation when it encounters certain events. So the tool should allow break points to be set up so that the tool will stop simulating in the occurrence of them. This is useful in system debugging. Also the simulation process can be more flexible if users can interact with the tools and choose the simulation events that they want to happen. So the tool should support user input of simulation events. In sequence specification, the user will provide the simulator with a sequence of events. Error will be reported if at one turn, the event in the sequence cannot be found in the choices from the modulator. In user specified method, the user will provide events to the simulator one at a time according to the choices presented.

All traces of the simulation will be kept in a log file for record. The simulator should do this work. This will be useful for future references by the users.

The simulation tool should also support backtracking. The log file that keeps the trace will be useful in supporting this functionality. Before any simulation occur, the simulation tool should keep an original copy of the process tree. If user wants to undo an event, the sequence kept in the log file will be fed to the original process tree until it encounters the event before the last one.

3. Translation of Wright Description to CSP Description

The translator is responsible to translate a software architecture model described in Wright into a CSP process describing the overall system behavior. In Wright, each port, role, component computation and connector glue has a process associated with it. The port and role processes specify the interface with component and connector, respectively. In the other hand, the computation and glue represent the overall behavior of components and connectors. But there is no process explicitly specified for the overall system behavior. So we have to define a mechanism to construct the overall system process from processes of elements of the system. The following mechanism is based on the description in Robert Allen’s paper [1]. It constructs the overall system process from elements’ processes. Then it uses some renaming function to provide adequate naming of events within the system process.

3.1. Parallel Composition

The overall system behavior process can be defined as the parallel composition of all the processes of its constituent component’s computation and connector’s glues. The system consists of components, which are coordinated by connectors attaching to them. So the system process should be the combination of these coordinated processes of its constituents. Also the translator should calculate the alphabet of each process which is needed in the alphabetized parallel composition of processes.

3.2. Renaming Function for Instances

We want to combine the behavior processes of components and connectors to represent the overall system process. However, in Wright, component and connector processes are associated with type, but not instance. In a software architecture model with two components instantiating from the same component type, the processes will have same set of events. When we combine the processes of the elements using the parallel composition, there will have no distinction of which component is in action when an event from its alphabet occurs.

A renaming function can be used to solve this problem. They can make multiple copies of the specifications for instances by adding the instance name to the event name. E.g. we have a component type named BufferType with event In.Read and Out.Write. An instance of BufferType named Buffer would refer to its event with the name Buffer.In.Read and Buffer.Out.Write. By using this renaming function, there can be multiple instances of a type and their processes will not interfere with each other when combined by the parallel composition.

3.3. Renaming Function for Attachments

The processes specified in component and connector types are context-independent. None of the events specified in computation or glue match up because port and role names are attached to the event name in Wright. So when there is an attachment between a component’s port and a connector’s role and we combine the computation and glue of this system, the events cannot be coordinated between the computation and glue process. So we need a mechanism to include the information of the attachment declaration.

Another type of renaming functions can solve this problem. They can match up the names of attached port and role. E.g. “Buffer.Out as Pipe.In” is an attachment declaration specifying the attachment of the Out port of a Buffer component and In role of a Pipe connector. The renaming functions will make sure all events in the form of Pipe.In.e in the glue will be renamed to Buffer.Out.e.

3.4. Hierarchical Decomposition

Hierarchical decomposition is useful in describing components. In Wright, describing a component as a full configuration decomposes it. We also need to provide bindings to define correspondence between parts of configuration and ports of components. So it will be useful to support simulation of systems that are described hierarchically. However, this is beyond the scope of this paper. The translator cannot handle systems that have hierarchical structure. In order to support this properly, the behavioral semantics of the hierarchical components needs to be clarified.

3.5. Implementation Plan

The tool uses the Wright parser that is included as part of Wright tool set developed by the Architectural Based Languages and Environment group of the Carnegie Mellon University and the CSP parser developed by Bryan Scattergood, which is described in [3]. Specifically, the Wright tool uses the parser to build the abstract syntax tree of the Wright description. The translator should maintain a list of pointers to all component and connector type nodes defined in the Style section. It builds CSP processes according to this list and the list of instances, using the renaming function specified in Section 3.2 and 3.4. Then it combines all the processes and does the renaming procedure according to the information available in the attachment specification in the Wright description, as described in Section 3.3.

The CSP process produced should be able to be parsed by Scattergood’s parser. There are some differences between the behavior specification of the Wright language and the language of Scattergood’s parser. So some changes are needed for the mechanism of the translation.

First, CSP does not have the notion of event initiation. This means the initiated/observed distinction is lost when Wright is translated into CSP. Since this is consistent with Wright semantics, losing this information is not necessarily a problem. However, in the context of a simulation environment, it may be useful to retain the distinction. For example, a simulation environment might allow a user control over events initiated by a particular a component like the requests generated by a client in a client/server system. One way to do this would be to introduce additional internal events that signal initiation. This should be more fully explored in later work.

Second, it does not have a keyword reserved for the Success process that can be found in the Wright language. The Success process is a special function, just like Skip and Stop and we can define it to be success -> Stop where success is the special event which indicates the successful termination. We need to include this definition at the beginning of the output of the translation in order for other processes to refer to the special process Success.

Also component and connector types defined in the Style section of a Wright description may have process parameters or number parameters associated with them. These parameters are later specified when the component or connector is instantiated. The CSP language specified by Scattergood’s CSP parser supports processes with parameters. These can be used to describe the behavior of component and connector type with parameters. We can then have additional definition of processes to represent computation or glue with parameters specified.

3.6. Example of Translation

Below is an example of translation that applied the ideas described above.

Configuration ClientServer

Component Client-type

Port Out = a -> Out |~| Success

Computation = Out.a -> Computation |~| Success

Component Server-type

Port In = c -> In [] Success

Computation = In.c -> b -> Computation [] Success

Connector Interface-type

Role Origin = a -> Origin |~| Success

Role Target = c -> Target [] Success

Glue = Origin.a -> Target.c -> Glue [] Success

Instances

Client:Client-type

Server:Server-type

Interface:Interface-type

Attachments

Client.Out as Interface.Origin

Server.In as Interface.Target

End ClientServer

This Wright description is translated into the following CSP description.

Success = tick -> Success

Client = Client.Out.a -> Client |~| Success

ALPHA_Client = {Client.Out.a, success}

Server = Server.In.c -> Server.b -> Server [] Success

ALPHA_Server = {Server.In.c, Server.b, success}

Interface = Client.Out.a -> Server.In.c -> Interface [] Success

ALPHA_Interface = {Client.Out.a, Server.In.c, success}

ClientServer = Client [ALPHA_Client || union(ALPHA_Server, ALPHA_Interface)]

 (Server [ALPHA_Server || ALPHA_Interface] Interface)

4. Simulation of CSP Process

The simulator is responsible to carry out the runtime dynamic simulation of CSP process that represents the overall behavior of the system. The objective of it is to produce runtime simulation from static description of CSP process. CSP describes behavior in terms of the occurrence of events. It is an event-based model. So simulation of CSP process can also be based on the occurrence of events. Specifically, simulation of CSP process is similar to the generation of traces of events of it. An algorithm and the data structure that it is based on are necessary for the generation of traces of events of CSP process.

4.1. Internal Representation

The simulator uses Scattergood’s CSP parser to parse in CSP description. However, the abstract syntax tree of the description produced by the parser does not provide methods that support CSP semantics. So it is limited in its use. A new internal representation is proposed with methods to compute the set of events that a process can currently involve in and to transform a process based on event input. This new internal representation will support the generation of runtime dynamic simulation of CSP process and therefore is the foundation of the simulator.

4.1.1. Definition Table

The CSP description, which the Scattergood’s parser can parse in, consists of lines of definition of variables. So it is natural to represent the CSP description internally as a definition table of variables. Each entry of the table consists of the variable name, the parameters and a pointer to the abstract syntax tree representing the syntax and semantic meaning of the variable. Variables representing processes sometimes have parameters associated with them to provide more flexible use. So sometimes processes with parameters are defined in the CSP description and we need to specify this in our internal representation of the definition table.

4.1.2. Tree Structure Representation of CSP Description

Each defined variable in the CSP description is represented as an abstract syntax tree in the definition table. The abstract syntax tree represents the variable in terms of nodes that represent operators or language construct of CSP. There are eight types of abstract syntax tree nodes. Each type has several members that can represent different operators or language construct of CSP. The following tables shows different types of tree nodes, their members and the corresponding CSP operators that they represent. It also includes the semantic meanings that are useful in the production of runtime simulation. These semantic meanings are based on the description in C. A. R. Hoare’s book on CSP [2] and the paper of Scattergood [3].

Table 1 lists the tree nodes of the process type. The process type nodes will return another process when evaluate with event input. There is a special event called tick used in Table 1. This event indicates successful termination of process. Also, there is a special symbol called bleep, which represents the failure finish of the process. In Table 1, there is an or function for the semantic definition of Box and Ndet nodes. This operator is defined to return one of its parameters arbitrarily. The Box and Ndet nodes’ semantic meanings are essentially the same in simulation. Process P or Q can proceed if it can involve in the event input. There is also an ismember function that determines if an element belongs to a set. It should also be noted that the Hide operator is not used in the syntax of Wright.

Node Name
Members
CSP Representation
Semantic

Pick
Event a, Process P
a -> P
pick(e,P) = (x. if x = c then P else bleep

Par
Process P,Q, Set A,B
P [A || B] Q
par(P,Q,A,B) =

 (x. if P(x) = bleep or Q(x) = bleep

 then bleep

 else if ismember(x,A) ^ ismember(x,B)

 then par(P(x),Q(x),A,B)

 else if ismember(x,A)

 then par(P(x),Q,A,B)

 else if ismember(x,B)

 then par(P,Q(x),A,B)

 else bleep

Cpar
Process P,Q, Set A
P [| A |] Q
cpar(P,A,Q) =

 (x. if P(x) = bleep and Q(x) = bleep

 then bleep

 else if ismember(x,A)

 then par(P(x),A,Q(x))

 else if P(x) = bleep

 then par(P,A,Q(x))

 else par(P(x),A,Q)

Rpar
String x, Set S,A, Process P
|| x : S @ [A] P
The identifier x is bound within P and A to each of the elements of S. It returns a process that combines all P using Cpar operator over all A

Ndet
Process P,Q
P |~| Q
Choice(P,Q) =

 (x. if P(x) = bleep then Q(x)

 else if Q(x) = bleep then P(x)

 else or(P(x),Q(x))

Rndet
String x, Set S, Process P
|~| x : S @ P
The identifier x is bound within P to each of the elements of S. It returns a process that combines all P using Ndet operator

Box
Process P,Q
P [] Q
Choice(P,Q) =

 (x. if P(x) = bleep then Q(x)

 else if Q(x) = bleep then P(x)

 else or(P(x),Q(x))

Rbox
String x, Set S, Process P
[] x : S @ P
The identifier x is bound within P to each of the elements of S. It returns a process that combines all P using Box operator

Intl
Process P,Q
P ||| Q
intl(P,Q) = or(P(x),Q(x))

Rintl
String x, Set S, Process P
||| x : S @ P
The identifier x is bound within P to each of the elements of S. It returns a process that combines all P using Intl operator

Seq
Process P,Q
P ; Q
seq(P,Q) = if P(success) (bleep

 then Q

 else (x. if P(x) = bleep

 then bleep

 else seq(P(x),Q)

Interrupt
Process P,Q
P ^ Q
Interrupt(P,Q) = or(P(x)^Q,Q(x))

Stop

STOP
STOP = (x. bleep

Skip

SKIP
SKIP = (x. if x = tick then STOP else bleep

Hide
Process P, Set A
P \ A
Return a process with all events within Set A removed

Table 1: Process Type Nodes

Table 2 lists the event type nodes. These types of nodes are used to represent the events in CSP process.

Node Name
Members
CSP Representation
Semantic

Dot
String channel, Any x
channel.x
Ordinary event

Input
String channel, Any x
channel?x
Input event

Output
String channel, Any x
channel!x
Output event

Table 2: Event Type Nodes

The behavior description feature of Wright and Scattergood’s CSP parser supports number and boolean types. These types can extend the uses of CSP greatly. Table 3 and 4 list the boolean and number type nodes respectively. These nodes will return boolean or number nodes when they are evaluated.

Node Name
Members
CSP Representation
Semantic

Not
Boolean b
not b
Return the complement of b

And
Boolean a,b
a and b
Return a && b

Or
Boolean a,b
a or b
Return a || b

Eq
Number a,b
a == b
Return true when a == b else false

Ne
Number a,b
a != b
Return true when a != b else false

Le
Number a,b
a <= b
Return true when a <= b else false

Ge
Number a,b
a >= b
Return true when a >= b else false

Lt
Number a,b
a < b
Return true when a < b else false

Gt
Number a,b
a > b
Return true when a > b else false

Elem
Any a, Sequence s
elem(a,s)
Return true when a is an element of s else false

Bool
String c
True

False
Return true

Return false

Null
Sequence s
null(s)
Return true when s is empty else false

Member
Any a, Set s
Member(a,s)
Return true when a is a member of s else false

Empty
Set s
empty(s)
Return true when s is empty else false

Table 3: Boolean Type Nodes

Node Name
Members
CSP Representation
Semantic

Plus
Number a,b
a + b
Return a + b

Minus
Number a,b
a - b
Return a – b

Times
Number a,b
a * b
Return a * b

Mod
Number a,b
a % b
Return a % b

Div
Number a,b
a / b
Return a / b

Length
Sequence s
#s
Return the number of members of s

Card
Set s
card(s)
Return the number of members of s

Num
Integer num
Num
Return num

Table 4: Number Type Nodes

They also support set and sequence data types. These data types are also useful in extending the uses of CSP. Table 5 and 6 list the sequence and set type nodes, respectively. These nodes will return set or sequence nodes when they are evaluated. Table 7 lists the generator type nodes. These nodes are only used in the definition of set or sequence nodes. They represent production rules for the creation of set and sequence nodes.

Node Name
Members
CSP Representation
Semantic

Seqenum
List of Any es, Number s,e
<es>

<s..e>

<s..>
Return this sequence

Seqcomp
List of Any es, Number s,e, List of Generator gs
<es | gs>

<s..e | gs>

<s.. | gs>
Return this sequence restricted by list of generators

Cat
Sequence s,t
s^t
Return the concatenation of s and t

Tail
Sequence t
tail(t)
Return the tail of t

Mapseq
String f, Sequence s
Mapseq(f,s)
Apply f to each member of s and return the resulting sequence

Table 5: Sequence Type Nodes

Node Name
Members
CSP Representation
Semantic

Setenum
List of Any es, Number s,e
{es}

{s..e}

{s..}
Return this set

Setcomp
List of Any es, Number s,e, List of Generator gs
{es | gs}

{s..e | gs}

{s.. | gs}
Return this set restricted by list of generators

Union
Set a,b
union(a,b)
Return the union of a and b

Inter
Set a,b
inter(a,b)
Return the intersection of a and b

Diff
Set a,b
diff(a,b)
Return the difference between a and b

UNION
Set A
Union(A)
Return the distributed union of A

INTER
Set A
Inter(A)
Return the distributed intersection of A

Set
Sequence s
set(s)
Convert s to set

Mapset
String f, Set a
mapset(f,a)
Apply f to each member of s and return the resulting set

Table 6: Set Type Nodes

Node Name
Members
CSP Representation
Semantic

Draw
String x, Sequence s
x <- s
Replace x with s

Filter
Boolean b
b
Filter the element if it does not satisfy b

Table 7: Generator Type Nodes

The Any nodes represent nodes of any type. These node will return nodes of any type when they are evaluated. Table 8 is a listing of all nodes that fall into this type.

Node Name
Members
CSP Representation
Semantic

Var
String c
c
Variable c

Head
Sequence s
head(s)
Return the first element of s

Cond
Boolean b, Any x,y
if b then x else y
If b is true return x else return y

Table 8: Any Type Nodes

The Integer, String and List data types in the Members column of the above tables are supposed to be predefined data types. These data types can be easily found or implemented in any programming languages and thus this abstract syntax tree scheme can be implemented easily in any programming languages.

However, some features are ignored. E.g. The replacement feature and the CHAOS(A), which is a process which non-deterministically may refuse any events in set A, but does not diverge, are not specified. These features are considered to be not so important in architectural process simulation and therefore are ignored.

4.2. Simulation Algorithm

A simulation algorithm is needed to generate traces of events. The simulator needs to keep track of a pointer to an abstract syntax tree that represents the current state of the process being simulated. The procedure of the simulation consists of simulation steps. Each step can either produce an event or terminate the simulation in the case of a success of failure finish of a process. Each simulation step consists of two parts. First the simulator should investigate the current state of the process being simulated and construct a menu of choices of events that users can choose from. Then after the users make a selection of event from the menu, the simulator will simulate it. The current state of the simulating process will change at the occurrence of this event. The simulator will perform this transformation based on the semantic of the abstract syntax tree that represents the current simulating process state.

4.2.1. Menu of Choice

The simulator will investigate the current state of the simulating process and return a menu of choices of events to users. In doing so, it will traverse through the current state abstract syntax tree. It will perform different actions when it encounters different tree nodes.

The prefix operator will produce items in the menu, by investigating its member event. The non-determinate, general choice, interleaving operators, the repeating version of them and interrupt operator will combine the menus of their member processes. For the interface parallel operator, i.e. P [| A |] Q, we need to find out the intersection of A, menu of P and Q, menu of P that are not in A and menu of Q that are not in A. The union of these three terms will be the menu of the interface parallel operator. For the alphabetized parallel operator, i.e. P [A || B] Q, the menu will be the union of the intersection of A and menu of P and the intersection of B and menu of Q. When investigating event nodes, the data portion x should be traversed. If it is defined and is an undefined variable, it will let users to specify the value of it. If it is not, it will return the evaluated value as a choice to users.

In the case of encountering a variable tree node, the simulator should check the definition table defined in Section 4.1.1 and should expand this variable node according to the abstract syntax tree defined for it. Then the menu constructing procedure should continue on the expanded portion of the tree. Also when encountering a node representing the head of a sequence, the first element of sequence should be investigated and return a choice if found. In the case of conditional expression, the condition b should be evaluated. If it is true, the then clause is investigated to return choice. Otherwise the else clause is investigated instead.

Other nodes will have no effects on the menu.

However, it is possible to construct a menu with infinite number of events. E.g. P(i) = P(i+1) [] count.i -> P(i+1) is a process in which this situation will occur when simulated. If we want to simulate P(1), the menu of choices will be the set {count.1, count.2, count.3, …} for all integers greater than zero. Various solutions can be used to solve this problem. E.g. we can use production rules to represent infinite event set. However, the easiest way is to limit the number of entries in the menu and this method will be used in the simulator. The limit of the number of entries in the menu should be able to be specified in the simulator. It is because the number of choices depends on the model we are investigating and so it should be configurable in the simulator.

The details about the menu constructing mechanism for the input and output events have not been worked out yet and the menu constructing algorithm described in this section do not work well with process with input and output events.

4.2.2. Production of Simulation

Based on the input event from user, the current state of a process will transform to a new state. Following the semantic meaning of tree nodes of the current state does this. The semantic meanings of all abstract syntax tree nodes are also listed in Table 1. These semantic meanings are based on the description in C. A. R. Hoare’s book on CSP [2] and the paper of Scattergood [3].

The variable tree nodes have special semantic meaning. It is because when the simulator construct the menu of choices, these nodes are expanded according to the definition table. So there should not be cases in which these nodes are evaluated in the production of simulation. The generator nodes also do not have well-defined semantic meaning. They are included in the set and sequence nodes. When algorithm function visits set and sequence nodes with generator nodes as its members, it will interpret their meanings to do the work and will never visit them explicitly. The event nodes are similar. They do not have well-defined semantic meaning. They are included in the Pick process nodes.

4.3. Implementation Plan

We are going to use the Scattergood’s CSP parser in the simulator to parse in the CSP description. The parser will produce an abstract syntax tree of the description with no semantic meaning attached to them. The simulator should use this tree to produce a new kind with semantic meaning. A new, semantic meaning included hierarchical data structure of tree nodes is proposed and a function that can transform the old tree into the new tree is needed.

A class called treeNode is defined. It has two virtual functions, called evaluate and menu and a variable called type. The evaluate function should take in an input event and return another tree node. The menu function should take the definition table as input and return a list of events. They should be defined as dummy function in this node. The eight different types of tree nodes defined in Section 4.1.2 and Table 1 will be derived class of this treeNode class and the member of each tree node type will be derived class of its corresponding tree node type class. Each type node should have the type variable specified and the virtual function should still be defined as dummy. Each member node will have its member defined in Table 1 as its member variable. It should also specify the evaluate and menu function according to the semantic meaning of Table 1 and the description in Section 4.2.1.

4.4. Example of Simulation

Below is an example of simulation of the CSP description produced in Section 3.6. The simulation is described in terms of simulation steps. Each step shows all possible choices of events and the user selection.

Step 1: Menu of Choices: {Client.Out.a, success}

 User Selection: Client.Out.a

Event Data: 1

Step 2: Menu of Choices: {Server.In.c, success}

 User Selection: Server.In.c

Event Data: 2

Step 3: Menu of Choices: {Client.Out.a, Server.b, success}

 User Selection: Client.Out.a

Event Data: 3

Step 4: Menu of Choices: {Server.b, success}

 User Selection: Server.b

Event Data: 4

Step 5: Menu of Choices: {Server.In.c, success}

 User Selection: success

As shown in the above simulation, the client-server model example works correctly. Client cannot complete the transfer of data if the server has not finished processing the previous data. The connector acts as a buffer to make sure that the data will get processed one by one without jamming the server.

5. Future Work

The paper proposed a possible implementation plan of a software architecture simulation tool based on Wright. However, the current implementation is incomplete. The objective of this paper is to specify the importance of software architecture, the importance of dynamic runtime simulation of software architecture model and an implementation plan of a tool that can produce simulation for software system. An interested reader can go beyond the description and follow the plan to continue the implementation of the simulation system.

Also other work is needed in various aspects of the tool. First of all, it is possible to construct a menu with infinite number of events. This is bad because the menu constructing function will never finish looking for possible events. The proposed solution is to limit the number of entries in the menu. However, more clever tricks can be used instead. E.g. we can specify the possible event set using generation rules. The set {x*x | x<-{1,2,3}} will actually means {1,4,9}. The description after the bar is the set of generation rules. The details will be left for interested readers who want to continue the implementation.

Secondly, we can implement other components that can integrate with this simulation tool to generate animation of the simulation produced. These components will be able to work together and provide users with a graphical animated view of a software architecture model and its behavior.

Another area to investigate is support for defining abstractions over the state of the processes in a system. For example, in a particular client-server system, we may have an invariant that says that certain events may only occur when the server has been initialized and all clients have successfully established connections with the server. In this case, it would be desirable to define an abstract “initialized” state which corresponds to the proper events having occurred within the server and its clients. Even a simple pattern language for describing abstract would be a useful part of an interactive simulation environment; in a visualization of the client server system, components could be drawn in different colors to indicate whether they have been initialized yet and the entire system could be rendered differently when it became initialized. Visualizations like help reinforce the current state of the system while a designer explores its behavior.

Finally, we can construct different translators that can translate different architectural description language, such as Acme, Unicon and Rapide, into CSP. This will make the simulation tool more generic and more useful.

6. Conclusion

Software architecture is very important when software system gets larger and larger. It can provide an abstract level of view and hide the implementation details for the users so that they can better understand the overall structure of the system. It can also be useful in system analysis. Static analysis of software architecture model is useful in evaluating some system properties, such as performance and correctness. However, it is limited and dynamic analysis should work together with static analysis to provide developers a more clear and complete picture of the system. So dynamic runtime simulation of software architecture model is important and necessary. This paper proposed a description and implementation plan of a simulation tool that can produce runtime simulation of software system model. This tool will be useful in dynamic analysis and it should help developers on analyzing software architecture of software system together with the static analysis.

References

1. Robert J. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon University, May 1997

2. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

3. Bryan Scattergood. A Parser for CSP. December 1992

Useful Web Resources

Wright Page:

http://www.cs.cmu.edu/afs/cs/project/able/www/wright/index.html
CSP Archive:

http://www.comlab.ox.ac.uk/archive/csp.html
ProBE Tool:

http://www.formal.demon.co.uk/probe.html
Event Broadcast

Modulator

User Input

Wright Description

CSP Description

Modulator

User Interface

Control flow

Wright DeTranslator

Process Representation

Simulator

on

Simulator

tion

Dataflow

Wright Description

CSP Description

Event Broadcast

Translator

Process Representation

Keys:

Simulator

Visualization 3

Visualization 2

Visualization 1

1
10

