
Submitted for publication, 2005

Differencing and Merging of Architectural Views
Marwan Abi-Antoun Jonathan Aldrich Nagi Nahas Bradley Schmerl David Garlan

Institute for Software Research International, Carnegie Mellon University, Pittsburgh, PA 15213 USA
{mabianto+, aldrich+}@cs.cmu.edu, nnahas@acm.org, {schmerl+, garlan+}@cs.cmu.edu

ABSTRACT
As architecture-based techniques become more widely adopted,
software architects face the problem of reconciling different
versions of architectural models. However, existing approaches to
differencing and merging architectural views are based on
restrictive assumptions, such as requiring view elements to have
unique identifiers or explicitly log changes between versions.
To overcome some of the above limitations, we propose
differencing and merging architectural views based on structural
information. To that effect, we generalize a published
polynomial-time tree-to-tree correction algorithm (that detects
inserts, renames and deletes) into a novel algorithm to
additionally detect restricted moves and support forcing and
preventing matches between view elements. We implement a set
of tools to compare and merge component-and-connector (C&C)
architectural views, incorporating the algorithm. Finally, we
provide an empirical evaluation of the algorithm and the tools on
case studies with real software, illustrating the practicality of the
approach to find and reconcile interesting divergences between
architectural views.

Categories and Subject Descriptors
D.2.11 [Software Architecture]: Languages

General Terms
Algorithms, Documentation, Languages, Verification.

Keywords
Differencing, merging, synchronization, tree-to-tree correction.

1. INTRODUCTION
The software architecture of a system defines its high-level

organization as a collection of runtime components, connectors
and constraints on their interaction, along with their additional
properties defining the expected behavior, commonly referred to
as a component-and-connector (C&C) view. Over the past decade,
numerous architecture description languages (ADLs) have been
developed and applied to real-world systems.

As architecture-based techniques become more widely
adopted, software architects face the problem of reconciling
different versions of architectural models, including differencing
and sometimes merging architectural views— i.e., using the
difference information from two versions to produce a new

version that includes changes from both earlier versions. For
instance, during analysis, a software architect may want to
reconcile two C&C views representing two variants in a product
line architecture [CCG+03]. Once the system is implemented, an
architect may want to compare a high-level conceptual C&C view
with a C&C view retrieved from the implementation (using a
variety of architectural recovery techniques): the architect might
be interested in implementation-level violations of the
architectural styles or other intent [AAG05], or in a change
impact analysis [KPS+99]. At runtime, the difference information
could be used to perform architectural repair [DHT02]. Finally,
during evolution, the architect may use the difference information
to better focus regression testing efforts [MDR05].

A number of techniques and tools for differencing and
merging C&C views have been proposed. Some of these
techniques detect only a small number of differences. For
instance, ArchDiff [CCG+03] only detects insertions and
deletions, possibly leading to the loss of information when
elements are moved or renamed. Many of these techniques are
also limited in their ability to detect differences based purely on
structural information; they assume that elements have unique
identifiers (every time an element is changed, even when only its
type changes, it gets a new unique identifier [AP03][OWK03]), or
only match two elements if both their labels and their types match
[CCG+03]. Other approaches (e.g., Mae [RHM+04]) rely on the
environment tracking all changes using fine-grained element-level
versioning. Although such environments may provide the ability
to infer high-level operations such as merges, splits or clones, in
addition to the low-level operations such as inserts and deletes,
they require a heavy upfront investment in tool building and
integration, and have not become widely adopted. Similarly, one
can maintain a record of the structural changes introduced to a
view and replay it against another view [Jim05].

In this paper, we propose an approach that overcomes some
of the above limitations. Our main contributions are:
• An approach for differencing and merging two architectural

views based on structural information, using tree-to-tree
correction algorithms to identify matches and classify the
changes between the two views. Optional type information
can prevent matches between incompatible view elements,
speeding execution and improving the quality of the output.

• A generalization of a recently published tree-to-tree
correction algorithm for unordered labeled trees [THP05]
(that detects renames, inserts and deletes) into a novel
polynomial-time tree-to-tree correction algorithm that
additionally detects restricted moves and supports forcing
and preventing matches between view elements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

• A set of tools incorporating such algorithms for the semi-
automated synchronization of C&C views.

• An empirical evaluation of the algorithms and the associated
tools on realistic case studies.

ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

 1

Submitted for publication, 2005

The paper is organized as follows. Section 2 describes the
challenges in differencing and merging structural views, the
underlying assumptions and the limitations of our approach.
Section 3 describes our novel tree-to-tree correction algorithm.
Section 4 describes tools that incorporate tree-to-tree correction
algorithms to synchronize C&C views. Sections 5 and 6 present
two case studies on real systems. Finally, we discuss related work
and conclude.

2. CHALLENGES
A view can generally be described as a graph. View

differencing and merging can then be cast as a problem in graph
matching. Hierarchical architectural views have aspects of both
graphs and trees—i.e., they have a tree-like hierarchy but there
are cross-links that form a general graph. In this section, we
consider the benefits of both graph and tree differencing
approaches, with graph algorithms being more general, but tree
algorithms more scalable. Having chosen trees for scalability, we
describe a new algorithm in the next section that meets our
requirements.

2.1 Differencing and Merging
Graph matching, in the general case, is NP-complete

[CFS+04]. However, certain classes of graphs do not suffer from
the exponential complexity. For instance, graphs characterized by
the existence of unique node labels can be processed efficiently
[DBB+04]. In addition, efficient algorithms have been proposed
for trees. A widely used measure of the similarity between two
graphs is the notion of graph edit distance [CFS+04]. The
approach relies on using a set of edit operations that model
inconsistencies by transforming one graph into another. Typical
graph edit operations include the deletion, insertion and
substitution of nodes and edges. Often a cost is assigned to each
edit operation. The costs are application dependent and used to
model the likelihood of the corresponding inconsistencies
(typically, the more likely a certain inconsistency is to occur, the
lower is its cost). If a cost is assigned to each edit operation, then
the edit distance of two graphs g1 and g2 is found by searching for
the sequence of edit operations with the minimum cost that
transform g1 into g2. A similar problem formulation can be used
for trees; however, tree edit distance differs from graph edit
distance in that operations are carried out only on nodes and never
directly on edges. In Section 3, we describe a novel algorithm
based on tree edit distance that meets the requirements of the
problem domain.

2.2 Assumptions
Before we do that, we discuss some of the assumptions in

our approach and how they generalize those of existing
approaches.

No Unique Identifiers. For maximum generality, we match
elements based on their structure and do not require elements to
have unique identifiers, as in ArchDiff. In many applications,
such unique identifiers do not exist. Adding this assumption gives
the problem of graph edit distance a polynomial-time complexity,
as recently shown in [DBB+04]. As an optimization, persistent
unique identifiers could be assigned to view elements to quickly
match them between invocations.

No Ordering. In the general case, an architectural view has
no inherent ordering among its elements. Assuming an
architectural view is represented as a tree, this suggests that an

unordered tree-to-tree correction algorithm might perform better
than one for ordered trees. Ordered labeled trees (i.e., rooted trees
in which the children of each node are ordered) have been studied
extensively with many efficient algorithms available (e.g.,
[SZ97]). However, tree-to-tree correction for unordered trees is
MAX SNP-hard [ZJ94]. Some algorithms for unordered trees
achieve polynomial-time complexity, either through heuristic
methods (e.g., [WDC03][CG97]) or through an exact solution
under additional assumptions (e.g., [THP05]).

Support Disconnected/Stateless Operation. For maximum
generality, we assume a disconnected and stateless operation, i.e.,
no monitoring of structural changes is taking place while the user
is modifying a given view (e.g., Mae [RHM+04]) and no trace is
kept of the set of changes made to a view (e.g., [Jim05]).

Detect Renames. For maximum generality, we do not
require labels to match exactly. Names are often modified during
software development and maintenance: a name may turn out to
be inappropriate or misleading due to either careless initial choice
or name conflicts from separately developed sub-systems [AC94].
In some application domains, some view elements may not have
persistent names or may be assigned automatically generated
names. This suggests that the algorithms should be able to handle
sparse or incomplete labels and handle renames. A number of
existing algorithms detect renames, but either assume that a strong
majority of nodes will have exactly matching semantic
information (labels and types) or have only been tested under
such a condition: e.g., at least 80% of nodes have exactly
matching semantic information in [CG97], and at least 99% of
nodes have exactly matching semantic information in [RRL+04].

Detect Hierarchical Moves. Architects often use hierarchy
to control complexity, and many views are hierarchical: e.g., in
C&C views, the hierarchy corresponds to the system’s
decomposition. However, architects differ in their use of
hierarchy: components expressed at the top level in one view
could be nested within another component in some other view. A
hierarchical move shifts a node up or down N levels in the tree,
changing its parent. The ability to detect hierarchical moves is
one of the main features which distinguish our proposed
algorithm from the algorithm described in [THP05].

Allow Manual Overrides. Since having a correct mapping
between view elements is critical for the merge operation, user
control over the structural matching process is important: in
particular, the user should be able to force a match between
elements that cannot be structurally matched, as well as prevent
matches between elements that, although structurally similar, are
in fact incompatible. Note that manual overrides must be taken
into account by the algorithm itself, and cannot happen as a post-
processing step since there are dependencies in the mapping (e.g.,
two view elements a1 and a2 in View A may not both map to the
same element b1 in view B, even if a1 is forced to match b1). This
feature also distinguishes our algorithm from existing ones.

Type Information for Optimization Only. Unlike other
approaches (e.g., ArchDiff), matching the type information is not
critical to the operation of the algorithm; it should be able to deal
with views containing untyped elements, as well as views at
different levels of abstraction with possibly different type
systems. The algorithm should be able to recover a correct
mapping from structure alone if necessary, or structure and type
information if type information is available. However, the
algorithm can take advantage of the type information (when
available) to prune the search tree, significantly speed

 2

Submitted for publication, 2005

convergence towards the optimal solution and improve the quality
of the matching. If the view elements are represented as typed
nodes, at the very least, the algorithm should not match nodes of
incompatible types (e.g., do not match connector x to component
y). In some cases, additional architectural type information may
be available and could be used for similar purposes (e.g., do not
match a component of type Filter from a Pipe-and-Filter style to a
component representing a Repository from a Shared Data style).

In order to remain tractable, our approach makes the
following restricting assumptions:

Hierarchical Views. In the general case, the differencing
and merging of non-hierarchical views corresponds to error-
correcting or inexact subgraph isomorphism [CFS+04], a problem
proved to be NP Complete. The most ambitious optimal
algorithms (i.e., if a global minimum of the matching cost exists,
it will be found) can handle at most a few dozen nodes. We take
advantage of the tree hierarchy in architectural views and recast
the problem into one that is more tractable, using trees instead of
graphs. In C&C views, hierarchy corresponds to nested sub-
architectures or decomposition. Other architectural views, such as
module views [CBB+03], have similar characteristics.

Similar and Comparable Views. The two views being
compared and merged have to be somewhat structurally similar.
When comparing two completely different views, the algorithm
could produce a trivial edit script that deletes all elements of one
view and then inserts all the elements in the other view. In
addition, the two views being compared and merged must be of
the same type, i.e., comparable without any view transformation.
This also allows the approach to be more applicable than just
C&C views, at least in principle.

Merging/Splitting Not Supported. Our approach does not
currently detect the merging or splitting of view elements.

Figure 1: Edit operations in tree-to-tree correction [SZ97].

3. TREE-TO-TREE CORRECTION
In this section, we describe in detail a novel tree-to-tree

correction algorithm for unordered labeled trees. The reader only
interested in its applications can skim this section. Our TreeMDIR
(Tree Move-Delete-Insert-Rename) algorithm generalizes a
recently published algorithm [THP05], denoted as THP. We also
implemented THP for experimental comparison with our
implementation of TreeMDIR.

3.1 Problem Definition
Let us first give an unambiguous definition of the problem,

adapted from [SZ97]. We denote the ith node of a labeled tree T in
the postorder node ordering of T by T[i]. |T| denotes the number
of elements of T. We define a triple (M, T1, T2) to be a mapping
from T1 to T2, where M is any set of pairs of integers (i,j)
satisfying:
1) 1<= i <=|T1|, 1<= j <= |T2|;
2) For any pair of (i1,j1) and (i2,j2) in M,

a) i1 = i2 if and only if j1 = j2 (one-to-one)
b) T1[i1] is an ancestor of T1[i2] if and only if T2[j1] is an
ancestor of T2[j2] (ancestor order preserved).

We will use M instead of (M,T1,T2) if there is no confusion. To
delete a node N in tree T, we remove node N and make its
children become the children of the parent of N. To insert a node
N in tree T as a child of node M, we make N one of the children
of M, and we make a subset of the children of M become children
of N (See Figure 1). Renaming a node only updates its label. In
the following discussion, a matched node means a node with an

exactly matching label or a renamed node. The edit operations
that we refer to as restricted moves correspond to deletion and
insertion operations in the middle of the tree: sequences of node
deletions in the middle of the tree result in nodes moving up a
number of levels in the hierarchy, and sequences of node
insertions in the middle of the tree result in nodes moving down in
the hierarchy (by becoming children of the inserted nodes).
TreeMDIR does not currently support arbitrary node moves. THP
does not allow any insertions or deletions in the middle of the tree
and works under the assumption that if two nodes match, so do
their parents (i.e., only subtrees can be inserted or deleted).

Suppose we obtain a mapping M between trees T1 and T2.
From this mapping we can deduce an edit script to turn T1 into T2.
First, we flag all unmatched nodes in the first tree as deleted and
all unmatched nodes in the second tree as inserted. We order the
operations so that all deletion operations precede all insertion
operations, delete the nodes in order of decreasing depth (deepest
node first), and insert them in increasing depth order.

We still have to define the cost of an edit script (which is a
sequence of edit operations): for each node in the source tree, we
choose a cost of deletion (not necessarily the same for all nodes);
for each node in the destination tree we choose a cost of insertion
(again, not necessarily the same for all nodes), and for each pair
of nodes (n, m) where n is some node in T1 and m in T2, we
choose a cost of changing the label of n into the label of m (for
example, to change “banana” into “ananas”, we might choose a
cost of two using string-to-string correction [WF74]). The cost of
the edit script is then equal to the sum of the costs of insertion,
deletion, and renaming operations it contains. Therefore, any
given mapping has a unique cost. So, in order to find an optimal
edit sequence, it is sufficient to find an optimal mapping.

3.2 Explanation of the Algorithm
The algorithm pseudocode is given in Section 3.3 below.

Let C(i,j) be the cost of the optimal mapping from the subtree
rooted at i to the subtree rooted at j. A set of nodes S(i) is a
successor set of node i if it is a subset of the set of descendents of
i and none of the elements of S(i) is an ancestor of another, and
each node of the subtree rooted at i is either a descendent or an
ancestor of an element of S(i). Given two sets S(i) where i belongs
to T1, and S(j) where j belongs to T2, it is possible to define the
optimal mapping of S(i) to S(j) as a one to one function from a
subset of S(i) into S(j) with least cost, where the cost of mapping
element k of S(i) to element l of S(j) is equal to cost of the optimal
mapping of the subtree rooted at k to the subtree rooted at l, and
the cost of leaving an element k of S(i) without image is equal to
the cost of deleting the whole subtree rooted at k, and the cost of
having an umatched element l in S(j) is equal to the cost of
inserting the entire subtree rooted at l. This suggests that if we
know all the costs C(d1,d2) where d1 is a descendent of i and d2 is
a descendent of j, it is possible to compute C(i, j) by considering
all possible pairs of sets (S(i),S(j)), and for each such pair, getting
the minimum weight bipartite matching defined by the entries of

 3

Submitted for publication, 2005

the cost matrix C corresponding to the elements of S(i) and S(j).
Finally, let L(i,j) be the cost of changing the label of node i in the
source tree to the label of node j in the destination tree. The
minimum cost obtained added to L(i, j) will be equal to C(i, j).
L(i,j) uses string-to-string correction to evaluate the intrinsic
degree of similarity between the labels of two nodes, using the
standard dynamic programming algorithm to find the longest
common subsequence [WF74].

We choose the best pair (S(i),S(j)) using a branch-and-bound
backtracking algorithm. Let DESC(i) denote the set of descendents
of i. We try to choose a subset Q of DESC(i)xDESC(j) with minimal
cost. This is done by trying to add to Q one element of
DESC(i)xDESC(j) such that the new element in Q is consistent with
the previous elements (no same node can be matched to 2
different nodes, nor can a node appear in an element of Q, if
either a descendent or an ancestor already appears in some
element of Q). The algorithm backtracks each time it determines
that there are no more valid pairs to add, or when it determines
that the cost of the current branch will be too large to match the
best solution already discovered to date. As the problem is NP-
complete, the approach outlined above can quickly become
computationally infeasible without additional constraints.

We chose to enforce an upper bound B on the sum of
distances between elements of S(i) and the closest child of i
(respectively, S(j) and j) with B typically a small integer. The
reasoning behind this constraint is that nodes are not usually
moved too far from their original positions in a hierarchy, and it is
relatively rare for several non-leaf siblings to be deleted at the
same time. The bound B has the additional benefit that only
relatively small neighborhoods of each node have to be
considered for the computation of the optimal cost of a single
subtree pair, enabling us to perform many operations very
efficiently using bit manipulation. For example, during the
backtracking search, checking whether a node is still available is a
single bitwise AND operation instead of a time-consuming loop
over an array.

TreeMDIR can be considered a generalization of THP
because THP only handles the case where B=0 (i.e., only the
children of a node can be in a successor set of that node),
producing a fully polynomial time algorithm that is typically
much faster than our generalized algorithm. But being able to
handle non-zero values of B allows our algorithm to detect
hierarchical moves. TreeMDIR is guaranteed to find the optimal
matching within the constraints of the bound B, provided it is
allowed to run long enough. Unfortunately, on a number of
instances (especially, on trees with more than a few hundred
nodes and when the average degree of a non-leaf node is greater
than four), it is necessary to limit the running time by enforcing a
bound R on the number of recursive calls of the backtracking
search corresponding to a given subtree pair. This bound removes
the guarantee of optimality. Nevertheless, we found that the
algorithm still obtains good results when we limit the number of
recursive calls, because usually the backtracking search finishes
very quickly when we compare similar subtrees. Since the
algorithm uses the branch-and-bound technique, a good match
allows for tight bounds and therefore early cutting of branches.
The search terminates normally for matrix entries actually
corresponding to good matches, and is interrupted only when the
match is not good, which often allows the algorithm to return an
optimal match even though the backtracking search was
interrupted for the computation of some of the cost matrix entries

(as these matrix entries correspond to bad matches which are not
part of the optimal solution).

3.3 Pseudo Code of the Algorithm
In the following pseudo code of the TreeMDIR algorithm,

arguments that are passed by reference are indicated by ref. In
order to reduce the complexity of the pseudo-code, the parameter
R, and the ability to force and prevent matches are not reflected
here. For efficiency reasons, bit vectors are stored in integers
(with 0 meaning false, and 1 meaning true) in and bitwise
manipulations are used heavily.

Procedure: TREEMDIR // MAIN PROCEDURE
Input:
Tree T1: first tree to compare
Tree T2: second tree to compare (turn T1 into T2)
Output:
BestGlobalMatch: contains the best mapping from T1 to T2
Declare:
CostMatrix: CostMatrix[i][j] is the cost of the optimal
 mapping from the subtree rooted at i to the
 subtree rooted at j
BestGlobalMatch[]: array of pairs of nodes corresponding
 to the least cost mapping from T1 to T2
BestSuccessor[][]: a 2D array of sets of pairs of nodes

 (m,n)∈ BestSuccessor[i][j] means (m,n) is a match
 between one element of the successors of i and one
 element of the successors of j in an optimal mapping
 from the subtree rooted at i to the subtree rooted at j
L(i,j): cost of changing the label of node i in T1 to the
 label of node j in T2 using string-to-string correction
Begin
Postorder T1 and T2 nodes
for(i = 1 to T1.size)
 for(j = 1 to T2.size)
 BestSuccessor[i][j] = SEARCH(i, j, ref CostMatrix)
 CostMatrix[i][j]= BestSuccessor[i][j].cost + L(i,j)
GETBESTMATCHING(BestSuccessor, ref BestGlobalMatch,
 T1.size, T2.size)
End

Procedure: SEARCH // SETUP DATA STRUCTURES FOR CALLING BACKTRACK
Input:
i: index in tree T1
j: index in tree T2
CostMatrix: cost matrix, same as for TREEMDIR
Output:
CostMatrix[i][j]: updated entry in the cost matrix
return a set of node pairs representing the best found
mapping of the nodes of a successor set of i to the nodes
of a successor set of j
Declare:
Asc1[], Des1[]: arrays of integers where the nth bit in
 the mth integer indicates whether mth node is an
 ascendant (respectively, descendent) of nth node in T1
Asc2[], Desc2[]: same as above, for T2
BestSolution[]: set of optimal matches, implemented as a
 Boolean array: nth entry is true if the nth node pair in
 the set of all node pairs sorted by merit belongs to
 the best matching (merit is a measure of the quality of
 the matching)
CurrentSolution[]: set of matches being built, encoded in
 the same way as BestSolution[]
BestCost: variable
Unavailable1: integer where the nth bit is set if the nth
 node in tree T1 is unavailable for inclusion in
 CurrentSolution because an ascendant or descendent is
 already included in CurrentSolution
Unavailable2: same as Unavailable1 but for tree T2
Begin
Get the list L of all pairs (p,q) where
 p is a descendent of i and q is a descendent of j
Sort the list by decreasing match merit
 (merit represents the percentage of subtree weight that
 is matched when two nodes are compared)
foreach node among the descendents of i and j
 Associate an integer. Make the bit sequence correspond
 to the set of of descendents/ascendents of the nodes
 Store the integers in the Desc/Asc arrays, respectively
 Initialize BestSolution and CurrentSolution arrays to 0
 Initialize BestCost to an infinite value
 Initialize Unavailable1 to 0, Unavailable2 to 0
 BACKTRACK(0 /* index*/, L, Asc1, Asc2, Desc1, Desc2,
 Unavailable1,Unavailable2, CostMatrix,
 0 /* CurrentCost*/, ref BestCost,

 4

Submitted for publication, 2005

 ref BestSolution, ref CurrentSolution)
Convert BestSolution bit vector to a set of node pairs
return set of node pairs
End

Procedure: BACKTRACK //SEARCH FOR A GOOD MAPPING BETWEEN SUBTREES
Input:
index: position reached in list L
L: list of pairs of nodes (m,n) sorted by merit
Asc1[], Asc2[], Desc1[], Desc2[]: same as for SEARCH
Unavailable1, Unavailable2: same as for SEARCH
CostMatrix: cost matrix, same as for SEARCH
CurrentCost: current cost of the mapping being built
 (i.e., the subset of Cartesian product of the set of
 descendents of i and j)
ref BestCost: same as for SEARCH
ref BestSolution[]: same as for SEARCH
ref CurrentSolution[] : same as for SEARCH
Output: BestCost, BestSolution, CurrentSolution: updated
Begin
Base Case:
 if (no element of L can be added to CurrentSolution)
 if (CurrentCost + cost of deleted subtrees < BestCost)
 BestSolution = CurrentSolution
 BestCost = CurrentCost
 return
foreach element l= (m,n) in L starting at position index
 Check whether l.first and l.second are still available
 if not continue
 if (adding l to current mapping violates bound B)
 continue
 Add cost of match to CurrentCost to obtain NewCost
 Get a lower bound E of remaining cost using match merit
 If (E + NewCost >= BestCost) continue

An upper bound on the running time of the TreeMDIR
algorithm is as follows: let X be the set of nodes of both trees, x
be an element of X, p be the maximum allowable size of a
connected subgraph of the tree that can be deleted or inserted in
the middle of the tree, f(x,p) be the number of nodes that lie
within a distance of (p+1) from x, and F(a) = max{f(x,p): x

 Add l to CurrentSolution (by setting the corresponding
 entry in CurrentSolution to l)
 NewUnavailable1 = Unavailable1 OR Desc1(m) OR Asc1(m)
 NewUnavailable2 = Unavailable2 OR Desc2(n) OR Asc2(n)
 BACKTRACK(index+1, L, Asc1, Asc2, Desc1, Desc2,
 NewUnavailable1, NewUnavailable2, CostMatrix,
 NewCost, BestCost, BestSolution,ref CurrentSolution);
 Remove l from CurrentSolution
End

Procedure: GETBESTMATCHING // DEDUCE THE OPTIMAL MAPPING
Input:
BestSuccessor[][]: same as for TREEMDIR
ref BestGlobalMatch[]: same as for TREEMDIR
i, j: indices of a pair of nodes that belong to the best
 possible mapping between the two trees
Output: BestGlobalMatch: updated
Begin
foreach e = (m, n) in BestSuccessor[i][j]
 Add e to to BestGlobalMatch
 GETBESTMATCHING(BestSuccessor, ref BestGlobalMatch, m, n)
End

3.4 Forcing and Preventing Matches
Manual overrides are not a standard operation in most tree-

to-tree correction algorithms. We added to TreeMDIR the ability
to force and prevent matches between a node in tree T1 and
another node in tree T2. Preventing a match between two nodes i
and j is easy—just assign a very large cost to the corresponding
entry in the cost matrix C[i][j]. But forcing a match between two
nodes is more difficult. At first glance, it would seem that
preventing the match of either of these two nodes with any node
other than the required one, and making the cost of deletion and
insertion of these nodes very high, would be enough. It would be
enough if the algorithm did not have to handle the additional
constraint concerning the distance to the subtree root. Since this
constraint exists, it is often necessary to delete entire subtrees at a
time. So we have to prevent that one of the nodes involved in the
forced match is deleted in one of those subtree deletions. A
possible solution would be to prevent the deletion of all the
ancestors of the forcibly matched node. This is indeed the best
solution if we used THP. But in our case, this solution could
produce a very sub-optimal edit script, because it is quite possible
that a few ancestors got deleted, while the forcibly matched node
isn't deleted. This requires distinguishing between individual
delete operations and mass delete operations.

We therefore allow the deletion of ancestors of the forcibly
matched node, on the condition that this deletion operation is not
part of a subtree deletion operation, i.e., whenever an ancestor is
deleted, at least one of its descendents which is itself an ancestor
of the forcibly matched node must be part of the successor set.
We enforce that constraint in the base case of the recursive
BACKTRACK procedure. When computing the best cost for the (i,j)
entry of the cost matrix, if i is an ancestor of a forcibly matched
node, BACKTRACK does not record in BestSolution any mapping
that deletes the branch leading to the forcibly matched node,
although it records a mapping that deletes a few intermediate
nodes on the path from i to the forcibly matched node. This
feature is not shown in the pseudo-code to keep it manageable.

3.5 Time and Memory Complexity

∈X
and p=a}.

TreeMDIR has a worst case running time of O((2*F(a))! N2).
In our implementation, pruning the search tree by using both tree
structure and additional semantic information (e.g., type
information) and being able to limit the running time by returning
a possibly suboptimal solution, make the average case
considerably faster than the worst case. In practice, the observed
runtime is O(K N2) where K is a large constant, but not quite as
large as the theoretical worst case bound would let one imagine.
In comparison, THP has a running time of O(d3 N2).

Regarding memory requirements: although both THP and
TreeMDIR can be implemented in O(N2) space at the expense of
increased implementation complexity, we implemented THP in
O(d N2) where d is the max degree of a tree, and TreeMDIR in
O(b N2), where b is the number of bits in an integer.

3.6 Empirical Evaluation
In this section, we present an empirical evaluation of the

performance and the accuracy of TreeMDIR. Evaluating the
accuracy of the algorithm is necessary because bounds B and R
remove the guarantee of optimality. The test data was built as
follows: 1) generate a random tree with random labels (taken from
a pool of 10 possible names so as to be non-unique); 2) copy the
tree; 3) delete a random number of nodes in the copy (both

Table 1: Empirical evaluation of TreeMDIR (R = 100K)

THP TreeMDIR Case #
Nodes

Ops

Ops Time Ops Time

640 569 770 2 569 64 Rename

1280 857 1509 7 963 442

640 492 701 2 492 50 Delete

1280 1113 1397 5 1114 169

640 441 1076 3 1093 215 Move

1280 652 2407 9 735 471

640 288 712 2 288 65 Degree

1280 576 1194 10 576 248

 5

Submitted for publication, 2005

internal and leaf nodes); 4) rename a number of nodes in the
copy; 5) and finally, compare the two trees using THP and
TreeMDIR.
The deletion operations in the middle of the tree correspond to the
restricted moves that TreeMDIR detects. In the interest of full
disclosure, however, we did not check that at least some of the
randomly generated test cases do not violate THP’s assumption,
namely, that if two nodes match, so do their parents. Additional
details can be found in [AAN05].

The length of an optimal edit script must necessarily be
equal to the sum of the number of deletion added to the number of
renaming operations, since there is a tree which lacks a certain
number of nodes, and it has a number of nodes which doesn't
exactly match any of the nodes in the other tree and each of these
nodes needs at least one edit operation to be taken into account.
Table 1 shows for different tree node sizes, the length of the
optimal edit script, the length of the edit script produced by THP
(including the time), and the length of the edit script produced by
TreeMDIR (including the time). All times are in seconds.

On average, THP produced edit scripts sub-optimal by about
120%, whereas TreeMDIR produced edit scripts sub-optimal by
about 7%. In the worst case, THP produced a suboptimal edit
script by about 400% whereas TreeMDIR's worst case
performance resulted in an edit script sub-optimal by around
150%. In both cases, accuracy deteriorated significantly when
nodes of large degree were allowed or when the trees were very
different. TreeMDIR’s worst case was on a source tree of 640
nodes separated from its target by an optimal edit script of 440
operations containing both deletions and renames. In that case, the
returned edit script was 2.5 times longer than the optimal edit
script. This behavior, however, was far from typical and
TreeMDIR produced good results with most trees, even when the
optimal edit script involved 2/3 of the number of nodes. Finally,
with up to 85% of the nodes renamed (no deletions), TreeMDIR
produced excellent edit scripts within less than 1% of the optimal
script length on trees of 640 nodes, providing us with the
evidence that it can recover the mapping from tree structure alone.

The improved match quality comes at a heavy runtime cost.
With bound R set to a large value (100 K), TreeMDIR was about
60 times slower than THP on average and up to 200 times slower
in the worst case. As predicted, setting bound R to a much smaller
value often produced only slightly sub-optimal edit scripts for a
noticeably reduced running time: on a tree of 1280 nodes with an
optimal edit script of 396 edits, THP produced an edit script of
1775 edit in 7 seconds. TreeMDIR (with R=100K) produced an
edit script of size 459 in 6 minutes, whereas TreeMDIR (with R =
5K) produced an edit script of size 479 in 4 minutes. Finally, we
would like to point out that we have avoided premature
optimization in our current implementation to allow for easier
debugging, so we think that the running time can be improved.

4. SYNCHRONIZING C&C VIEWS
We illustrate an application of the algorithm by

incorporating it in a set of scalable tools to synchronize C&C
views.

4.1 C&C View Differencing and Merging
We represent the structural information in a C&C view as a

cross-linked tree structure that mirrors the hierarchical
decomposition of the system. The tree also includes information
to improve the accuracy of the structural comparison. For

instance, the subtree of a node corresponding to a port or role
includes all the port’s or the role’s involvements, i.e., all
components (and their ports) or connectors (and their roles)
reachable from that port or role through attachments or bindings.
Cross-links refer back to the defining occurrence of each element
and allow the user to navigate the architectural graph. We also
add to each element various properties (such as type information).
The type information, if provided, is used to build a matrix of
incompatible elements that may not be matched.

A graph representing a C&C view can generally have cycles
in it. Representing an architectural graph as a tree causes each
shared node in the architectural graph to appear several times in
several subtrees, with cross-links referring back to their defining
occurrences. These redundant nodes greatly improve the accuracy
of the tree-to-tree correction; however, they may be inconsistently
matched with respect to their defining occurrences (either in what
they refer to, or in the associated edit operations). We post-
process the edit script to eliminate inconsistent matches using two
passes. During the first pass, we synchronize the strictly
hierarchical information (e.g., components, connectors, ports,
roles, and representations); during the second pass, we
synchronize attachments and bindings. The post-processing step is
very simple, since at that point, the mapping between the nodes in
the two graphs is known.

4.2 Tool Support
Synchronization follows the following five-step process: 1)

Setup the synchronization; 2) View and match types (optional); 3)
View and match instances; 4) View and modify the edit script
(optional); 5) Confirm and apply the edit script (optional).
Because steps 1 and 5 are straightforward, we will only discuss
steps 2-4 in more detail below.

In Step 2, matching the type structures between the two
views (See Figure 2), currently a manual step, can produce
semantic information that speeds up the comparison, but is
otherwise optional. It also reduces the amount of data entry for
assigning types to the elements to be created by the edit script.

In Step 3, matching instances uses tree-to-tree correction to
compare the tree-structured data from the two views to find
structural differences and produce an edit script. It consists of: a)
retrieve tree-structured data from the first C&C view; b) retrieve
tree-structured data from the second C&C view; c) use the tree-to-
tree correction algorithm for unordered labeled trees to identify
matches and structural differences (classified as inserts, deletes,
renames and moves– See Figure 3), and obtain an edit script to
make one view more consistent with the other.

The differences found during structural matching are shown
in each tree by overlaying icons on the affected elements (see
Figure 3). If an element is renamed, the tool automatically selects
and highlights the matching element in the other tree; for inserted
or deleted elements, the tool automatically selects the insertion
point by navigating up the tree until it reaches a matched ancestor.

The tool provides various features to restrict the size of the
trees and therefore, significantly reduce the comparison time:
• Start at Component: the architect can have the trees

corresponding to the system decomposition start at certain
selected components to significantly reduce their sizes.

• Restrict Tree Depth: an architect is often interested, at least
initially, in only comparing the top-level elements. So the
trees can be restricted to not include elements beyond a
certain tree depth.

 6

Submitted for publication, 2005

• Elide Elements: the architect can selectively exclude entire
subtrees from comparison. Elision can be instance-based or
type-based, where all elements of a given type are excluded
at once (e.g., only match components and ports). Elision is
temporary and does not generate any edit actions.

 7

Submitted for publication, 2005

Various features give the user additional manual control:
• Forced matches: the architect can manually force a match

between two elements that cannot be structurally matched.
• Manual overrides: the architect can override any edit action

suggested by the comparison, e.g., cancel a delete action.
In Step 4, the edit script is used to produce a common

supertree to preview the merged view. This step can be used to
supplement the edit script with additional semantic information.
For instance, the user can assign types to elements to be created,
change the types of existing elements, or override automatically
inferred types. Finally, the user can cancel any unwanted edit
actions.

Acme and ArchJava C&C Views. One specialized tool
based on this approach can synchronize a C&C view described in
an Architectural Description Language (ADL), Acme [GMW00],
with a C&C view retrieved from an implementation in ArchJava
[ACN02]. We chose Acme, since it is a general purpose ADL
with good tool support; we chose ArchJava since it allows
recovering a C&C view from an existing implementation.
Furthermore, both AcmeStudio [SG04], a domain-neutral
architecture modeling environment for Acme, and ArchJava's
development environment are Eclipse plugins [Ecl03], thus
reducing the tool integration barrier. We have completed the
functionality needed to make an Acme model incrementally
consistent with an ArchJava implementation. We still need to
change the ArchJava infrastructure to support making incremental
changes to an existing ArchJava implementation.

This problem domain clearly requires going beyond
insertions and deletions to support renames and moves. There will
always be name differences of the same structural information
between Acme and ArchJava. As an illustration, even if code
generation is used to automatically produce a skeleton
implementation from an architectural model, connector names and
role names are lost during code generation (since ArchJava does
not even name those elements). Identifying a renamed element in
one view as being deleted and then re-inserted, while producing
structurally equivalent views, results in losing properties about
view elements that are crucial for architectural analyses (such
style and type information, or other architectural properties).

Two Acme C&C Views. Another specialized tool can more
generally synchronize two C&C views represented in Acme: one
view could correspond to a documented architecture, and the
second could correspond to a C&C view recovered using any
architectural recovery technique (e.g., [YGS+04]), another
version of the Acme model retrieved from a configuration
management system or to another variant in a product line.

Detecting moves across levels of the hierarchy is often
helpful, since two architects will often differ in their use of
hierarchy, so that components expressed at the top level in one
C&C view are nested within another component in some other
C&C view. For example, one architect may use hierarchy to hide
certain decision decisions from some parts of the system [Par72],
but a designer may flatten the hierarchy for efficiency reasons. In
an Acme system, this would correspond to replacing an
architectural element with its representation (a nested system).

5. CASE STUDY: APHYDS
We illustrate the first tool on an ArchJava implementation of

a pedagogical circuit layout application, Aphyds [ACN02]. The
goal of this case study is to compare the architecture based on an
informal drawing by the developer to the extracted architecture
from the ArchJava implementation.

Building the Conceptual Architecture. The starting point
was an informal drawing (in [ACN02]) of the desired conceptual
architecture which loosely followed the Model-View-Controller
style, with the views consisting of user interface elements and the
model consisting of a circuit database and a set of computational
components. The architect converted the informal diagram into a
C&C view (See Figure 4): he created a single Acme component to
represent the circuitModel and added all the computational
components to a representation of circuitModel (See Figure 5). In
the informal diagram, some arrows were meant to represent
control flow and others data flow. The architect did not want to

Figure 3: Structural comparison of architectural instances
in a C&C view retrieved from Acme and a C&C view
retrieved from ArchJava: component privateAphyds exists in
ArchJava but not in Acme; similarly, connector
starConnector matches a connector in ArchJava with an
automatically generated name (highlighted nodes).

Figure 2: Matching Types Structures: the user manually
specifies arbitrary matches in a view that shows the type
hierarchies in both views flattened and shown side-by-side:
e.g., the user assigns any ArchJava port with only provided
methods the provideT Acme type defined in the MVCFam, a
Model-View-Controller style. Symbols: Match (), Insert (), Delete (), Rename ()

 8

Submitted for publication, 2005

distinguish between data and control flow, so he converted all the
arrows in the original diagram to connectors in the Acme model.

Matching Types. The architect was interested in the control
flow so he assigned the provideT, useT, provreqT Acme types to
ArchJava ports which only provide, only require, or have both
methods, respectively; he assigned the generic TierNodeT Acme
type to all components and the CallReturnT Acme type to all the
implicit ArchJava connectors.

Matching Instances. The architect let the synchronization
tool compare the two views: he noticed a few renames, e.g.,
ArchJava uses model instead of circuitModel, and in that
representation, ArchJava uses globalRouter instead of route (See
Figure 3). The Acme architect was the least sure about how he
represented the circuitModel component in Acme; facing a
number of name differences certainly did not raise his confidence
level. So, he decided to focus on the circuitModel Acme
component instance which was matched to the model ArchJava
component instance. Running the structural comparison showed
that the Acme representation for circuitModel had more
connectors than the ArchJava implementation, i.e., the tool only
matched starConnector in the middle of Figure 5, modulo
renaming (See Figure 3). The architect investigated this further
and confirmed that the dataflow arrows in the informal Aphyds
boxes-and-lines diagram are not actually in the implementation,
so he accepted the edit actions to delete the extra connectors from
the Acme model (See Figure 5).

Figure 4: Original developer’s model in Acme.

Figure 5: Acme representation for the circuitModel
component. Extra connectors are marked with .

Merging Instances. The architect next turned his attention
to the additional top level component, shown as privateAphyds in
Figure 3). privateAphyds represents a private window port in
ArchJava and the corresponding glue. By looking at the control
flow, the architect decided to assign that subsystem the publish-
subscribe style, so he renamed component privateAphyds as
window and renamed the added connector to windowBus, and
assigned it the EventBusT connector type from the Publish-
Subscribe style. The architect also decided to use the same
component names as the ArchJava implementation to avoid future
confusion, so he let the tool apply the edit script.

Discussion. Figure 6 shows the resulting C&C view after it
has been manually laid out in AcmeStudio. Unlike the original
architect’s model, Figure 6 shows bi-directional communication
taking place between components placeRouteViewer and model;
upon further investigation, the architect traced that to a callback.
Since Aphyds is a multi-threaded application with long running
operations moved onto worker threads, the architect made note of
the fact that developers should not carelessly add callbacks from a
worker thread onto the user interface thread. Finally, the architect
decided to use the up-to-date C&C view with types and styles as
the basis for evolving the system in the future.

Figure 6: Acme model with styles and types.

Performance Evaluation. On an Intel Pentium4® CPU
3GHz with 1GB of RAM, comparing an Acme tree of around 650
nodes with an ArchJava tree of around 1,150 nodes (as in Figure
3) currently took under 2 minutes, whereas our implementation of
THP took around 30 seconds but produced less accurate results: in
particular, THP did not treat component privateAphyds as an
insertion and mismatched all the top-level components. In this
case study, the edit script consisted of over 300 renames, over 600
inserts and over 100 deletes.

6. CASE STUDY: DUKE’S BANK
We illustrate the tool to compare two C&C views using the

Duke’s Bank Application, a simple Enterprise JavaBeans (EJB)

banking application created as a demonstration of EJB
functionality [EJB]. Duke’s Bank allows bank customers to
access their account information and transfer balances from one
account to another. It also provides an administration interface for
managing customers and accounts. In this case study, the architect
wanted to compare the architecture presented in the
documentation with the actual architecture discovered by
instrumenting the running system as explained in [YGS+04].

The architect defined an Acme family (or style) and types
based on the EJB specification. The architect converted a boxes-
and-lines diagram documented in a tutorial [J2EE] into an Acme
model (See Figure 7).

As mentioned earlier, the two views must be comparable
without any view transformation. Since the model recovered by
instrumentation includes each session and entity bean instance
created at runtime, the architect post-processed it to eliminate
duplicates and consolidate multiple instances into one instance

 9

Submitted for publication, 2005

with a property indicating multiplicity (not shown) in Figure 8, to
match the documented architecture where each component
instance represents a number of run-time components.

The architect ran the synchronization tool between the two
Acme C&C views. The tool was able to match all the elements
between the two views, despite the large number of renames
(automatically generated by the recovery tool). Furthermore, the
tool correctly detected all the moves corresponding to replacing
the EJB container component in one view with its representation
in the other view (See Figure 9). The tool also enabled the
architect to quickly detect the additional undocumented port on
Account_Controller_Bean, which is communicating to the DB
component through a DbWriter connector. Figure 7 does not show
any connections between the session beans and the database,
which implies that all database access is through the entity beans,
as recommended by the EJB specification: the architect planned
to investigate this apparent violation using source code analysis
techniques.

Performance Evaluation. On an Intel Pentium4® CPU
3GHz with 1GB of RAM, TreeMDIR took around 30 seconds to
compare the two Acme trees, one with around 330 nodes, and one
with around 390 nodes. In this case, the edit script consisted of
over 250 renames and over 50 inserts. As expected, THP did not
correctly identify any of the moved view elements in this case.

Figure 7: Duke’s Bank documented architecture in Acme;
the components were added inside the Acme representation
of an EJB container (shown as a thick border).

Figure 8: Duke’s Bank recovered architecture in Acme.

7. RELATED WORK
In addition to the related work previously mentioned

throughout the paper, we point out a few related results.
Program Differencing. Tree-to-tree correction algorithms

have been used for finding differences between programs; most
approaches consider abstract syntax trees (ASTs) as ordered trees
with several polynomial time algorithms available (e.g., [SZ97]).

The Difference Extract (Dex) [RRL+04] includes an
algorithm that supports two kinds of move operations: a move that
changes parents (a match between nodes whose parents are not
matched to each other), and a move that changes order (a match
between two nodes with matching parents but different sibling
ranks). This work is probably the closest to ours. Although
intended to solve the differencing problem for ordered trees, Dex
includes a bottom-up algorithm which is vaguely similar to THP
as a subroutine that solves an unordered tree problem. Dex
purports to support arbitrary moves, but the authors warn that no
guarantee can be given that the obtained edit script is optimal
because Dex is only a heuristic. This is a reasonable choice for
Dex, as it is designed to handle trees that are several orders of
magnitude larger than our typical inputs (on the order of 100,000
nodes). There are several other important differences between
TreeMDIR and Dex, one being that Dex targets inputs where less
than 1% of the nodes are affected by edit operations, and the
remaining nodes are matched exactly based on semantic
information. This enables a linear time subroutine in Dex, called
top-down matching, to identify 94% of the matches, and the
remaining matches are deduced by other subroutines. In contrast,
both THP and TreeMDIR, while much slower than Dex, would
still work even in the total absence of semantic information (i.e.,
using tree structure only). As we showed in the case studies
earlier, our typical inputs often have more than half of their nodes
renamed which would make the Dex top-down subroutine
ineffectual. Also, TreeMDIR provides the capability of forcing
and preventing matches manually. This feature does not exist in
Dex and we are not sure how difficult it might be to add it.

Figure 9: Comparison of the documented and the recovered
C&C views for the Duke’s Bank application.
Symbols: Match (), Insert (), Delete (), Rename ()

[CG97] proposes a heuristic solution with a worst-case O(N3)
time that supports arbitrary move, copy and glue operations.
However, the approach was only tested on instances of a few
hundred nodes where 80% or more of the nodes were matching
exactly (same semantic information) without any indication of
how many of these labels were unique. Also the largest instance
over which the accuracy of the heuristic was tested did not
contain more than six edit operations (including renames): even
on that, the heuristic returned a suboptimal answer in some cases
(about 15% larger than the optimal edit script).

JDIFF [AOH04] bears some vague similarity to TreeMDIR,
as hammock graphs can be turned into trees without loss of
information or structure. We think that it would be trivial to add
the ability to prevent matches to JDIFF, but adding the ability to
force matches would be substantially more complicated. JDIFF is
faster than TreeMDIR since it relies on matching labels exactly,
but it loses the ability to detect renames, one of our requirements.

 10

Submitted for publication, 2005

Tree Alignment vs Tree Edit. Tree differences can be
represented using tree alignment instead of tree edit distance.
Each alignment of trees actually corresponds to a restricted tree
edit in which all the insertions precede all the deletions. There are
algorithms based on tree alignment that can detect unbounded
deletes (e.g., [JWZ95]). Another advantage of tree alignment is
that it can easily generalize to more than two trees, something not
easily done with tree edit distance. But the memory requirements
of such algorithms are prohibitive for the tree sizes and branching
factors that are typical of our inputs: the memory requirements
would typically be several orders of magnitude higher than those
of TreeMDIR– O(22d N 2) where d is the maximum degree of the
tree. Due to the prohibitive space requirements, there's no need to
prefer tree alignment to an algorithm based on tree edit distance.

8. CONCLUSIONS
In this paper, we presented a novel algorithm for finding

differences and merging tree-structured data. Given two tree-
structured representations, our algorithm identifies, in addition to
inserts, deletes, and renames, restricted moves across levels of the
hierarchy. The algorithm also supports manually forcing and
preventing matches between view elements.

We also presented tools that use the tree-to-tree correction
algorithm to compare and merge architectural component-and-
connector (C&C) views. Finally, we provided an empirical
evaluation of the algorithms and tools with case studies on real
programs. The case studies show the practicality of the algorithm
and the tool, as they enabled us to find interesting architectural
divergences in both cases.

9. REFERENCES
[AAG05] Abi-Antoun, M., Aldrich, J., Garlan, D., Schmerl, B.,

Nahas, N., and Tseng, T. Improving System Dependability
by Enforcing Architectural Intent. In WADS, 2005.

[AAN05] Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B.
and Garlan, D. Differencing and Merging of Architectural
Views. Technical Report CMU-ISRI-05-128, 2005.

[AC94] Ammann, M. M., and Cameron, R.D. Inter-Module
Renaming and Reorganizing: Examples of Program
Manipulation-in-the-Large. In Proc. ICSM, 1994.

[ACN02] Aldrich, J., Chambers, C. and Notkin, D. ArchJava:
Connecting Software Architecture to Implementation. In
Proc. ICSE, 2002.

[AOH04] Apiwattanapong, T., Orso, A. and Harrold, M.J. A
Differencing Algorithm for Object-oriented Programs. In
Proc. Automated Software Engineering, 2004.

[AP03] Alanen, M. and Porres, I. Difference and Union of
Models. In Proc. «UML» 2003, 2003.

[CBB+03] Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers,
J., Little, R., Nord, R. and Stafford, J. Documenting
Software Architecture: View and Beyond, Addison-Wesley,
2003.

[CCG+03] Chen, P., Critchlow, M., Garg, A., van der
Westhuizen, C. and van der Hoek, A. Differencing and
Merging within an Evolving Product Line Architecture. In
Proc. PFE-5, 2003.

[CFS+04] Conte, D., Foggia, P., Sansone, C., Vento, M. Thirty
years of graph matching in pattern recognition. In Int'l J.
Pattern Recognition and Artificial Intelligence, 18(3), 2004.

[CG97] Chawathe, S. and Garcia-Molina, H. Meaningful change
detection in structured data. In Proc. ACM SIGMOD, 1997.

[DBD+04] Dickinson, P.J., Bunke, H., Dadej, A., and Kraetzl, M.
Matching graphs with unique node labels. In Pattern
Analysis & Applications. 7(3), pp. 243- 254, 2004.

[DHT02] Dashofy, E. M., van der Hoek, A., and Taylor, R. N. An
infrastructure for the rapid development of XML-based
architecture description languages. In Proc. ICSE, 2002.

[Ecl03] Object Technology International, Inc. Eclipse Platform
Technical Overview, 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

[EJB] Sun Microsystems. Enterprise JavaBeans.
http://java.sun.com/products/ejb/docs.html

[GMW00] Garlan, D., Monroe, R., and Wile, D. Acme:
Architectural Description of Component-Based Systems. In
Foundations of Component-Based Systems, Cambridge
University Press, 2000.

[J2EE] Sun Microsystems. J2EE Tutorials. Duke’s Bank.
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank2.html

[Jim05] Jimenez, A. M. Change Propagation in the MDA: A
Model Merging Approach. M.S. Thesis. University of
Queesland, 2005.

[JWZ95] Jiang, T., Wang, L., and Zhang, K., Alignment of
trees— an alternative to tree edit. In Theoretical Computer
Science, 143:137--148, 1995.

[KPS+99] Krikhaar, R., Postma, A., Sellink, A., Stroucken, M.,
Verhoef, C. A Two-Phase Process for Software Architecture
Improvement. In Proc. ICSM, 1999.

[MDR05] Muccini, H., Dias, M. and Richardson, D. Towards
Software Architecture-based Regression Testing. In WADS,
2005.

[OWK03] Ohst, D., Welle, M., and Kelter, U. Differences
between Versions of UML Diagrams. In Proc. FSE, 2003.

[Par72] Parnas, D. On the Criteria for Decomposing Systems into
Modules. In Communications ACM 15 (12), 1972.

[RHM+04] Roshandel, R., van der Hoek, A., Mikic-Rakic, M.
and Medvidovic, N. Mae A System Model and Environment
for Managing Architectural Evolution. In TOSEM, 2004.

[RRL+04] Raghavan, S., Rohana, R., Leon, D., Podgurski, A. and
Augustine, V. Dex: a semantic-graph differencing tool for
studying changes in large code bases. In Proc. ICSM, 2004.

[SG04] Schmerl, B. and Garlan, D. AcmeStudio: Supporting
Style-Centered Architecture Development. In ICSE, 2004.

[SWZ+94] Shasha, D., Wang, J., Zhang, K., Shih, F. Exact and
approximate algorithms for unordered tree matching. In
IEEE Trans. Sys. Man. Cyber. 24(4): 668-678, 1994.

[SZ97] Shasha, D., Zhang, K. Approximate Tree Pattern
Matching, in Pattern Matching Algorithms, Apostolico, A.
and Galil, Z., Eds., Oxford University Press, 1997.

[THP05] Torsello, A., Hidovic-Rowe, D. and Pelillo, M.
Polynomial-Time Metrics for Attributed Trees. In IEEE
Trans. Pattern Analysis and Machine Intelligence, 2005.

[WDC03] Wang, Y., Dewitt, D.J. and Cai, J.-Y. X-Diff: An
Effective Change Detection Algorithm for XML Documents.
In Proc. 19th Int’l Conf. Data Eng., 2003.

[WF74] Wagner, R.A. and Fischer, M.J. The string to string
correction problem. Journal of the ACM, 21:168--173, 1974.

[YGS+04] Yan, H., Garlan, D., Schmerl, B., Aldrich, J. and
Kazman, R. DiscoTect: A System for Discovering
Architectures from Running Systems. In ICSE, 2004.

[ZJ94] Zhang, K., and Jiang, T. Some MAX SNP-hard results
concerning unordered labeled trees. In Information
Processing Letters, 49, pp. 249–254, 1994.

 11

	1. INTRODUCTION
	2. CHALLENGES
	2.1 Differencing and Merging
	2.2 Assumptions
	3. TREE-TO-TREE CORRECTION
	3.1 Problem Definition
	3.2 Explanation of the Algorithm
	3.3 Pseudo Code of the Algorithm
	3.4 Forcing and Preventing Matches
	3.5 Time and Memory Complexity
	3.6 Empirical Evaluation

	4. SYNCHRONIZING C&C VIEWS
	4.1 C&C View Differencing and Merging
	4.2 Tool Support

	5. CASE STUDY: APHYDS
	6. CASE STUDY: DUKE’S BANK
	7. RELATED WORK
	8. CONCLUSIONS
	9. REFERENCES

