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ABSTRACT 
As architecture-based techniques become more widely adopted, 
software architects face the problem of reconciling different 
versions of architectural models. However, existing approaches to 
differencing and merging architectural views are based on 
restrictive assumptions, such as requiring view elements to have 
unique identifiers or explicitly log changes between versions. 
To overcome some of the above limitations, we propose 
differencing and merging architectural views based on structural 
information. To that effect, we generalize a published 
polynomial-time tree-to-tree correction algorithm (that detects 
inserts, renames and deletes) into a novel algorithm to 
additionally detect restricted moves and support forcing and 
preventing matches between view elements. We implement a set 
of tools to compare and merge component-and-connector (C&C) 
architectural views, incorporating the algorithm. Finally, we 
provide an empirical evaluation of the algorithm and the tools on 
case studies with real software, illustrating the practicality of the 
approach to find and reconcile interesting divergences between 
architectural views. 

Categories and Subject Descriptors 
D.2.11 [Software Architecture]: Languages 

General Terms 
Algorithms, Documentation, Languages, Verification. 

Keywords 
Differencing, merging, synchronization, tree-to-tree correction. 

1. INTRODUCTION 
The software architecture of a system defines its high-level 

organization as a collection of runtime components, connectors 
and constraints on their interaction, along with their additional 
properties defining the expected behavior, commonly referred to 
as a component-and-connector (C&C) view. Over the past decade, 
numerous architecture description languages (ADLs) have been 
developed and applied to real-world systems.  

As architecture-based techniques become more widely 
adopted, software architects face the problem of reconciling 
different versions of architectural models, including differencing 
and sometimes merging architectural views— i.e., using the 
difference information from two versions to produce a new 

version that includes changes from both earlier versions. For 
instance, during analysis, a software architect may want to 
reconcile two C&C views representing two variants in a product 
line architecture [CCG+03]. Once the system is implemented, an 
architect may want to compare a high-level conceptual C&C view 
with a C&C view retrieved from the implementation (using a 
variety of architectural recovery techniques): the architect might 
be interested in implementation-level violations of the 
architectural styles or other intent [AAG05], or in a change 
impact analysis [KPS+99]. At runtime, the difference information 
could be used to perform architectural repair [DHT02]. Finally, 
during evolution, the architect may use the difference information 
to better focus regression testing efforts [MDR05]. 

A number of techniques and tools for differencing and 
merging C&C views have been proposed. Some of these 
techniques detect only a small number of differences. For 
instance, ArchDiff [CCG+03] only detects insertions and 
deletions, possibly leading to the loss of information when 
elements are moved or renamed. Many of these techniques are 
also limited in their ability to detect differences based purely on 
structural information; they assume that elements have unique 
identifiers (every time an element is changed, even when only its 
type changes, it gets a new unique identifier [AP03][OWK03]), or 
only match two elements if both their labels and their types match 
[CCG+03]. Other approaches (e.g., Mae [RHM+04]) rely on the 
environment tracking all changes using fine-grained element-level 
versioning. Although such environments may provide the ability 
to infer high-level operations such as merges, splits or clones, in 
addition to the low-level operations such as inserts and deletes, 
they require a heavy upfront investment in tool building and 
integration, and have not become widely adopted. Similarly, one 
can maintain a record of the structural changes introduced to a 
view and replay it against another view [Jim05]. 

In this paper, we propose an approach that overcomes some 
of the above limitations. Our main contributions are: 
• An approach for differencing and merging two architectural 

views based on structural information, using tree-to-tree 
correction algorithms to identify matches and classify the 
changes between the two views. Optional type information 
can prevent matches between incompatible view elements, 
speeding execution and improving the quality of the output.  

• A generalization of a recently published tree-to-tree 
correction algorithm for unordered labeled trees [THP05]  
(that detects renames, inserts and deletes) into a novel 
polynomial-time tree-to-tree correction algorithm that 
additionally detects restricted moves and supports forcing 
and preventing matches between view elements.  
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• A set of tools incorporating such algorithms for the semi-
automated synchronization of C&C views. 

• An empirical evaluation of the algorithms and the associated 
tools on realistic case studies. 
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The paper is organized as follows. Section 2 describes the 
challenges in differencing and merging structural views, the 
underlying assumptions and the limitations of our approach. 
Section 3 describes our novel tree-to-tree correction algorithm. 
Section 4 describes tools that incorporate tree-to-tree correction 
algorithms to synchronize C&C views. Sections 5 and 6 present 
two case studies on real systems. Finally, we discuss related work 
and conclude. 

2. CHALLENGES 
A view can generally be described as a graph. View 

differencing and merging can then be cast as a problem in graph 
matching. Hierarchical architectural views have aspects of both 
graphs and trees—i.e., they have a tree-like hierarchy but there 
are cross-links that form a general graph. In this section, we 
consider the benefits of both graph and tree differencing 
approaches, with graph algorithms being more general, but tree 
algorithms more scalable. Having chosen trees for scalability, we 
describe a new algorithm in the next section that meets our 
requirements. 

2.1 Differencing and Merging 
Graph matching, in the general case, is NP-complete 

[CFS+04]. However, certain classes of graphs do not suffer from 
the exponential complexity. For instance, graphs characterized by 
the existence of unique node labels can be processed efficiently 
[DBB+04]. In addition, efficient algorithms have been proposed 
for trees. A widely used measure of the similarity between two 
graphs is the notion of graph edit distance [CFS+04]. The 
approach relies on using a set of edit operations that model 
inconsistencies by transforming one graph into another. Typical 
graph edit operations include the deletion, insertion and 
substitution of nodes and edges. Often a cost is assigned to each 
edit operation. The costs are application dependent and used to 
model the likelihood of the corresponding inconsistencies 
(typically, the more likely a certain inconsistency is to occur, the 
lower is its cost). If a cost is assigned to each edit operation, then 
the edit distance of two graphs g1 and g2 is found by searching for 
the sequence of edit operations with the minimum cost that 
transform g1 into g2. A similar problem formulation can be used 
for trees; however, tree edit distance differs from graph edit 
distance in that operations are carried out only on nodes and never 
directly on edges. In Section 3, we describe a novel algorithm 
based on tree edit distance that meets the requirements of the 
problem domain. 

2.2 Assumptions 
Before we do that, we discuss some of the assumptions in 

our approach and how they generalize those of existing 
approaches.  

No Unique Identifiers. For maximum generality, we match 
elements based on their structure and do not require elements to 
have unique identifiers, as in ArchDiff. In many applications, 
such unique identifiers do not exist. Adding this assumption gives 
the problem of graph edit distance a polynomial-time complexity, 
as recently shown in [DBB+04]. As an optimization, persistent 
unique identifiers could be assigned to view elements to quickly 
match them between invocations. 

No Ordering. In the general case, an architectural view has 
no inherent ordering among its elements. Assuming an 
architectural view is represented as a tree, this suggests that an 

unordered tree-to-tree correction algorithm might perform better 
than one for ordered trees. Ordered labeled trees (i.e., rooted trees 
in which the children of each node are ordered) have been studied 
extensively with many efficient algorithms available (e.g., 
[SZ97]). However, tree-to-tree correction for unordered trees is 
MAX SNP-hard [ZJ94]. Some algorithms for unordered trees 
achieve polynomial-time complexity, either through heuristic 
methods (e.g., [WDC03][CG97]) or through an exact solution 
under additional assumptions (e.g., [THP05]). 

Support Disconnected/Stateless Operation. For maximum 
generality, we assume a disconnected and stateless operation, i.e., 
no monitoring of structural changes is taking place while the user 
is modifying a given view (e.g., Mae [RHM+04]) and no trace is 
kept of the set of changes made to a view (e.g., [Jim05]). 

Detect Renames. For maximum generality, we do not 
require labels to match exactly. Names are often modified during 
software development and maintenance: a name may turn out to 
be inappropriate or misleading due to either careless initial choice 
or name conflicts from separately developed sub-systems [AC94]. 
In some application domains, some view elements may not have 
persistent names or may be assigned automatically generated 
names. This suggests that the algorithms should be able to handle 
sparse or incomplete labels and handle renames. A number of 
existing algorithms detect renames, but either assume that a strong 
majority of nodes will have exactly matching semantic 
information (labels and types) or have only been tested under 
such a condition: e.g., at least 80% of nodes have exactly 
matching semantic information in [CG97], and at least 99% of 
nodes have exactly matching semantic information in [RRL+04]. 

Detect Hierarchical Moves. Architects often use hierarchy 
to control complexity, and many views are hierarchical: e.g., in 
C&C views, the hierarchy corresponds to the system’s 
decomposition. However, architects differ in their use of 
hierarchy: components expressed at the top level in one view 
could be nested within another component in some other view. A 
hierarchical move shifts a node up or down N levels in the tree, 
changing its parent. The ability to detect hierarchical moves is 
one of the main features which distinguish our proposed 
algorithm from the algorithm described in [THP05]. 

Allow Manual Overrides. Since having a correct mapping 
between view elements is critical for the merge operation, user 
control over the structural matching process is important: in 
particular, the user should be able to force a match between 
elements that cannot be structurally matched, as well as prevent 
matches between elements that, although structurally similar, are 
in fact incompatible. Note that manual overrides must be taken 
into account by the algorithm itself, and cannot happen as a post-
processing step since there are dependencies in the mapping (e.g., 
two view elements a1 and a2 in View A may not both map to the 
same element b1 in view B, even if a1 is forced to match b1). This 
feature also distinguishes our algorithm from existing ones. 

Type Information for Optimization Only. Unlike other 
approaches (e.g., ArchDiff), matching the type information is not 
critical to the operation of the algorithm; it should be able to deal 
with views containing untyped elements, as well as views at 
different levels of abstraction with possibly different type 
systems. The algorithm should be able to recover a correct 
mapping from structure alone if necessary, or structure and type 
information if type information is available. However, the 
algorithm can take advantage of the type information (when 
available) to prune the search tree, significantly speed 
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convergence towards the optimal solution and improve the quality 
of the matching. If the view elements are represented as typed 
nodes, at the very least, the algorithm should not match nodes of 
incompatible types (e.g., do not match connector x to component 
y). In some cases, additional architectural type information may 
be available and could be used for similar purposes (e.g., do not 
match a component of type Filter from a Pipe-and-Filter style to a 
component representing a Repository from a Shared Data style). 

In order to remain tractable, our approach makes the 
following restricting assumptions: 

Hierarchical Views. In the general case, the differencing 
and merging of non-hierarchical views corresponds to error-
correcting or inexact subgraph isomorphism [CFS+04], a problem 
proved to be NP Complete. The most ambitious optimal 
algorithms (i.e., if a global minimum of the matching cost exists, 
it will be found) can handle at most a few dozen nodes. We take 
advantage of the tree hierarchy in architectural views and recast 
the problem into one that is more tractable, using trees instead of 
graphs. In C&C views, hierarchy corresponds to nested sub-
architectures or decomposition. Other architectural views, such as 
module views [CBB+03], have similar characteristics. 

Similar and Comparable Views. The two views being 
compared and merged have to be somewhat structurally similar. 
When comparing two completely different views, the algorithm 
could produce a trivial edit script that deletes all elements of one 
view and then inserts all the elements in the other view. In 
addition, the two views being compared and merged must be of 
the same type, i.e., comparable without any view transformation. 
This also allows the approach to be more applicable than just 
C&C views, at least in principle. 

Merging/Splitting Not Supported. Our approach does not 
currently detect the merging or splitting of view elements. 

 

Figure 1: Edit operations in tree-to-tree correction [SZ97]. 

3. TREE-TO-TREE CORRECTION 
In this section, we describe in detail a novel tree-to-tree 

correction algorithm for unordered labeled trees. The reader only 
interested in its applications can skim this section. Our TreeMDIR 
(Tree Move-Delete-Insert-Rename) algorithm generalizes a 
recently published algorithm [THP05], denoted as THP. We also 
implemented THP for experimental comparison with our 
implementation of TreeMDIR. 

3.1 Problem Definition 
Let us first give an unambiguous definition of the problem, 

adapted from [SZ97]. We denote the ith node of a labeled tree T in 
the postorder node ordering of T by T[i]. |T| denotes the number 
of elements of T. We define a triple (M, T1, T2) to be a mapping 
from T1 to T2, where M is any set of pairs of integers (i,j) 
satisfying: 
1) 1<= i <=|T1|, 1<= j <= |T2|; 
2) For any pair of (i1,j1) and (i2,j2) in M, 

a) i1 = i2 if and only if j1 = j2 (one-to-one) 
b) T1[i1] is an ancestor of T1[i2] if and only if T2[j1] is an 
ancestor of T2[j2] (ancestor order preserved). 

We will use M instead of (M,T1,T2) if there is no confusion. To 
delete a node N in tree T, we remove node N and make its 
children become the children of the parent of N. To insert a node 
N in tree T as a child of node M, we make N one of the children 
of M, and we make a subset of the children of M become children 
of N (See Figure 1). Renaming a node only updates its label. In 
the following discussion, a matched node means a node with an 

exactly matching label or a renamed  node. The edit operations 
that we refer to as restricted moves correspond to deletion and 
insertion operations in the middle of the tree: sequences of node 
deletions in the middle of the tree result in nodes moving up a 
number of levels in the hierarchy, and sequences of node 
insertions in the middle of the tree result in nodes moving down in 
the hierarchy (by becoming children of the inserted nodes). 
TreeMDIR does not currently support arbitrary node moves. THP 
does not allow any insertions or deletions in the middle of the tree 
and works under the assumption that if two nodes match, so do 
their parents (i.e., only subtrees can be inserted or deleted). 

Suppose we obtain a mapping M between trees T1 and T2. 
From this mapping we can deduce an edit script to turn T1 into T2. 
First, we flag all unmatched nodes in the first tree as deleted and 
all unmatched nodes in the second tree as inserted. We order the 
operations so that all deletion operations precede all insertion 
operations, delete the nodes in order of decreasing depth (deepest 
node first), and insert them in increasing depth order. 

We still have to define the cost of an edit script (which is a 
sequence of edit operations): for each node in the source tree, we 
choose a cost of deletion (not necessarily the same for all nodes); 
for each node in the destination tree we choose a cost of insertion 
(again, not necessarily the same for all nodes), and for each pair 
of nodes (n, m) where n is some node in T1 and m in T2,  we 
choose a cost of changing the label of n into the label of m (for 
example, to change “banana” into “ananas”, we might choose a 
cost of two using string-to-string correction [WF74]). The cost of 
the edit script is then equal to the sum of the costs of insertion, 
deletion, and renaming operations it contains. Therefore, any 
given mapping has a unique cost. So, in order to find an optimal 
edit sequence, it is sufficient to find an optimal mapping. 

3.2 Explanation of the Algorithm 
The algorithm pseudocode is given in Section 3.3 below.  

Let C(i,j) be the cost of the optimal mapping from the subtree 
rooted at i to the subtree rooted at j. A set of  nodes S(i) is a 
successor set of node i if it is a subset of the set of descendents of 
i and none of the elements of S(i) is an ancestor of another, and 
each node of the subtree rooted at i is either a descendent or an 
ancestor of an element of S(i). Given two sets S(i) where i belongs 
to T1, and S(j) where j belongs to T2, it is possible to define the 
optimal mapping of S(i) to S(j) as a one to one function from a 
subset of S(i) into S(j) with least cost, where the cost of mapping 
element k of S(i) to element l of S(j) is equal to cost of the optimal 
mapping of the subtree rooted at k to the subtree rooted at l, and 
the cost of leaving an element k of S(i) without image is equal to 
the cost of deleting the whole subtree rooted at k, and the cost of 
having an umatched element l in S(j) is equal to the cost of 
inserting the entire subtree rooted at l. This suggests that if we 
know all the costs C(d1,d2) where d1 is a descendent of i and d2 is 
a descendent of j, it is possible to compute C(i, j) by considering 
all possible pairs of sets (S(i),S(j)), and for each such pair, getting 
the minimum weight bipartite matching defined by the entries of 
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the cost matrix C corresponding to the elements of S(i) and S(j). 
Finally, let L(i,j) be the cost of changing the label of node i in the 
source tree to the label of node j in the destination tree. The 
minimum cost obtained added to L(i, j) will be equal to C(i, j). 
L(i,j) uses string-to-string correction to evaluate the intrinsic 
degree of similarity between the labels of two nodes, using the 
standard dynamic programming algorithm to find the longest 
common subsequence [WF74]. 

We choose the best pair (S(i),S(j)) using a branch-and-bound 
backtracking algorithm. Let DESC(i) denote the set of descendents 
of i. We try to choose a subset Q of DESC(i)xDESC(j) with minimal 
cost. This is done by trying to add to Q one element of 
DESC(i)xDESC(j) such that the new element in Q is consistent with 
the previous elements (no same node can be matched to 2 
different nodes, nor can a node appear in an element of Q, if 
either a descendent or an ancestor already appears in some 
element of Q). The algorithm backtracks each time it determines 
that there are no more valid pairs to add, or when it determines 
that the cost of the current branch will be too large to match the 
best solution already discovered to date. As the problem is NP-
complete, the approach outlined above can quickly become 
computationally infeasible without additional constraints. 

We chose to enforce an upper bound B on the sum of 
distances  between elements of S(i) and the closest child of i 
(respectively, S(j) and j)  with B typically a small integer. The 
reasoning behind this constraint is that nodes are not usually 
moved too far from their original positions in a hierarchy, and it is 
relatively rare for several non-leaf siblings to be deleted at the 
same time. The bound B has the additional benefit that only 
relatively small neighborhoods of each node have to be 
considered for the computation of the optimal cost of a single 
subtree pair, enabling us to perform many operations very 
efficiently using bit manipulation. For example, during the 
backtracking search, checking whether a node is still available is a 
single bitwise AND operation instead of a time-consuming loop 
over an array. 

TreeMDIR can be considered a generalization of THP 
because THP only handles the case where B=0 (i.e., only the 
children of a node can be in a successor set of that node), 
producing a fully polynomial time algorithm that is typically 
much faster than our generalized algorithm. But being able to 
handle  non-zero values of B allows our algorithm to detect 
hierarchical moves. TreeMDIR is guaranteed to find the optimal 
matching within the constraints of the bound B, provided it is 
allowed to run long enough. Unfortunately, on a number of 
instances (especially, on trees with more than a few hundred 
nodes and when the average degree of a non-leaf node is greater 
than four), it is necessary to limit the running time by enforcing a 
bound R on the number of recursive calls of the backtracking 
search corresponding to a given subtree pair. This bound removes 
the guarantee of optimality. Nevertheless, we found that the 
algorithm still obtains good results when we limit the number of 
recursive calls, because usually the backtracking search finishes 
very quickly when we compare similar subtrees. Since the 
algorithm uses the branch-and-bound technique, a good match 
allows for tight bounds and therefore early cutting of branches. 
The search terminates normally for matrix entries actually 
corresponding to good matches, and is interrupted only when the 
match is not good, which often allows the algorithm to return an 
optimal match even though the backtracking search was 
interrupted for the computation of some of the cost matrix entries 

(as these matrix entries correspond to bad matches which are not 
part of the optimal solution). 

3.3 Pseudo Code of the Algorithm 
In the following pseudo code of the TreeMDIR algorithm, 

arguments that are passed by reference are indicated by ref. In 
order to reduce the complexity of the pseudo-code, the parameter 
R, and the ability to force and prevent matches are not reflected 
here. For efficiency reasons, bit vectors are stored in integers 
(with 0 meaning false, and 1 meaning true) in and bitwise 
manipulations are used heavily. 

 
Procedure: TREEMDIR // MAIN PROCEDURE 
Input: 
Tree T1: first tree to compare 
Tree T2: second tree to compare (turn T1 into T2) 
Output: 
BestGlobalMatch: contains the best mapping from T1 to T2 
Declare:  
CostMatrix: CostMatrix[i][j] is the cost of the optimal 
            mapping from the subtree rooted at i to the 
            subtree rooted at j  
BestGlobalMatch[]: array of pairs of nodes corresponding 
   to the least cost mapping from T1 to T2
BestSuccessor[][]: a 2D array of sets of pairs of nodes 

 (m,n)∈  BestSuccessor[i][j] means (m,n) is a match 
 between one element of the successors of i and one  
 element of the successors of j in an optimal mapping 
 from the subtree rooted at i to  the subtree rooted at j 
L(i,j): cost of changing the label of node i in T1 to the 
  label of node j in T2 using string-to-string correction 
Begin 
Postorder T1 and T2 nodes 
for(i = 1 to T1.size) 
  for(j = 1 to T2.size) 
    BestSuccessor[i][j] = SEARCH(i, j, ref CostMatrix) 
    CostMatrix[i][j]= BestSuccessor[i][j].cost + L(i,j) 
GETBESTMATCHING(BestSuccessor, ref BestGlobalMatch, 
             T1.size, T2.size) 
End 
 
Procedure: SEARCH // SETUP DATA STRUCTURES FOR CALLING BACKTRACK 
Input: 
i: index in tree T1
j: index in tree T2
CostMatrix: cost matrix, same as for TREEMDIR  
Output: 
CostMatrix[i][j]: updated entry in the cost matrix 
return a set of node pairs representing the best found 
mapping of the nodes of a successor set of i to the nodes 
of a successor set of  j 
Declare: 
Asc1[], Des1[]: arrays of integers where the nth bit in 
  the  mth integer indicates whether mth node is an 
  ascendant (respectively, descendent) of nth node in T1
Asc2[], Desc2[]: same as above, for T2
BestSolution[]: set of optimal matches, implemented as a 
  Boolean array: nth entry is true if the nth node pair in 
  the set of all node pairs sorted by merit belongs to 
  the best matching (merit is a measure of the quality of 
  the matching) 
CurrentSolution[]: set of matches being built, encoded in 
                   the same way as BestSolution[] 
BestCost: variable 
Unavailable1: integer where the nth bit is set if the nth 
   node in tree T1 is unavailable for inclusion in 
   CurrentSolution because an ascendant or descendent is 
   already included in CurrentSolution 
Unavailable2: same as Unavailable1 but for tree T2
Begin 
Get the list L of all pairs (p,q) where  
  p is a descendent of i and q is a descendent of j 
Sort the list by decreasing match merit  
  (merit represents the percentage of subtree weight that 
  is matched when two nodes are compared) 
foreach node among the descendents of i and j  
  Associate an integer. Make the bit sequence correspond 
  to the set of of descendents/ascendents of the nodes 
  Store the integers in the Desc/Asc arrays, respectively 
  Initialize BestSolution and CurrentSolution arrays to 0 
  Initialize BestCost to an infinite value 
  Initialize Unavailable1 to 0, Unavailable2 to 0 
  BACKTRACK(0  /* index*/, L, Asc1, Asc2, Desc1, Desc2, 
          Unavailable1,Unavailable2, CostMatrix,  
          0 /* CurrentCost*/, ref BestCost,   

 4



Submitted for publication, 2005 

          ref BestSolution, ref CurrentSolution) 
Convert BestSolution bit vector to a set of node pairs 
return set of node pairs 
End 
 
Procedure: BACKTRACK //SEARCH FOR A GOOD MAPPING BETWEEN SUBTREES 
Input: 
index: position reached in list L 
L: list of pairs of nodes (m,n) sorted by merit 
Asc1[], Asc2[], Desc1[], Desc2[]: same as for SEARCH 
Unavailable1, Unavailable2: same as for SEARCH 
CostMatrix: cost matrix, same as for SEARCH 
CurrentCost: current cost of the mapping being built  
  (i.e., the subset of Cartesian product of the set of 
   descendents of i and j) 
ref BestCost: same as for SEARCH 
ref BestSolution[]: same as for SEARCH 
ref CurrentSolution[] : same as for SEARCH 
Output: BestCost, BestSolution, CurrentSolution: updated 
Begin 
Base Case: 
  if (no element of L can be added to CurrentSolution) 
   if (CurrentCost + cost of deleted subtrees < BestCost) 
 BestSolution = CurrentSolution 
 BestCost = CurrentCost 
    return 
foreach element l= (m,n) in L starting at position index 
  Check whether l.first and l.second are still available 
  if not continue 
  if ( adding l to current mapping violates bound B ) 
    continue 
  Add cost of match to CurrentCost to obtain NewCost 
  Get a lower bound E of remaining cost using match merit      
      If ( E + NewCost >= BestCost ) continue 

    

An upper bound on the running time of the TreeMDIR 
algorithm is as follows: let X be the set of nodes of both trees, x 
be an element of X, p be the maximum allowable size of a 
connected subgraph of the tree that can be deleted or inserted in 
the middle of the tree, f(x,p) be the number of nodes that lie 
within a distance of (p+1) from x, and F(a) = max{f(x,p): x

  Add l to CurrentSolution (by setting the corresponding 
    entry in CurrentSolution to l) 
  NewUnavailable1 = Unavailable1 OR Desc1(m) OR Asc1(m) 
  NewUnavailable2 = Unavailable2 OR Desc2(n) OR Asc2(n)  
  BACKTRACK(index+1, L, Asc1, Asc2, Desc1, Desc2, 
    NewUnavailable1, NewUnavailable2, CostMatrix, 
    NewCost, BestCost, BestSolution,ref CurrentSolution); 
  Remove l from CurrentSolution 
End 
 
Procedure: GETBESTMATCHING // DEDUCE THE OPTIMAL MAPPING 
Input:  
BestSuccessor[][]: same as for TREEMDIR 
ref BestGlobalMatch[]: same as for TREEMDIR 
i, j: indices of a pair of nodes that belong to the best 
       possible mapping between the two trees 
Output: BestGlobalMatch: updated 
Begin 
foreach e = (m, n) in BestSuccessor[i][j] 
  Add e to to BestGlobalMatch 
  GETBESTMATCHING(BestSuccessor, ref BestGlobalMatch, m, n) 
End 

3.4 Forcing and Preventing Matches 
Manual overrides are not a standard operation in most tree-

to-tree correction algorithms. We added to TreeMDIR the ability 
to force and prevent matches between a node in tree T1 and 
another node in tree T2. Preventing a match between two nodes i 
and j is easy—just assign a very large cost to the corresponding 
entry in the cost matrix C[i][j]. But forcing a match between two 
nodes is more difficult. At first glance, it would seem that 
preventing the match of either of these two nodes with any node 
other than the required one, and making the cost of deletion and 
insertion of these nodes very high, would be enough. It would be 
enough if the algorithm did not have to handle the additional 
constraint concerning the distance to the subtree root. Since this 
constraint exists, it is often necessary to delete entire subtrees at a 
time. So we have to prevent that one of the nodes involved in the 
forced match is deleted in one of those subtree deletions. A 
possible solution would be to prevent the deletion of all the 
ancestors of the forcibly matched node. This is indeed the best 
solution if we used THP. But in our case, this solution could 
produce a very sub-optimal edit script, because it is quite possible 
that a few ancestors got deleted, while the forcibly matched node 
isn't deleted. This requires distinguishing between individual 
delete operations and mass delete operations. 

We therefore allow the deletion of ancestors of the forcibly 
matched node, on the condition that this deletion operation is not 
part of a subtree deletion operation, i.e., whenever an ancestor is 
deleted, at least one of its descendents which is itself an ancestor 
of the forcibly matched node must be part of the successor set. 
We enforce that constraint in the base case of the recursive 
BACKTRACK procedure. When computing  the best cost for the (i,j) 
entry of the cost matrix, if i is an ancestor of a forcibly matched 
node, BACKTRACK does not record in BestSolution any mapping 
that deletes the branch leading to the forcibly matched node, 
although it records a mapping that deletes a few intermediate 
nodes on the path from i to the forcibly matched node. This 
feature is not shown in the pseudo-code to keep it manageable. 

3.5 Time and Memory Complexity 

∈X 
and p=a}.  

TreeMDIR has a worst case running time of O((2*F(a))! N2). 
In our implementation, pruning the search tree by using both tree 
structure and additional semantic information (e.g., type 
information) and being able to limit the running time by returning 
a possibly suboptimal solution, make the average case 
considerably faster than the worst case. In practice, the observed 
runtime is O(K N2) where K is a large constant, but not quite as 
large as the theoretical worst case bound would let one imagine. 
In comparison, THP has a running time of O(d3 N2).  

Regarding memory requirements: although both THP and 
TreeMDIR can be implemented in O(N2) space at the expense of 
increased implementation complexity, we implemented THP in 
O(d N2) where d is the max degree of a tree, and TreeMDIR in 
O(b N2), where b is the number of bits in an integer. 

3.6 Empirical Evaluation 
In this section, we present an empirical evaluation of the 

performance and the accuracy of TreeMDIR. Evaluating the 
accuracy of the algorithm is necessary because bounds B and R 
remove the guarantee of optimality. The test data was built as 
follows: 1) generate a random tree with random labels (taken from 
a pool of 10 possible names so as to be non-unique); 2) copy the 
tree; 3) delete a random number of nodes in the copy (both 

Table 1: Empirical evaluation of TreeMDIR (R = 100K) 

THP TreeMDIR Case # 
Nodes 

Ops 

Ops Time Ops Time 

640 569 770 2 569 64 Rename 

1280 857 1509 7 963 442 

640 492 701 2 492 50 Delete 

1280 1113 1397 5 1114 169 

640 441 1076 3 1093 215 Move 

1280 652 2407 9 735 471 

640 288 712 2 288 65 Degree 

1280 576 1194 10 576 248 
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internal and leaf nodes); 4) rename a number of nodes in the 
copy; 5) and finally, compare the two trees using THP and 
TreeMDIR. 
The deletion operations in the middle of the tree correspond to the 
restricted moves that TreeMDIR detects. In the interest of full 
disclosure, however, we did not check that at least some of the 
randomly generated test cases do not violate THP’s assumption,  
namely, that if two nodes match, so do their parents. Additional 
details can be found in [AAN05]. 

The length of an optimal edit script must necessarily be 
equal to the sum of the number of deletion added to the number of 
renaming operations, since there is a tree which lacks a certain 
number of nodes, and it has a number of nodes which doesn't 
exactly match any of the nodes in the other tree and each of these 
nodes needs at least one edit operation to be taken into account. 
Table 1 shows for different tree node sizes, the length of the 
optimal edit script, the length of the edit script produced by THP 
(including the time), and the length of the edit script produced by 
TreeMDIR (including the time). All times are in seconds. 

On average, THP produced edit scripts sub-optimal by about 
120%, whereas TreeMDIR produced edit scripts sub-optimal by 
about 7%. In the worst case, THP produced a suboptimal edit 
script by about 400% whereas TreeMDIR's worst case 
performance resulted in an edit script sub-optimal by around 
150%. In both cases, accuracy deteriorated significantly when 
nodes of large degree were allowed or when the trees were very 
different. TreeMDIR’s worst case was on a source tree of 640 
nodes separated from its target by an optimal edit script of 440 
operations containing both deletions and renames. In that case, the 
returned edit script was 2.5 times longer than the optimal edit 
script. This behavior, however, was far from typical and 
TreeMDIR produced good results with most trees, even when the 
optimal edit script involved 2/3 of the number of nodes. Finally, 
with up to 85% of the nodes renamed (no deletions), TreeMDIR 
produced excellent edit scripts within less than 1% of the optimal 
script length on trees of 640 nodes, providing us with the 
evidence that it can recover the mapping from tree structure alone. 

The improved match quality comes at a heavy runtime cost. 
With bound R set to a large value (100 K), TreeMDIR was about 
60 times slower than THP on average and up to 200 times slower 
in the worst case. As predicted, setting bound R to a much smaller 
value often produced only slightly sub-optimal edit scripts for a 
noticeably reduced running time: on a tree of 1280 nodes with an 
optimal edit script of 396 edits, THP produced an edit script of 
1775 edit in 7 seconds. TreeMDIR (with R=100K) produced an 
edit script of size 459 in 6 minutes, whereas TreeMDIR (with R = 
5K) produced an edit script of size 479 in 4 minutes. Finally, we 
would like to point out that we have avoided premature 
optimization in our current implementation to allow for easier 
debugging, so we think that the running time can be improved. 

4. SYNCHRONIZING C&C VIEWS 
We illustrate an application of the algorithm by 

incorporating it in a set of scalable tools to synchronize C&C 
views. 

4.1 C&C View Differencing and Merging 
We represent the structural information in a C&C view as a 

cross-linked tree structure that mirrors the hierarchical 
decomposition of the system. The tree also includes information 
to improve the accuracy of the structural comparison. For 

instance, the subtree of a node corresponding to a port or role 
includes all the port’s or the role’s involvements, i.e., all 
components (and their ports) or connectors (and their roles) 
reachable from that port or role through attachments or bindings. 
Cross-links refer back to the defining occurrence of each element 
and allow the user to navigate the architectural graph. We also 
add to each element various properties (such as type information). 
The type information, if provided, is used to build a matrix of 
incompatible elements that may not be matched. 

A graph representing a C&C view can generally have cycles 
in it. Representing an architectural graph as a tree causes each 
shared node in the architectural graph to appear several times in 
several subtrees, with cross-links referring back to their defining 
occurrences. These redundant nodes greatly improve the accuracy 
of the tree-to-tree correction; however, they may be inconsistently 
matched with respect to their defining occurrences (either in what 
they refer to, or in the associated edit operations). We post-
process the edit script to eliminate inconsistent matches using two 
passes. During the first pass, we synchronize the strictly 
hierarchical information (e.g., components, connectors, ports, 
roles, and representations); during the second pass, we 
synchronize attachments and bindings. The post-processing step is 
very simple, since at that point, the mapping between the nodes in 
the two graphs is known. 

4.2 Tool Support 
Synchronization follows the following five-step process: 1) 

Setup the synchronization; 2) View and match types (optional); 3) 
View and match instances; 4) View and modify the edit script 
(optional); 5) Confirm and apply the edit script (optional). 
Because steps 1 and 5 are straightforward, we will only discuss 
steps 2-4 in more detail below.  

In Step 2, matching the type structures between the two 
views (See Figure 2), currently a manual step, can produce 
semantic information that speeds up the comparison, but is 
otherwise optional. It also reduces the amount of data entry for 
assigning types to the elements to be created by the edit script. 

In Step 3, matching instances uses tree-to-tree correction to 
compare the tree-structured data from the two views to find 
structural differences and produce an edit script. It consists of: a) 
retrieve tree-structured data from the first C&C view; b) retrieve 
tree-structured data from the second C&C view; c) use the tree-to-
tree correction algorithm for unordered labeled trees to identify 
matches and structural differences (classified as inserts, deletes, 
renames and moves– See Figure 3), and obtain an edit script to 
make one view more consistent with the other. 

The differences found during structural matching are shown 
in each tree by overlaying icons on the affected elements (see 
Figure 3). If an element is renamed, the tool automatically selects 
and highlights the matching element in the other tree; for inserted 
or deleted elements, the tool automatically selects the insertion 
point by navigating up the tree until it reaches a matched ancestor. 

The tool provides various features to restrict the size of the 
trees and therefore, significantly reduce the comparison time: 
• Start at Component: the architect can have the trees 

corresponding to the system decomposition start at certain 
selected components to significantly reduce their sizes. 

• Restrict Tree Depth: an architect is often interested, at least 
initially, in only comparing the top-level elements. So the 
trees can be restricted to not include elements beyond a 
certain tree depth. 
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• Elide Elements: the architect can selectively exclude entire 
subtrees from comparison. Elision can be instance-based or 
type-based, where all elements of a given type are excluded 
at once (e.g., only match components and ports). Elision is 
temporary and does not generate any edit actions.
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Various features give the user additional manual control: 
• Forced matches: the architect can manually force a match 

between two elements that cannot be structurally matched. 
• Manual overrides: the architect can override any edit action 

suggested by the comparison, e.g., cancel a delete action. 
In Step 4, the edit script is used to produce a common 

supertree to preview the merged view. This step can be used to 
supplement the edit script with additional semantic information. 
For instance, the user can assign types to elements to be created, 
change the types of existing elements, or override automatically 
inferred types. Finally, the user can cancel any unwanted edit 
actions. 

Acme and ArchJava C&C Views. One specialized tool 
based on this approach can synchronize a C&C view described in 
an Architectural Description Language (ADL), Acme [GMW00], 
with a C&C view retrieved from an implementation in ArchJava 
[ACN02]. We chose Acme, since it is a general purpose ADL 
with good tool support; we chose ArchJava since it allows 
recovering a C&C view from an existing implementation. 
Furthermore, both AcmeStudio [SG04], a domain-neutral 
architecture modeling environment for Acme, and ArchJava's 
development environment are Eclipse plugins [Ecl03], thus 
reducing the tool integration barrier. We have completed the 
functionality needed to make an Acme model incrementally 
consistent with an ArchJava implementation. We still need to 
change the ArchJava infrastructure to support making incremental 
changes to an existing ArchJava implementation. 

This problem domain clearly requires going beyond 
insertions and deletions to support renames and moves. There will 
always be name differences of the same structural information 
between Acme and ArchJava. As an illustration, even if code 
generation is used to automatically produce a skeleton 
implementation from an architectural model, connector names and 
role names are lost during code generation (since ArchJava does 
not even name those elements). Identifying a renamed element in 
one view as being deleted and then re-inserted, while producing 
structurally equivalent views, results in losing properties about 
view elements that are crucial for architectural analyses (such 
style and type information, or other architectural properties). 

Two Acme C&C Views. Another specialized tool can more 
generally synchronize two C&C views represented in Acme: one 
view could correspond to a documented architecture, and the 
second could correspond to a C&C view recovered using any 
architectural recovery technique (e.g., [YGS+04]), another 
version of the Acme model retrieved from a configuration 
management system or to another variant in a product line. 

Detecting moves across levels of the hierarchy is often 
helpful, since two architects will often differ in their use of 
hierarchy, so that components expressed at the top level in one 
C&C view are nested within another component in some other 
C&C view. For example, one architect may use hierarchy to hide 
certain decision decisions from some parts of the system [Par72], 
but a designer may flatten the hierarchy for efficiency reasons. In 
an Acme system, this would correspond to replacing an 
architectural element with its representation (a nested system). 

5. CASE STUDY: APHYDS 
We illustrate the first tool on an ArchJava implementation of 

a pedagogical circuit layout application, Aphyds [ACN02]. The 
goal of this case study is to compare the architecture based on an 
informal drawing by the developer to the extracted architecture 
from the ArchJava implementation. 

Building the Conceptual Architecture. The starting point 
was an informal drawing (in [ACN02]) of the desired conceptual 
architecture which loosely followed the Model-View-Controller 
style, with the views consisting of user interface elements and the 
model consisting of a circuit database and a set of computational 
components. The architect converted the informal diagram into a 
C&C view (See Figure 4): he created a single Acme component to 
represent the circuitModel and added all the computational 
components to a representation of circuitModel (See Figure 5). In 
the informal diagram, some arrows were meant to represent 
control flow and others data flow. The architect did not want to 

 
Figure 3: Structural comparison of architectural instances 
in a C&C view retrieved from Acme and a C&C view 
retrieved from ArchJava: component privateAphyds exists in 
ArchJava but not in Acme; similarly, connector 
starConnector matches a connector in ArchJava with an 
automatically generated name (highlighted nodes). 

 
Figure 2: Matching Types Structures: the user manually 
specifies arbitrary matches in a view that shows the type 
hierarchies in both views flattened and shown side-by-side: 
e.g., the user assigns any ArchJava port with only provided 
methods the provideT Acme type defined in the MVCFam, a 
Model-View-Controller style. Symbols: Match ( ), Insert ( ), Delete ( ), Rename ( ) 
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distinguish between data and control flow, so he converted all the 
arrows in the original diagram to connectors in the Acme model. 

Matching Types. The architect was interested in the control 
flow so he assigned the provideT, useT, provreqT Acme types to 
ArchJava ports which only provide, only require, or have both 
methods, respectively; he assigned the generic TierNodeT Acme 
type to all components and the CallReturnT Acme type to all the 
implicit ArchJava connectors. 

Matching Instances. The architect let the synchronization 
tool compare the two views: he noticed a few renames, e.g., 
ArchJava uses model instead of circuitModel, and in that 
representation, ArchJava uses globalRouter instead of route (See 
Figure 3). The Acme architect was the least sure about how he 
represented the circuitModel component in Acme; facing a 
number of name differences certainly did not raise his confidence 
level. So, he decided to focus on the circuitModel Acme 
component instance which was matched to the model ArchJava 
component instance. Running the structural comparison showed 
that the Acme representation for circuitModel had more 
connectors than the ArchJava implementation, i.e., the tool only 
matched starConnector in the middle of Figure 5, modulo 
renaming (See Figure 3). The architect investigated this further 
and confirmed that the dataflow arrows in the informal Aphyds 
boxes-and-lines diagram are not actually in the implementation, 
so he accepted the edit actions to delete the extra connectors from 
the Acme model (See Figure 5).  

 
Figure 4: Original developer’s model in Acme. 

 
Figure 5: Acme representation for the circuitModel 
component. Extra connectors are marked with . 

Merging Instances. The architect next turned his attention 
to the additional top level component, shown as privateAphyds in 
Figure 3). privateAphyds represents a private window port in 
ArchJava and the corresponding glue. By looking at the control 
flow, the architect decided to assign that subsystem the publish-
subscribe style, so he renamed component privateAphyds as 
window and renamed the added connector to windowBus, and 
assigned it the EventBusT connector type from the Publish-
Subscribe style. The architect also decided to use the same 
component names as the ArchJava implementation to avoid future 
confusion, so he let the tool apply the edit script. 

Discussion. Figure 6 shows the resulting C&C view after it 
has been manually laid out in AcmeStudio. Unlike the original 
architect’s model, Figure 6 shows bi-directional communication 
taking place between components placeRouteViewer and model; 
upon further investigation, the architect traced that to a callback. 
Since Aphyds is a multi-threaded application with long running 
operations moved onto worker threads, the architect made note of 
the fact that developers should not carelessly add callbacks from a 
worker thread onto the user interface thread. Finally, the architect 
decided to use the up-to-date C&C view with types and styles as 
the basis for evolving the system in the future. 

 
Figure 6: Acme model with styles and types. 

Performance Evaluation. On an Intel Pentium4® CPU 
3GHz with 1GB of RAM, comparing an Acme tree of around 650 
nodes with an ArchJava tree of around 1,150 nodes (as in Figure 
3) currently took under 2 minutes, whereas our implementation of 
THP took around 30 seconds but produced less accurate results: in 
particular, THP did not treat component privateAphyds as an 
insertion and mismatched all the top-level components. In this 
case study, the edit script consisted of over 300 renames, over 600 
inserts and over 100 deletes. 

6. CASE STUDY: DUKE’S BANK 
We illustrate the tool to compare two C&C views using the 

Duke’s Bank Application, a simple Enterprise JavaBeans (EJB) 

banking application created as a demonstration of EJB 
functionality [EJB]. Duke’s Bank allows bank customers to 
access their account information and transfer balances from one 
account to another. It also provides an administration interface for 
managing customers and accounts. In this case study, the architect 
wanted to compare the architecture presented in the 
documentation with the actual architecture discovered by 
instrumenting the running system as explained in [YGS+04]. 

The architect defined an Acme family (or style) and types 
based on the EJB specification. The architect converted a boxes-
and-lines diagram documented in a tutorial [J2EE] into an Acme 
model (See Figure 7). 

As mentioned earlier, the two views must be comparable 
without any view transformation. Since the model recovered by 
instrumentation includes each session and entity bean instance 
created at runtime, the architect post-processed it to eliminate 
duplicates and consolidate multiple instances into one instance 
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with a property indicating multiplicity (not shown) in Figure 8, to 
match the documented architecture where each component 
instance represents a number of run-time components. 

The architect ran the synchronization tool between the two 
Acme C&C views. The tool was able to match all the elements 
between the two views, despite the large number of renames 
(automatically generated by the recovery tool). Furthermore, the 
tool correctly detected all the moves corresponding to replacing 
the EJB container component in one view with its representation 
in the other view (See Figure 9). The tool also enabled the 
architect to quickly detect the additional undocumented port on 
Account_Controller_Bean, which is communicating to the DB 
component through a DbWriter connector. Figure 7 does not show 
any connections between the session beans and the database, 
which implies that all database access is through the entity beans, 
as recommended by the EJB specification: the architect planned 
to investigate this apparent violation using source code analysis 
techniques. 

Performance Evaluation. On an Intel Pentium4® CPU 
3GHz with 1GB of RAM, TreeMDIR took around 30 seconds to 
compare the two Acme trees, one with around 330 nodes, and one 
with around 390 nodes. In this case, the edit script consisted of 
over 250 renames and over 50 inserts. As expected, THP did not 
correctly identify any of the moved view elements in this case. 

 
Figure 7: Duke’s Bank documented architecture in Acme; 
the components were added inside the Acme representation 
of an EJB container (shown as a thick border). 

 
Figure 8: Duke’s Bank recovered architecture in Acme. 

7. RELATED WORK 
In addition to the related work previously mentioned 

throughout the paper, we point out a few related results. 
Program Differencing. Tree-to-tree correction algorithms 

have been used for finding differences between programs; most 
approaches consider abstract syntax trees (ASTs) as ordered trees 
with several polynomial time algorithms available (e.g., [SZ97]). 

The Difference Extract (Dex) [RRL+04] includes an 
algorithm that supports two kinds of move operations: a move that 
changes parents (a match between nodes whose parents are not 
matched to each other), and a move that changes order (a match 
between two nodes with matching parents but different sibling 
ranks). This work is probably the closest to ours. Although 
intended to solve the differencing problem for ordered trees, Dex 
includes a bottom-up algorithm which is vaguely similar to THP 
as a subroutine that solves an unordered tree problem. Dex 
purports to support arbitrary moves, but the authors warn that no 
guarantee can be given that the obtained edit script is optimal 
because Dex is only a heuristic. This is a reasonable choice for 
Dex, as it is designed to handle trees that are several orders of 
magnitude larger than our typical inputs (on the order of 100,000 
nodes). There are several other important differences between 
TreeMDIR and Dex, one being that Dex targets inputs where less 
than 1% of the nodes are affected by edit operations, and the 
remaining nodes are matched exactly based on semantic 
information. This enables a linear time subroutine in Dex, called 
top-down matching, to identify 94% of the matches, and the 
remaining matches are deduced by other subroutines. In contrast, 
both THP and TreeMDIR, while much slower than Dex, would 
still work even in the total absence of semantic information (i.e., 
using tree structure only). As we showed in the case studies 
earlier, our typical inputs often have more than half of their nodes 
renamed which would make the Dex top-down subroutine 
ineffectual. Also, TreeMDIR provides the capability of forcing 
and preventing matches manually. This feature does not exist in 
Dex and we are not sure how difficult it might be to add it. 

Figure 9: Comparison of the documented and the recovered 
C&C views for the Duke’s Bank application. 
Symbols: Match ( ), Insert ( ), Delete ( ), Rename ( ) 

[CG97] proposes a heuristic solution with a worst-case O(N3) 
time that supports arbitrary move, copy and glue operations. 
However, the approach was only tested on instances of a few 
hundred nodes where 80% or more of the nodes were matching 
exactly (same semantic information) without any indication of 
how many of these labels were unique. Also the largest instance 
over which the accuracy of the heuristic was tested did not 
contain more than six edit operations (including renames): even 
on that, the heuristic returned a suboptimal answer in some cases 
(about 15% larger than the optimal edit script). 

JDIFF [AOH04] bears some vague similarity to TreeMDIR, 
as hammock graphs can be turned into trees without loss of 
information or structure. We think that it would be trivial to add 
the ability to prevent matches to JDIFF, but adding the ability to 
force matches would be substantially more complicated. JDIFF is 
faster than TreeMDIR since it relies on matching labels exactly, 
but it loses the ability to detect renames, one of our requirements. 
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Tree Alignment vs Tree Edit. Tree differences can be 
represented using tree alignment instead of tree edit distance. 
Each alignment of trees actually corresponds to a restricted tree 
edit in which all the insertions precede all the deletions. There are 
algorithms based on tree alignment that can detect unbounded 
deletes (e.g., [JWZ95]). Another advantage of tree alignment is 
that it can easily generalize to more than two trees, something not 
easily done with tree edit distance. But the memory requirements 
of such algorithms are prohibitive for the tree sizes and branching 
factors that are typical of our inputs: the memory requirements 
would typically be several orders of magnitude higher than those 
of TreeMDIR– O( 22d N 2) where d is the maximum degree of the 
tree. Due to the prohibitive space requirements, there's no need to 
prefer tree alignment to an algorithm based on tree edit distance. 

8. CONCLUSIONS 
In this paper, we presented a novel algorithm for finding 

differences and merging tree-structured data. Given two tree-
structured representations, our algorithm identifies, in addition to 
inserts, deletes, and renames, restricted moves across levels of the 
hierarchy. The algorithm also supports manually forcing and 
preventing matches between view elements. 

We also presented tools that use the tree-to-tree correction 
algorithm to compare and merge architectural component-and-
connector (C&C) views. Finally, we provided an empirical 
evaluation of the algorithms and tools with case studies on real 
programs. The case studies show the practicality of the algorithm 
and the tool, as they enabled us to find interesting architectural 
divergences in both cases. 
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