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Abstract

As the design of software architectures emerges as a discipline within software engineering, it
becomes increasingly important to support architectural description and analysis with tools and
environments. This paper provides a brief introduction to Aesop, a set of tools for developing
architectural design environments that exploit architectural styles to guide software architects
in producing specific systems.

1 Introduction

A critical aspect of any complex software system is its architecture. At an architectural level
of design a system is typically described as a composition of high-level, interacting components.
Frequently these descriptions are presented as informal box and line diagrams depicting the gross
organizational structure of a system, and they are often described using idiomatic characterizations
such as “client-server organization,” “layered system,” or “blackboard architecture.”

Architectural designs are important for at least two reasons. First, an architectural description
makes a complex system intellectually tractable by characterizing it at a high level of abstraction.
In particular, the architectural design exposes the top level design decisions and permits a designer
to reason about satisfaction of system requirements in terms of assignment of functionality to
design elements. For example, for a system in which data throughput is a key issue, an appropriate
architectural design would allow the software architect to make system-wide estimates based on
values of the throughputs for the individual components.

Second, architectural design allows designers to exploit recurring patterns of system organiza-
tion. Such patterns—or architectural styles—ease the design process by providing routine solutions
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for certain classes of problems, by supporting reuse of underlying implementations, and by permit-
ting specialized analyses. Consider for example, an architectural design that uses a pipe-and-filter
style. When mapped to a Unix implementation the system can take advantage of the rich collection
of existing filters and the operating system support for pipe communication. As another example,
consider the traditional decomposition of a compiler, which has made it possible for undergraduates
to build a non-trivial system in a semester course.

While at present the practice of architectural design is largely ad hoc, the topic is receiving
increasing attention from researchers and practitioners in areas such as module interface languages,
domain-specific architectures, software reuse, codification of organizational patterns for software,
architectural description languages, formal underpinnings for architectural design, and architectural
design environments. Collectively these efforts are working to put architectural design on a more
solid basis and make principles and techniques of architectural design more widely accessible.

As architectural design emerges as a discipline within software engineering, it becomes increas-
ingly important to support architectural description and analysis with tools and environments.
Indeed, already we are beginning to see a proliferation of environments oriented around specific
architectural styles. These environments typically provide tools to support particular architectural
design paradigms and their associated development methods. Examples include architectures based
on dataflow, object-oriented design, blackboard shells, and control systems.

Unfortunately each such environment is built as an independent, hand-crafted effort—and at
great cost. While development efforts may exploit emerging software environment infrastructure
(persistent object bases, tool integration frameworks, user interface toolkits, etc.), the architectural
aspects are typically redesigned and reimplemented from scratch for each new style. The cost of
such efforts can be quite high. Moreover, once built, each environment typically stands in isolation,
supporting a single architectural style tailored to a particular product domain.

Aesop is a system designed to help ameliorate the situation. Aesop provides a toolkit for
constructing open, architectural design environments that support architectural styles. The basic
idea is that Aesop makes it easy to define new styles and then use those styles to create architectural
designs. In brief, each Aesop environment is configured around a set of styles, which guide the
software architect in creating a design for a new system. Underlying each design environment,
Aesop provides a set of basic support functions for architectural design: a design manager for
storing and retrieving designs; a graphical user interface for modifying and creating new designs;
a tool integration framework that makes it relatively easy to add new tools (such as compilers,
architectural analysis tools, etc.) to the environment; and a repository mechanism for reusing
fragments and patterns from previous designs.

In the remainder of this overview we explain in more detail what we mean by architectural
style, and outline how Aesop works.

2 What is Architectural Style?

While there is currently no single well-accepted definition of software architecture it is generally
recognized that an architectural design of a system is concerned with describing its gross decompo-
sition into computational elements and their interactions [PW92, GS93, GP95]. Issues relevant to
this level of design include organization of a system as a composition of components; global control
structures; protocols for communication, synchronization, and data access; assignment of function-
ality to design elements; physical distribution; scaling and performance; dimensions of evolution;
and selection among design alternatives.

It is possible to describe the architecture of a particular system as an arbitrary composition



of idiosyncratic components. However, good designers tend to reuse a set of established architec-
tural organizations—or architectural styles. Architectural styles fall into three broad (overlapping)
categories.

Organizational Structures This category includes global organizational structures, such as lay-
ered systems, pipe-filter systems, client-server organizations, blackboards, etc.

Patterns: This category includes localized patterns, such as model-view-controller and many other
object-oriented patterns [GHJV95]. Unlike organizational idioms, which provide a broader
design vocabulary, most patterns tend to focus on a small portion of a system’s structure,
and provide specialized solutions to specific localizable problems.

Reference models: This category includes system organizations that prescribe specific (often pa-
rameterized) configurations of components and interactions for specific application areas. A
familiar example is the standard organization of a compiler into lexer, parser, typer, opti-
mizer, code generator [PW92]. Other reference architectures include communication reference
models (such as the [SO OSI 7-layer model [McC91]), some user interface frameworks, and
a large variety of domain-specific approaches in areas such as avionics [BV93] and mobile

robotics [SLEF90, HR90].

The current prototype of Aesop focuses primarily on the first of these. Additional support for
Patterns and Reference Models is now under design.

In terms of their role in architectural design, architectural styles typically determine four kinds
of properties:

1. They provide a vocabulary of design elements—component and connector types such as pipes,
filters, clients, servers, parsers, databases, etc.

2. They define a set of configuration rules—or topological constraints—that determine the per-
mitted compositions of those elements. For example, the rules might prohibit cycles in a
particular pipe-filter style, specify that a client-server organization must be an n-to-one re-
lationship, or define a specific compositional pattern such as a pipelined decomposition of a
compiler.

3. They define a semantic interpretation, whereby compositions of design elements, suitably
constrained by the configuration rules, have well-defined meanings.

4. They define analyses that can be performed on systems built in that style. Examples include
schedulability analysis for a style oriented toward real-time processing [Ves94] and deadlock
detection for client-server message passing [JC94]. A specific, but important, special case of
analysis is code generation: many styles support application generation (e.g., parser genera-
tors), or enable the reuse of code for certain shared facilities (e.g., user interface frameworks
and support for communication between distributed processes).

The use of architectural styles has a number of significant benefits. First, it promotes design
reuse: routine solutions with well-understood properties can be reapplied to new problems with
confidence. Second, use of architectural styles can lead to significant code reuse: often the invariant
aspects of an architectural style lend themselves to shared implementations. For example, systems
described in a pipe-filter style can often reuse Unix operating system primitives to implement
task scheduling, synchronization, and communication through pipes. Similarly, a client-server
style can take advantage of existing RPC mechanisms and stub generation capability. Third, it is



easier for others to understand a system’s organization if conventionalized structures are used. For
example, even without giving details, characterization of a system as a “client-server” organization
immediately conveys a strong image of the kinds of pieces and how they fit together. Fourth,
use of standardized styles supports interoperability. Examples include CORBA object-oriented
architecture, the OSI protocol stack, and event-based tool integration. Fifth, as we have noted,
by constraining the design space, an architectural style often permits specialized, style-specific
analyses. For example, it is possible to analyze systems built in a pipe-filter style for schedulability,
throughput, latency, and deadlock-freedom. Such analyses might not be meaningful for an arbitrary,
ad hoc architecture — or even one constructed in a different style. In particular, some styles make
it possible to generate code directly from an architectural description. Sixth, it is usually possible
(and desirable) to provide style-specific visualizations. This makes it possible to provide graphical
and textual renderings that match engineers’ domain-specific intuitions about how their designs
should be depicted.

3 What is Aesop?

Given these benefits, it is perhaps not surprising that there has been a proliferation of architectural
styles. In many cases styles are simply used as informal conventions. In other cases — often with
more mature styles — tools and environments have been produced to ease the developer’s task in
conforming to a style and in getting the benefits of improved analysis and code reuse.

To take two illustrative industrial examples, the HP Softbench Encapsulator [Fro89] helps de-
velopers build applications that conform to a particular Softbench event-based style. Applications
are integrated into a system by “wrapping” them with an interface that permits them to interact
with other tools via event broadcast. Similarly, the Honeywell MetaH language and supporting
development tools provide an architectural description language for real-time, embedded avionics
applications [Ves94]. The tools check a system description for schedulability and other proper-
ties and generate the “glue” code that handles real-time process dispatching, communication, and
resource synchronization.

While environments specialized for specific styles provide powerful support for certain classes of
applications, the cost of building these environments can be quite high, since typically each style-
oriented tool or environment is built from scratch for each new style. We believe that an effective
discipline of software architecture requires a way to more easily develop automated support for
defining new styles and incorporating those definitions into environments that can take advantage
of them.

Aesop was designed to do just that. Aesop is a system for developing style-specific architectural
development environments. Figure 1 illustrates the basic idea behind the system: A set of styles
are loaded into Aesop to produce an environment tailored to those styles.

Using the information provided by the style descriptions and some shared infrastructure common
to all Aesop environments, each of these environments supports:

1. a palette of design element types (i.e., style-specific components and connectors) correspond-
ing to the vocabulary of the style

checks that compositions of design elements satisfy the topological constraints of the style
optional semantic specifications of the elements

an interface that allows external tools to analyze and manipulate architectural descriptions
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multiple style-specific visualizations of architectural information together with one or more
graphical editors for manipulating them.
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Figure 1: Developing Environments with Aesop

6. a design repository for storing and retrieving designs

7. one or more architectural reuse libraries for storing and retrieving existing design fragments

To illustrate, consider the snapshot in Figure 2. This picture shows an Aesop software archi-
tecture design environment for the “Unix-Pipe-Filter” style. The boxes in the design represent
components of the system (filters in this case), and the lines with circles in the middle represent
the connectors (pipes). These boxes (and lines) can be decomposed in a hierarchical fashion. Addi-
tionally, auxiliary text-based information can be associated with each design element. For example,
for this style it is possible to a associate block of code with each filter that determines the behavior
of the filter.

The strip of buttons illustrated on the right side of the picture allows the user to select from
a palette of primitive design elements in this style. This includes component types (StdFilter,
UnixBinary, File, etc.) as well as a single connector type (Pipe).

The menus at the top of the window allow users to perform style-specific analyses of the design.
Depending on the style, analyses can do such things as check the design for flaws (e.g., determining
whether the types of communicated data are consistent), generate implementations (e.g., by pro-
ducing an executable version of the design), determine implications of the design (e.g., can it be
scheduled on a uniprocessor).

4 How Does Aesop Work?

Aesop adopts a conventional structure for its environments: each environment is organized as a
collection of tools that share data through a persistent object base. (See Figure 3.) The object base
runs as a separate server process and provides typical database facilities: transactions, concurrency
control, persistence, etc. (In our current version, the database is built on top of the Exodus storage
manager from the University of Wisconsin.)

Tools run as separate processes and access the object base through an interface, which (for
historical purposes is called the “Fable Abstract Machine”. It defines operations for creating and
manipulating architectural objects. This interface is defined as a set of object types that are linked
with tools that intend to directly manipulate architectural data. Additionally, tools can register an
interest in specific data objects, and will be notified when they change. This same mechanism also
serves to integrate external tools. For example, in the pipe-filter environment, described above,
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Figure 2: A Snapshot from a Unix-Pipe-Filter Aesop Design Environment

code is generated by announcing a message to a suitably “encapsulated” code generation tool.
Tools such as external editors are handled in the same way.

The user interface to an Aesop environment is centered around a graphical editor and database
browser provided by the Aesop system. This tool can be customized to provide style-specific
displays and views. The current graphical editor is based on Tcl/Tk [Ous94]. While this editor is
provided as a default, it is important to note that it runs as a separate tool, and could be replaced
or augmented with other interface tools.

Given a persistent object base for architectural representation, an important question is what are
the types of objects that can be stored in the database. Our approach to architectural representation
is based on a generic ontology of seven entities: components, connectors, configurations, ports, roles,
representations, and bindings. (See Figure 4.)

The basic elements of architectural description are components, connectors and configurations.
Components represent the loci of computation; connectors represent interactions between compo-
nents; and configurations define topologies of components and connectors. Both components and
configurations have interfaces. A component interface is defined by a set of ports, which determine
the component’s points of interaction with its environment. Connector interfaces are defined as a
set of roles, which identify the participants of the interaction.

Because architectural descriptions can be hierarchical, there must be a way to describe the
“contents” of a component or connector. We refer to such a description as a representation.

For such descriptions there must also be a way to define the correspondence between elements
of the internal configuration and the external interface of the component or connector. A binding
defines this correspondence: each binding identifies an internal port with an external port (or, for
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connectors, an internal role with an external role).!

In the Aesop system this ontology is realized as fixed set of abstract class definitions: each of
the seven types of architectural building block is represented as a class. Operations supported by
these classes include adding and removing ports to components, connecting a connector role to a
component port, establishing a binding between two ports or two roles, adding a new representation
to a component or connector, etc.

In many cases, representation of a component or connector is not architectural, per se. For
example, a component might have a representation that specifies its functionality, or a code module
that describes an implementation. Similarly, a connector might have a representation that specifies
its protocol [AG94]. That information is often best manipulated by external non-architectural tools,
such as compilers and proof checkers, and stored in an external database (such as the file system).
To accommodate such external data, we provide a subtype of representation called external_rep,
which in turn has other subtypes such as text_file_rep, oracle_rep, ast_rep. These references are
usually interpreted by the tools that access them. External representations thus provide external
data integration for Aesop environments.

5 How are Styles Defined?

The generic object model provides the foundation for representing architecture. However, to obtain
a useful environment, that framework must be augmented to support richer notions of architectural
design. In Aesop this is done by specifying a style.

The model that we have adopted for style definition is based on the principle of subtyping:
a style-specific vocabulary of design elements is introduced by providing subtypes of the basic
architectural classes or one of their subtypes. Stylistic constraints are then supported by the
methods of these types.? Additionally, a style can identify a collection of external tools: some
of these may be specifically written to perform architectural analyses, while others are links to
external software development tools.

To see how this scheme is used, let us look at two of the styles supported by the current Aesop
release. For each style we (a) outline the design vocabulary, (b) characterize the nature of the
configuration rules, (c) explain how semantics are encoded, and (d) describe the analyses carried
out by tools in the environment.

5.0.1 A Pipe-Filter Style

A Pipe-Filter style supports system organization based on asynchronous computations connected
by dataflow. The style is defined as follows: Vocabulary. Figure 5 illustrates the type hierarchy we
used to define a Pipe-Filter style. Filteris a subtype of component and pipe a subtype of connector.
Further, ports are now differentiated into input and output ports, while roles are separated into
sources and sinks.

Configuration rules. The Pipe-Filter style constrains the kinds of children and connections
allowed in a system. Besides the constraints on port addition described above, pipes must take
data from ports capable of writing data, and deliver it to ports capable of reading it. Hence, source
roles can only attach to input ports, and sink roles can only attach to output ports.

'Note that bindings are not connectors: connectors define paths of interaction, while bindings identify equivalences
between two interface points. Moreover, connectors always associate a roles with a port, while a binding associates
a port with another port, or a role with another role.

2We are currently developing a “style developer’s tool”, which will allow many aspects of a style to be specified
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Figure 5: Style Definition as Subtyping

Semantic interpretation. In Aesop the semantics of filters is can be specified using a style-
specific filter language. The associated tool provides typechecking and other static analyses. The
semantics of pipes is described formally (but off-line) as in [AG94].

Analyses. In addition to the static semantic checks just outlined, we incorporated a tool for
generating code from filter descriptions. Hence, a pipe-filter description can be used to generate a
running program, with the help of some style-specific tool and an external editor.

5.0.2 A Real-Time Style

An important class of system organization divides computations into tasks communicating by
synchronous and asynchronous messages. Within this general category are systems that must satisfy
real-time scheduling constraints while processing their data. We created an Aesop environment for
an architectural style, developed at the University of North Carolina, that supports the design of
such systems [Jef93].

Underlying the architectural style is a body of theory for analyzing real-time systems. This
theory allows one to determine the (scheduling) feasibility of a system from the processing rates of
its component tasks, rates of inputs from external devices, and shared resource loads. The theory
also leads to heuristics for improving the schedulability of a system that is not feasible. The style
has been applied primarily to real-time, multi-media applications.

Vocabulary. The real-time style defines three subtypes of component: devices, which provide
inputs to the system, processes, which compute over that data, and resources, which support
shared resources such as disks, monitors, etc. Components have associated style-specific information
about rates of processing and computation loads. There are two new connector types, representing
synchronous and asynchronous message passing.

Configuration rules. Configuration rules include: paths through the processing graph must
originate with devices; there must be no dangling ports or connectors; communication with resources
must be synchronous; and devices may not have input ports.

Semantic interpretation. The semantic interpretation of a system is determined by the
underlying semantics for the connectors, plus the code defined for the tasks. The task code is
written in a stylized form, which, like the pipe-filter style, provides syntactic guidance for reading

without any direct coding of methods.



and writing messages to ports. Our system checks that the types of information are consistent
across the connectors. Code generation is supported by tools outside our system.

Analyses. The new style enables two kinds of analyses. First, it is possible to detect whether
there are resource conflicts. These conflicts arise when multiple processes try to access the same
resource in such a way that one or more of the processes will not be able to maintain its processing
rate. The second is an analysis of the scheduling feasibility of the system. This determines whether a
single CPU can support the specific configuration of devices, processes, and resources. In addition
to these analyses, a set of “repair heuristics” are incorporated in a tool that advises the user
about possible ways to improve schedulability and resource usage. These heuristics center around
decreasing load by cost of shared resources and/or reducing the rates of certain processes. Finally,
a style-specific tool allows us to translate our architectural description into one that is readable by
external tools built outside our project for code generation and analysis.

5.1 Other Styles

In addition to the two styles just outlined, the demo version of Aesop supports the following styles.

e Generic Style: This style includes only the generic architectural vocabulary (components,
connectors, etc.). It provides the weakest, but most general form of architectural support.

e Unix-Pipe-Filter Style: This style supports the description of simple pipe-filter systems
specifically for Unix. It augments the simple Pipe-Filter Style with component types repre-
sented by Unix binaries and scripts.

6 How Can I Find Out More?

About Aesop

For an expanded version of this overview the paper [GAO94] contains a more in-depth discussion
of the first version of the Aesop System. (Currently we are distributing the second version, and so
a number of details have changed.)

Aesop was developed as part of the ABLE Project, whose WWW home page is

URL: http://www.cs.cmu.edu/Web/Groups/able/
On-line information on Aesop is also available directly through

URL: http://www.cs.cmu.edu/Web/Groups/able/aesop/

Getting a Demonstration Copy of Aesop

Aesop currently runs on Sun workstations under SunOS. It available for release as a demonstration
system. To obtain a copy send mail to aesop-help@cs.cmu.edu.

Further Reading

In this brief overview we have only scratched the surface of the topics software architecture, ar-
chitectural style, and architectural design environments. There is a growing body of literature on
each of these. For further information a good starting point is the following:
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Software Architecture: Two good introductions to software architecture and some common
architectural styles are [GS93] and [PW92]. An introductory book on software architec-
ture will be appearing soon [SG96]. A number of architectural description languages have
been proposed; each of these elaborates a view of what it means to define software archi-
tectures [SDKT95, LAKT95, AG94]. To get a feeling for what is going on in the area, the
Proceedings of the First International Workshop on Software Architecture is now available.
For other examples of current research in software architecture you might look at the IFFFE
Transactions on Software Engineering, Special Issue on Software Architecture April, 1995.

Architectural Style: There have been several attempts to understand and explicate the nature
of style. Several of these have been formal [AAG93, MQR95]. Others have examined the
general nature of style [Gar95] and ways to represent it [DC95]. As mentioned earlier, the
paper [GAO94] has more details on Aesop itself. A number of “domain-specific” style have
been investigated. One rich source of material on this topic is [Tra94].
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