Toward Compositional Construction of Complex

Connectors

Bridget Spitznagel
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA

sprite@cs.cmu.edu

ABSTRACT

A critical 1ssue for systems composed of independently-
developed parts 1s the design and implementation of
mechanisms that allow those parts to interact. In many
situations specialized forms of interaction are needed
to bridge component mismatches or to achieve extra-
functional properties (e.g., security, performance, re-
liability). Unfortunately, system developers have few
options: they must either live with available, but of-
ten inadequate, generic support for interaction (such as
RPC), or they must handcraft specialized mechanisms
at great cost. In this paper we describe a partial solution
to this problem, whereby interaction mechanisms are
constructed compositionally. Specifically, we describe a
set of operators that can transform generic communica-
tion mechanisms (such as RPC and publish-subscribe)
to incrementally add new capabilities. We show how
these transformations can be used to realize complex
interactions, such as Kerberized RPC, at relatively low
cost. We also outline the formal underpinnings for these
operators and illustrate how to reason about properties
of operator composition.

1 INTRODUCTION

Increasingly, complex software systems are being con-
structed as compositions of reusable software compo-
nents. These components are often written indepen-
dently and connected using glue code. For example, in a
three tier client-server system, the server, the database,
and the code enabling them to communicate may have
been acquired separately.

A critical issue for such constructions is the design
and implementation of the interaction mechanisms, or
connectors,’ that permit the components to work to-
gether. While generic forms of component interaction,

Draft of paper submaitted for publication.

1'We will use the term “connector” to refer to an interaction
mechanism that supports component integration.

David Garlan
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA

garlan@cs.cmu.edu

such as RPC, may be sufficient in many cases, special-
1zed forms are often needed both to make the parts work
together at all, as well as to achieve desirable properties
of performance, security, reliability, etc.

For example, additional mechanisms may be needed to
adjust data formats (e.g., from big-endian to little en-
dian, or for unit conversion), to compensate for differ-
ent control mechanisms (e.g., synchronous versus asyn-
chronous), or to support system monitoring and de-
bugging. Similarly, one might need to enforce security
mechanisms such as authentication, or improve perfor-
mance through caching.

Unfortunately, at present it is difficult to create the se-
mantically rich connectors that these software systems
need. Currently there are two alternatives: use an ex-
isting, off-the-shelf connection mechanism, or handcraft
a specialized one. Neither alternative is adequate. On
the one hand, it is not always possible to find an exist-
ing connector that meets the needs of the system. On
the other hand, creating a new connection mechanism is
difficult and costly, typically requiring low-level knowl-
edge of operating systems, communication protocols,
and auxiliary mechanisms such as stub generators. The
situation is compounded by the need to combine interac-
tion capabilities in various combinations. For example,
one might want to use both caching and communica-
tion monitoring, or authenticated RPC and encryption.
This leads to a combinatorial explosion in the number
of useful interaction mechanisms. If each is built as a
monolithic, handcrafted form of connection, the overall
costs quickly become prohibitive.

In this paper we argue that what is needed is a way
to produce new kinds of connectors systematically and
at low cost. This would be possible if we could con-
struct new connectors compositionally. Basic interac-
tion mechanisms, such as RPC, would be augmented
with selected adaptations to produce more complex
connectors. System generation tools would then com-
pile those enhancements into new run time mechanisms
adapted to the problem at hand.

In the remaining sections we describe initial steps to-

wards realizing such an approach. We begin by motivat-
ing the problem; next we enumerate a set of operators
that can transform generic communication mechanisms
(such as RPC and publish-subscribe) to incrementally
add new capabilities. We show how these operators can
be used to realize complex interactions, such as Ker-
berized RPC, at relatively low cost. We then outline
formal underpinnings for these operators and illustrate
how the formalism supports reasoning about operator
properties, such as commutativity and compositional-
ity.

2 RELATED WORK

There are three main areas of related work: software
architecture; protocols and their formal analysis; and
generating implementations.

The first area is software architecture, in which the
treatment of connectors as first-class entities was intro-
duced [7, 1]. When component interactions are embod-
ied at the level of architectural design as connectors,
this enables the system designer to make interactions
explicit and easy to identify, to attach semantics, and
to capture abstract relations. This treatment of connec-
tors also enables their formal specification and analysis,
independent of the components they are to connect [1].
For example, formal analysis of the High Level Architec-
ture (HLA) for Distributed Simulation [2], a proposed
connector, revealed interesting flaws; the work on the
HLA also is of interest due to its concern for how specific
connectors can be built up in a traceable and modular
way. Also related are areas of work which explore tech-
niques for resolving architectural mismatch. When two
mismatched components are unable to communicate via
existing connectors, one option is to construct or modify
a connector that will then operate to resolve the mis-
match [8]. Sometimes component wrappers are used.
Another technique, Flexible Packaging [3], separates
the component’s functionality (ware) from its assump-
tions about the communication infrastructure (packag-
ing); the packaging may eventually be associated with
the connector.

Another related area, in protocol research, is the area
of protocol synthesis. Decompositional techniques for
protocol synthesis break a complex task into subtasks,
which have simpler protocols that can be created more
easily and then combined, in a principled and sometimes
automatic way, to form the desired protocol [11]. Some
properties of safety and (given certain restrictions) live-
ness can be predicted in a similar incremental way using
a finite state machine model [10]. An example of recent
work in the area of protocol synthesis is Ensemble [12]
which enables the construction of an adaptive protocol
composed of stacked micro-protocol modules.

A third area of related work is in code generation as it

relates to generating connectors. UniCon [9] addresses
implementation issues in realizing specific connectors.
The UniCon compiler enables the construction of a sys-
tem from an architecture description including gener-
ation of the code and other necessary constructs that
implement the system’s connectors. A specific set of
connector abstractions are supported. Another related
area of generation is in generating variations on a sin-
gle connector. For a specific type of connector, such as
RPC, work has been done in delaying the binding of
some design decisions (such as the level of reliability)
to make the implemented connector more flexible and
appropriate for a wider range of applications; the de-
cisions are not bound until the connector is integrated
into a system. One approach is to have a set of small
modules [4]. The options for behavior are classified
into categories, such as call semantics (synchronous or
asynchronous), and communication semantics (degree
of reliability); micro-protocols modules, selected from
these categories, are composed as in decompositional
protocol synthesis. Another approach is to use object-
oriented inheritance to specialize communication class
libraries [14]. Our work differs from these in its focus
on producing new connector types that may be based
on a variety of existing connector types.

3 MOTIVATION

Today, when an existing connector must be altered or
replaced by a hand-built mechanism, someone must take
on the implicit role of connector modifier. At present
this task is difficult and costly, can require guru-level
expertise, and has little available automated support.

Consider the following scenario. A software develop-
ment group is constructing a product using a set of
components written in Java with the assumption that
Java RMI (Remote Method Invocation) will be used to
make them work together. Suppose the system’s archi-
tect decides that it 1s necessary to improve the security
of the system, and therefore that some or all of the
component interactions should use authenticated com-
munication. Further, they decide to use Kerberos [6] to
provide authentication.

Currently two alternatives might be used. The first is
to retain the use of vanilla RMI, but have a team of im-
plementors modify the affected components so that they
make appropriate Kerberos library calls before, during,
and after each communication with another component.

This alternative is highly undesirable from an engi-
neering point of view. First, changes are distributed
throughout the system. If later a variant or new ver-
sion of the Kerberos protocol should be used instead,
the team of implementors must go through the same
amount of work again. Second, it is not possible to
reuse the modifications in another Java-RMI-based sys-

tem, except in the primitive sense of cutting and pasting
the names of the library functions; and adding another
modification to this system would (at best) entail the
same amount of work. Third, there is no guarantee that
the implementors will carry out the changes correctly.

The second alternative is develop a new Kerberos-Java-
RMI connector. In practice this would be done by mod-
ifying the RMI stub generator so that it produces run
time code for Kerberized RMI. To do this it would in-
sert appropriate Kerberos library calls within the RPC
stack, so that they occur at the beginning and end of all
remote method invocations. This approach has the ad-
vantage that changes are localized (kept within the stub
generator), and that they are more likely to be correctly
applied since users need only make sure they invoke the
appropriate stub generator.

However, the task of modifying the stub generator will
not be easy; it must be done by someone who is expe-
rienced both in Java RMI and in Kerberos. Moreover,
adding additional modifications to the stub generator
will require, at best, the same level of effort and exper-
tise as before. In fact, it may be increasingly difficult to
add a second modification to the ad-hoc changes that
have already been made. Similarly, other people who
want to modify Java RMI gain nothing from the orig-
inal changes (unless of course they are satisfied with
exactly the same new connector type); they will have to
do the same amount of work for themselves.

If connector transformation tools were available, a supe-
rior approach would be possible, achieving the desired
result (a new connector type) with less work and many
long-term engineering benefits. In this alternative, we
would apply a sequence of parameterized generic con-
nector transformations to an existing connector type
(such as RMI) to produce one that supports additional
capabilities (such as authentication). That new connec-
tor type — typically realized as a code generator or set
of run time communication libraries — can then be used
freely as a new interaction mechanism throughout the
system, as before with the modified stub generator.

In this example, we would produce the Kerberizing-
Java-RMI (stub) generator by using a transforming-
Java-RMI tool that accepts parameterized transforma-
tions to adapt RMI. Specifically, we would determine
the transformations required, and then give them code
fragments that apply to this situation, Kerberos authen-
tication; these fragments are used to instantiate the new
Kerberized RMI stub generator.

What have we gained by doing this? First, we have re-
duced the costs in developing the new connector type,
since it is no longer necessary to know the details of
the Java RMI run time mechanisms or stub generation.
Second, by breaking down the overall connector modi-

fications into smaller, easily understood steps, connec-
tor transformations make the resulting connector easier
to understand, reason about, and maintain. For exam-
ple, changing the encryption policy only requires tweak-
ing the code fragment of one of the transformations,
whereas even the modified stub generator would have
to be changed in multiple locations.

While the approach described above is a nice vision,
it raises a number of critical questions. First, what is
the set of connector transformations, and what kinds
of connectors can the transformations be applied to?
These transformations must be chosen at an appropri-
ate level of complexity, to enable easy decomposition
of desired modifications and a broad range of appli-
cability. Second, what are the semantics of connector
transformation? Ideally we would like to be able to
explain a transformation precisely and reason formally
about properties such as idempotence, commutativity,
and compositionality. Third, how would one actually
build the generic tool described above?

The remainder of the paper will provide one set of an-
swers to these questions.

4 A SET OF TRANSFORMATIONS

There are many approaches that one might use in choos-
ing a set of transformations. At one extreme one must
identify a minimal set of simple transformations with
an eye toward formal simplicity and elegance. This has
the attraction of providing a good basis from which to
reason, but it may leave a large gap between the trans-
formational calculus and complex connectors that are
needed in practice. At the other extreme, one could enu-
merate a large number of powerful, specialized transfor-
mations that have direct applicability to certain areas,
such as security or performance. This has the advantage
of being directly usable within certain areas, but harder
to reason about or to guarantee adequate coverage of
the space of connectors.

We have attempted to find a middle ground. Specifi-
cally, we have identified a small number of moderately
complex transformations, that have direct applicabil-
ity to realistic applications, that are simple enough to
reason about formally, and that are generic enough to
ensure broad coverage.

We'll describe these transformations informally in this
section, and then come back to ways of making them
precise and automating their use. For each transforma-
tion we summarize its purpose, examples of its use, and
its dimensions of variability.

Data Transform

Data Transform changes the format of the data being
exchanged in an interaction. Format changes may occur
at either end of a communication, or at both ends. It

does not alter the protocol of interaction, although it
may require additional information to be transmitted.

A simple example of Data Tranform is conversion from
little- to big-endian. Another example, in which data
1s transformed at both ends, is data compression: data
1s compressed at the sender and decompressed at the
receiver. A more complex example, in which additional
information 1s transmitted, would be to include check-
sums for error detection. As a final example, consider a
connector that handles the situation in which a sender
produces data more quickly than the receiver is able to
consume it; the connector could be modified to present
the receiver with the average of every n values.

Aspects of this transformation that can be varied in-
clude: Where the operation occurs (at the receiver,
sender, both); How many data transforms occur (one,
two, n); What is the operation on the data? Does it pre-
serve the number of messages, decrease, or increase? Is
it reversible or irreversible (lossy)? Is it a pure function,
or does it have memory and/or an external input?

Splice

Splice combines two binary connectors ¢ and d into a
new binary connector. The new connector is has one in-
terface from ¢ and one interface from d. Unlike a Data
Transform, Splice changes the protocol being used to
exchange the data. This transformation will be possi-
ble for some pairs of connectors but not for others. For
example, ¢ may not have access to some information re-
quired by d. Formal analysis would assist in predicting
whether two connectors can be combined in this way.
This transformation is chiefly used to enable two mis-
matched components to interact.

Software adaptors [13], which can overcome some kinds
of component mismatch, are one specific example of
splicing technology. The Java Bean Box also incorpo-
rates a splice between event-based and procedure-call
connectors.

Add a Role

This tranformation adds a new interface (or “role”) to
an interaction to enable a new party to be involved.
Two kinds of roles can be added: observers, and partic-
ipants. Observers listen to the communication between
the connected components, but do not affect it. Partic-
ipants may take an active part in the communication.

An example of an observer is a simple eavesdropper
that logs all communication. Another example is an
auditor that requires additional information to be sup-
plied in addition to what was originally being commu-
nicated. These would be of use for providing logs and
audit trails, or for collecting data such as performance
measurements.

Examples of participants are a local component that be-

haves as a cache, a confirmer or authorizer that deter-
mines whether a request should be allowed to proceed,
and a “trusted third party” that supplies additional in-
formation such as encryption keys to be used by another
transformation.

Choices that must be made during instantiation include
the following: Whether the role an observer or partici-
pant; What communication events are accessible to the
new role; What is the effect of a participant (e.g., does it
swallow some messages sent to another component and
produce different responses to the sender?).

Sessionize

Sessionize makes a connectionless protocol session-
oriented, or vice versa. The resulting connector will
maintain state, i.e. cache some piece of information, in
some way that the original connector didn’t.

Examples of this transformation’s use are database
query refinement, and caching a proof of identity such
as a session key: in the context of encryption, a session
key 1s agreed upon by the participants at the beginning
of a session, and used to encrypt their communication
during that session; this is more efficient than contact-
ing a trusted third party to verify each message.

An instantiation can vary along the following dimen-
sions: What “state” the connector is maintaining;
Where state comes from come from, when and how it
is updated, and how long is it kept; The effect that the
state has on the communication.

Aggregate

The Aggregate transformation combines two or more
connectors with a controller. One connector is active
at a time. The controller determines how the connec-
tors interoperate, 1.e. which connector is active at what
point in time, but does not change their basic protocols.

Two examples of this transformation’s use are to cre-
ate a connector that negotiates, and a connector that
adapts during excution. A negotiating connector sup-
ports a set of protocols and attempts to determine ini-
tially what protocol(s) are acceptable to the components
it connects; then it will operate using the protocol held
in common. This is similar to two modems determining
the fastest speed they can both communicate at.

An adaptive connector’s controller is able to monitor
some aspect of a changing environment. The controller
will dynamically change which protocol is being used,
based on which one is currently “best.” For example,
the controller might monitor communication faults and
switch to/from a more fault tolerant but less efficient
protocol; or the two connectors may be connected to
a primary and backup server, and the controller de-
tects when the primary has gone up/down and uses the
backup instead.

Aspects of this transformation that can be varied in-
clude: When the controller is allowed to change active
connectors (statically at the beginning, or dynamically
at what permissible points); How the controller decides
when a change should occur; How many connectors, of
what types, are combined.

5 EXAMPLE

Before we give these transformations a more formal
characterization there are some questions remaining in
the informal description. How are connector transfor-
mations used? What steps occur in the transformation
process? To answer these let’s return to the Kerberos
example and see what the system architect would do.

Kerberos is an authentication protocol in which clients
and servers are able to prove their identity to one an-
other with the help of credentials obtained from the Ker-
beros server; when a client requests a service, it presents
a credential to the server. The first step the system ar-
chitect takes is to determine which transformations are
necessary to achieve this protocol, by consulting a tax-
onomy of basic transformations and comparing them to
the tasks that appear in (or are implicit in) the protocol.
In this case we end up with three transformations. Se-
lection of transformations can be based on typical pat-
terns of use which can be documented to make this step
easier.

Add A Role - We add a trusted third party whose
knowledge will enable a check that the messages
exchanged by the original parties are ok.

This 1s a common occurrence in security and we
would expect to see this pattern in some other
security-related modifications.

Data Transform - We add new information that is
used to prove the sender’s identity.

Using a Data Transform to add data to a commu-
nication (such as message checksums that incorpo-
rate a “secret”) is another transformation that we
would expect to see frequently in the context of
identifying a communicating party.

Sessionize - This transformation is needed to store the
credentials that the other transformations use.

Security protocols in which a third party is con-
tacted will often mitigate the overhead of doing so
by caching the information obtained. When such
information is obtained, cached, and then used re-
peatedly we would expect to use the Sessionize
transformation.

The next step is to write or obtain the code fragments
that are needed by these transformations. These frag-

ments may make use of standard libraries?.

2 As an implementation note, since the example is in Java, and

Calling side

Remote side

Initialization sessionize sessionize
Before each call sessionize /
add role
Alter arguments | data transform | data transform
on sending on receipt

Alter result

data transform
on receipt

data transform
on sending

After each call

sessionize /

add role

Table 1: Locations requiring modification

In the alternatives described earlier, in addition to hav-
ing to write those fragments, they must be inserted
by hand, either in the component implementation or
the stub generator, which would be a time consuming
process because the fragment destinations are not lo-
calized. Table 1 illustrates some locations where code
fragments must be inserted, in the case of adding Ker-
beros to Java RMI. The cells of the table show some
transformations that must insert fragments at that lo-
cation to achieve the new Kerberized connector; this
insertion 1s done automatically by the connector trans-
formation tool whereas in the other alternatives it would
have been done manually. For example, the Sessionize
transformation must add initialization code called when
the client and remote objects are created, whereas the
Data Transform occurs when the remote methods are
called; we can see that fragments associated with these
two transformations would be inserted in at least two
different sections of the code.

Now that the transformations are determined, and a
few code fragments have been associated with each, the
transformations, fragments, and the component imple-
mentations are provided as inputs to a connector trans-
formation tool. This tool (discussed later) will gener-
ate the implementation of the new connector, by creat-
ing wrappers, modifying component implementations,
and/or producing non-code artifacts such as makefiles.

6 SEMANTICS

In order to describe the semantics of a connector trans-
formation, one must first decide how to specify the se-
mantics of an individual connector type. For the pur-
poses of this research we have adopted an approach that
defines the semantics of a connector as a set of proto-
cols. Specifically, each connector is defined as a set of
roles protocols and a glue protocol. Each role defines
the behavior of a single participants in an interaction,

the Kerberos libraries are in C, they would be used through the
JGSS package (provided by the University of Illinois Systems Soft-
ware Research Group), a Java implementation of the Generic Se-
curity Service API; it provides access to the Kerberos V5 libraries
for Java programs.

whereas the glue defines the coordination between those
behaviors.

To specify the protocols themselves one could use any
number of formal languages. In this case we will use a
subset of CSP [5] that includes sequencing (—), inter-
nal choice (M), external choice ([]), interleaving (||]),and
parallel combination (]]). Successful termination is in-
dicated by the symbol §.3

To illustrate the specification of a connector type con-
sider a simple client-server connector. As illustrated
below, connector (c¢) has two roles Client and Server.
The client role repeatedly initiates requests (indicated
by the overbar) and observes the replies. At any point
the client may choose (internally) to terminate success-
fully. The server role is similar but reversed. The server
must be prepared to terminate successfully. The glue co-
ordinates the requests and replies, transmitting requests
of the client role to requests at the server role, and sim-
ilarly for replies. For simplicity, we will use examples
that are based on this two-role connector. However, in
general a connector can have an arbitrary number of
roles.

Connector ¢ =
Role Client = request!x — reply?y — Client M1 §
Role Server = request?x — replyly — Server [] §

Glue = Client.request?x — Server.request!x —
Server.reply?y — Client.replyly — Glue [] §

With this notion of connector semantics in hand, we
can then define a connector transformation as a func-
tion from one or more connector types (together with
some parameters specific to that transformation) to a
new connector type. To specify this function we will
define its signature (types of inputs and outputs), pre-
conditions on its application, and postconditions that
define the roles and glue of the new connector type, C’.

To illustrate this approach we now look at the specifica-
tion for variants of two of the five transformations from
the previous section. (Space does not permit us to de-
tail all five, although the others are similar to the exam-
ples shown here.) We then illustrate the application of
that transformation on the client-server connector type
shown above.

Data transform

This transformation modifies a connector C', with role
processes ry...7r,, so that the data carried by some
events is transformed. This is a data transformation in
which events are neither created nor destroyed, only re-
named. For each role r;, a function f; is provided which

3This is essentially the subset of CSP used by the Wright ar-
chitecture description language. See [5] for details on its definition
and principal uses [1].

transforms the alphabet of that process; fgu. trans-
forms the alphabet of the glue’s process. The result of
this transformation is a new connector type C”.

Inputs

C': connector type with roles ry...7, and glue g = Glue(C)

fi: Alphabet(r;) =%
fgiue: Alphabet(g) —X
Result

C": new connector type

Preconditions

The functions f; and fgyue are injective.
Postconditions

Roles(C') = fi(r))|i €1...n

GIUG(C) = fglue(g)

Suppose that the server in the example above uses a
big-endian format but the component connected to the
client role will use little-endian. Let fejjen: be the
function that maps request!L(x) to request!x and maps
reply?y to reply?L(y), where L(n) is the little-endian rep-
resentation of n. Similarly fgu. is the function that
maps Client.request?L(x) to Client.request?x and maps
Client.replyly to Client.reply!L(y). In this case fieryer 18
the identity function. Here 1s the result:

Connector cl =
Role Client = request!L(x) — reply?L(y) — Client N
Role Server = request?x — replyly — Server [] §
Glue = Client.request?L(x) — Server.request!x —
Server.reply?y — Client.reply!L(y) — Glue[] §

In this new connector, the client will send and receive
the request and reply data in the little-endian format,
while the server sends and receives the data in the orig-
inal big-endian format, with translation occurring be-
tween them in the connector.

Add an eavesdropper role

This transformation modifies a connector C' by adding
a role r and enabling it to eavesdrop on events in the
set F/. Events in E are drawn from the set of all events
that the glue of C' might use (this set is the “alphabet”
of C’s glue). A function f is used to rename the events
of F, which are qualified with the names of other roles,
so that they are instead qualified with the name of the
new role r, enabling r to participate in them. We require
that » does not have the same name as any role in C'.

Inputs
C': a connector type
r: a role specification, named name(r)

E C Alphabet(Glue)

(9=

fi E—=X
Result
C": new connector type

Preconditions

V 10 € Roles(Cp) @ name(r) != name(r0)
Postconditions

Roles(C") = Roles(Cp) U {r}

Glue(C’) = (Glue(Co) ||| RUNsgp) I P

EUf(E)
where P = ([Je: Eee— 1] 2P)[]§

In the first postcondition, we can see that the roles of
the original connector are unchanged by this transfor-
mation, so that we would expect the original compo-
nents would not need to be modified.

The second postcondition defines the new glue. First,
the original glue is interleaved with a RUN process
whose alphabet is f(E)*. The process that results from
this interleaving is like the original glue, but is also will-
ing to participate, at any point, in any event of f(F).

Next, the interleaved process is placed in parallel with a
new process P. P’spurpose is to cause each event e € F
to be followed by the corresponding event f(e); we will
see In the example below that this causes the informa-
tion in e to be sent to the new role r. The subscript of
the parallel operator indicates that the two processes it
joins will synchronize on events in the set (E'U f(F));
they don’t have to synchronize on any other events and
can perform them independently of one another. This
ensures that, first, when an event in £ occurs the corre-
sponding f(e) follows without other events intervening,
and second, P’s unwillingness to participate in events
outside F U f(F) will not affect the rest of the glue,
which does expect such events to occur.

To better understand the effects of this transformation,
consider an example. Suppose that we were to add an
eavesdropper role to the connector given in the example.
For simplicity, we will use a role that is willing to accept
(and record) any event:

Role Eaves = RUNyx

Let E be {Client.request?x , Server.reply?y}. That is,
we want the eavesdropper to listen to requests as they
are sent by the client, and replies as they are sent by
the server. Our function f will map Client.request?x to
Eaves.request!x (for any x € T, where T represents the
type of data allowed on that channel), and will map
Server.reply?y to Eaves.request!ly.

Connector c2 =

4We can expect f(E) and E to be disjoint: all events in E are
qualified with names of roles of C, all events in f(E) are qualified
with the name of r, and no role in C' has the same name as r.

Role Client = request!x — reply?y — Client 1 §

Role Server = request?x — replyly — Server [] §

Role Eaves = RUNy,

Glue = ((Client.request?x — Server.request!x —
Server.reply?y — Client.replyly — Glue [] §)

RUN P
Il f16]) EUJU(E)

where P = (Client.request?x — Eaves.request!x
[] Server.reply?y — Eaves.reply!x — P) []§

Example

Providing a formal definition of each transformation
has the obvious value of precision in documenting what
the transformation does and the what conditions under
which it is applicable. However, we can also use the
formalism to do much more.

A number of questions arise when defining such transfor-
mations. Which transformations can be combined with
others? Are they communtative? Do certain combina-
tions lead to deadlock? Does a transformation require
a change to components that used the initial connec-
tor? The formal specifications provide partial answers
to these questions.

To illustrate we will show how the formalism can help
us show that the transformations defined above are not
commutative. First, we apply the add-an-eavesdropper
transformation to cl:

Connector c3 =
Role Client = request!L(x) — reply?L(y) — Client M §
Role Server = request?x — replyly — Server [] §
Role Eaves = RUNy,
Glue = Client.request?L(x) — Server.request!x —
Server.reply?y — Client.reply!L(y) — Glue [] §)

N P
[l RUNfmy) EUJU(E)

where P = (Client.request?L(x) — Eaves.request!L(x)

[] Server.reply?y — Eaves.reply!x — P) []§

In the final two lines we see that the eavesdropper re-
ceives the requests in the client’s format, and the replies
in the server’s format. Now, we apply the little-endian
data transform to c2:

Connector c4 =
Role Client = request!L(x) — reply?L(y) — Client M §
Role Server = request?x — replyly — Server [] §
Role Eaves = RUNy,
Glue = Client.request?L(x) — Server.request!x —
Server.reply?y — Client.reply!L(y) — Glue [] §)

N P
[l RUNfmy) EUJU(E)

where P = (Client.request?L(x) — Eaves.request!x
[] Server.reply?y — Eaves.reply!x — P) []§

Above, we see that the eavesdropper receives requests
in the original format, not in the client’s format.

7 IMPLEMENTATION

A Simple Prototype Tool

As an initial exploration toward the goal of rapid, easy
development of useful “good-enough” connectors, we
have written a prototype development tool that applies
arestricted set of transformations to a specific connector
type, producing a Java implementation of a more com-
plex connector. Although the transformations were not
fully general they were diverse enough to begin investi-
gating the issue of compositionality of transformations
in implementation and to explore the Kerberos example
seen in the motivation section. This work is a starting
point and illustrates what can be done when source code
for components is available.

When no transformations are used, the tool naively gen-
erates a Java-RMI connector; this is the base connector.
The tool has knowledge of what initialization steps to
add, etc., to prepare for and perform a remote method
invocation.

Four kinds of connector transformations are imple-
mented, with some restrictions: data transform, add
a role, aggregate, and sessionize. Each transformation
inserts code fragments at places that are specific to that
transformation; these fragments are supplied by the per-
son using the tool.

The data transform is a translation of the arguments
of a remote method and/or the value returned (if any).
This can occur at sender, receiver, or both ends. We
have used this transformation to change the arguments
sent without changing their number or type, as well as
to change the type of the return value and the number
and type of the arguments, for example to convert an
arbitrary number of arguments into a single byte array
(the data format expected by JGSS).

The role addition can be an observer that receives infor-
mation on what method was called, the arguments and
the return value, without having an effect itself on the
communication, or can be a participant that is called on
to confirm the validity of communicated data, for exam-
ple obtaining information from a trusted third party and
using it to check a received message for authorization.

The aggregation is restricted to two similar connectors.
Similar in this case means that each is either the Java-
RMI base connector or is a connector derived from it
using this transformation tool. The controller which
decides whether to switch the active connector is re-
stricted in where it is allowed to operate also; it can be
consulted only at specific points, such as when a remote
call is about to be made or when an exceptional value is
returned; in this implementation it cannot, for example,

cause the client to stop waiting or try another server, if
the call is taking too long to return.

The sessionize transformation can introduce instance
variables that will be used to store computed or received
results to save recomputation or retransmission time; it
also deals with their initialization which will occur at
object creation.

Given a desired transformation and associated code
fragments as input, along with the source files for the
components that are to communicate, the tool gener-
ates a new connector derived from the Java-RMI base
connector; this can include complex connectors that are
the result of applying a series of transformations to the
base connector. To do this, the prototype tool produces
composable wrappers for the RMI stub, which are cre-
ated from the interface specified for the remote object.
The tool also makes some modifications to the existing
source code, for example, in the client implementation,
the call to the constructor method for the remote object
is replaced with a call to a factory method for the ap-
propriate wrapper object. For some transformations the
wrapper objects present essentially the same interface to
the connected components as the original connector did,
minimizing the impact on the component implementa-
tions; for transformations in general, this is not always
the case. While the prototype tool generates only Java
source files a more advanced version or a tool which
operated on a different base connector would likely also
generate non-code artifacts such as system configuration
and makefiles.

The Kerberos example

We investigated a “real world” modification, described
earlier in section 3: adding Kerberos authentication to
a Java RMI connector.

In order to realize this modification as a composition
of simple connector transformations, the first step was
to determine what transformations should be used (and
in what order). These were sessionize, data transform,
and adding a role.

The next step was to determine the code fragments that
should be inserted by each transformation. Existing
code can be utilized for this; in the case of Kerberos,
some code fragments were taken from the example pro-
grams distributed with JGSS. The code fragments and
sequence of transformations to apply can be be given
as inputs to the general tool, or to create a specific
Kerberizing-Java-RMI tool they could be hard-wired in.
In either case the tool will operate on source code for
components and produce a connector implementation.

With such a tool the connector transformation approach
results in a significant savings in effort as compared to
the alternatives seen in section 3. It took about two days

Total lines | Reused lines

Initialization

(Kerberos) 33 18
(Java RMI) 12 0
Client makes call

(Marshalling request) 15 0
(Transforming) 18 11
(Untransforming) 13 6
(Unmarshalling result) 6 0

Table 2: Adapting existing code for use with the tool

to actually perform the decomposition and write the
code fragments. Some additional time (about a week)
was spent in learning about Kerberos. Had the stub-
generator approach been used instead, in addition to
the time spent learning Kerberos, some time would have
been spent learning about the internals of the stub gen-
erator. Brief examination of the sun.rmi.rmic package
suggests that the additions required would affect four (of
nine) classes, and would require modification of ten or
more existing methods. The connector transformation
approach saves this time; in the actual implementation
of the connector, new code may be distributed in several
locations, but this insertion is done automatically. The
connector transformation approach also requires fewer
lines of code to be written than the first alternative
of cutting and pasting from an example or template.
For example a code fragment, associated with a data
transformation, that alters the arguments of a method
call, can be written once and automatically applied to
all methods exported by the remote object, providing a
multiplicative benefit in the number of methods (or, in
some cases, the number of calls), a form of commonality
that is not easily exploited by naive cut and paste.

Furthermore in the Kerberos example it was possible
to reuse existing chunks of code, which indicates that
the code fragments needed by the tool resemble what
one would normally have written, and therefore do not
require a additional learning curve beyond the basic un-
derstanding Kerberos. Table 2 illustrates some places
where code fragments are inserted, in the example of
adding Kerberos to Java RMI; the “reused” code shows
what portion of the Kerberos-specific code was bor-
rowed from an existing demo program.

In summary we have built a prototype tool which per-
forms a subset of the connector transformations de-
scribed in this paper to produce implementations of a
variety of complex connectors derived from a single basic
connector. These transformations are composable and
we have used the tool to create and apply a complex
change, Kerberization, using three of the transforma-
tions, with less effort than would have been required
using another approach.

8 DISCUSSION

The work described in this paper 1s a first step to-
ward realizing the vision outlined in section 3. One
of the interesting questions that arises is whether we
have picked an appropriate level for defining transfor-
mations. As indicated, earlier; we have sought a middle
ground, whereby the transformations would be semanti-
cally rich, but simple enough to combine in many ways
and for many domains. While more work will be needed
to decide this question, our experience in the domains
of security and reliability suggest that the transforma-
tions are easily applied to a wide variety of connectors.
On the negative side, however, the formalism is a little
messy. The fact that there are only a small number of
connectors helps ameliorate this situation, however.

A second important issue is the construction of tools to
aid in the application of the transformations: without
such tools, the approach is largely an academic exer-
cise. While the semantic notation of transformations
should be independent of any particular connector, the
implementation of a transformation tool is specific to
the base connector type. Initial efforts have focused on
being able to perform multiple transformations for one
connector type, where we might instead have worked
to implement one kind of transformation for multiple
connector types, because this enables investigating com-
positionality in practice as well as more interesting and
complex examples of new connectors. The ability to ap-
ply this approach to a range of base connectors is also
important, and such extension of the implementation
will be addressed in future work.

Some transformations change the original connector’s
roles; if the components that will be communicating
were written to this original interface, the components
will have to change. Formal semantics shows whether
the transformation must necessarily result in changes
to components, although ease of tool implementation
might present a reason for a tool to require access to
component source code even if it is not strictly neces-
sary to change it. In short the full range of transfor-
mations may not be available when some source code
is not available, but we do not think this sufficient rea-
son to restrict the set of transformations to what can be
done without access to source. First, sometimes source
is available and that additional leverage may be desir-
able. Second, sometimes transformations that change
roles are themselves desirable to resolve mismatch, when
the components do not match the original interface and
the connector is being transformed to match the com-
ponents’ expectations.

9 CONCLUSIONS AND FUTURE WORK

In this paper we have argued for an approach to con-
nector construction based on incremental transforma-
tion. To support this notion we have identified a set of

five basic transformations and illustrated how they can
be used to create complex forms of interaction, such as
Kerberized RMI. We also outlined an approach to defin-
ing their semantics formally as protocol transformation,
and illustrated how such formalism can be used to rea-
son about the transformations. Finally, we briefly de-
scribed a prototype tool that can be used to apply these
transformations in the special case of Java RMI-based
interactions.

As indicated by the title of this paper, we view this
work as a step towards a more comprehensive engineer-
ing basis for component integration. In particular, as
indicated above, more research is needed to extend or
modify the initial set of transformations that we have
identified. They need to be demonstrated in the case
of other base interaction mechanisms (beyond RMI),
and for other develoment platforms (beyond Java). Fur-
ther, there are considerable opportunities for exploiting
the formal theory to carry out detailed analyses about
transformation composition and compatibility. This
line of research would also benefit from looking at other
forms of protocol specification — for example incorporat-
ing some notion of timine. Finally, more case studies are
needed, particularly in other domains beyond security.

ACKNOWLEDGEMENTS

This research was supported by the Defense Ad-
vanced Research Projects Agency and Rome Labora-
tory, USAF, under Cooperative Agreement F30602-
97-2-0031, by the National Science Foundation under
Grant CCR-9357792, and by a grant from HP Labs.
Views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or im-
plied, of Rome Laboratory, the US Department of De-
fense, or the National Science Foundation. The US
Government is authorized to reproduce and distribute
reprints for Government purposes, notwithstanding any
copyright notation thereon. We would like to thank
Mary Shaw, Jeannette Wing, and the members of the
ABLE group Drew Kompanek, Zhenyu Wang, Jianing
Hu, and Joao Sousa.

REFERENCES

[1] R. Allen and D. Garlan. A formal basis for architec-
tural connection. ACM Transactions on Software
Engineering and Methodology, July 1997.

R. Allen, D. Garlan, and J. Ivers. Formal model-
ing and analysis of the HLA component integration
standard. In Proceedings of of the Sizth Interna-
tional Symposium on the Foundations of Software
Engineering (FSE-6), Lake Buena Vista, Florida,
November 1998. ACM.

10

[3] R. DeLine. Resolving Packaging Mismatch. PhD
thesis, Carnegie Mellon, School of Computer Sci-
ence, 1999. Issued as CMU Technical Report CMU-
(CS-99-141.

M. A. Hiltunen and R. D. Schlichting. Constructing
a configurable group RPC service. In Proceedings
of the 15th International Conference on Distributed
Computing Systems (ICDCS-15), May 1995.

C. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

B. C. Neuman and T. Ts’o. Kerberos: an authenti-
cation service for computer networks. IEEE Com-

munications, 32(9):33-38, Sept. 1994.

M. Shaw. Procedure calls are the assembly lan-
guage of system interconnection: Connectors de-
serve first-class status. In Proceedings of the Work-
shop on Studies of Software Design, May 1993.

M. Shaw. Architectural issues in software reuse:
It’s not just the functionality, it’s the packaging.
In Proceedings of the Symposium on Software Reuse

(SSR’95), April 1995.

M. Shaw, R. DeLine, and G. Zelesnik. Abstractions
and implementations for architectural connections.
In Third International Conference on Configurable
Dustributed Systems, May 1996.

G. Singh and Z. Mao. Structured design of commu-
nication protocols. In IEEFE International Confer-
ence on Distributed Computing Systems, May 1996.

F. Stomp and W. de Roever. Designing distributed
algorithms by means of formal sequentially phased

reasoning. In Proceedings of the 3rd International
Workshop on Distributed Algorithms, 1989.

R. van Renesse, K. Birman, M. Hayden, A. Vays-
burd, and D. Karr. Building adaptive systems using
ensemble. Technical report, Cornell/TRI7-1638,
1997.

D. M. Yellin and R. E. Strom. Interfaces, proto-
cols, and the semi-automatic construction of soft-
ware adaptors. Proceedings of OOPSLA’9/, Octo-
ber 1994.

M. J. Zelesko and D. R. Cheriton. Specializ-
ing object-oriented RPC for functionality and per-
formance. In Proceedings of the 16th Interna-

tional Conference on Distributed Computing Sys-
tems (ICDCS-16), Hong Kong, May 1996.

