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Abstract:

ACME is a formal specification language for describing software architectures. In its role as a community-based, generic, software architecture description language (ADL), ACME supports the interchange of software architecture designs between architecture design environments and other tools developed by the EDCS community and elsewhere. ACME provides a structural framework for characterizing architectures, together with annotation facilities for additional ADL-specific information. This scheme permits subsets of ADL tools to share architectural information that is jointly understood, while tolerating the presence of information that falls outside of their common vocabulary.

This document is (will be) a complete specification of ACME’s syntax, semantics, and dynamic models.  For tutorial aids see the web site at: http://www.cs.cmu.edu/~able/acme-web/v3.0/
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Overview of the ACME Project

Project Background and Goals

The software architecture of a system defines its high-level structure, exposing its gross organization as a collection of interacting components. A well-defined architecture allows an engineer to reason about system properties at a high level of abstraction. Typical properties of concern include protocols of interaction, bandwidths and latencies, locations of central data stores, and anticipated dimensions of evolution [Garlan95TSE-intro,GS93,PW92].

Architectural design has always played a strong role in determining the success of complex software-based systems: the choice of an appropriate architecture can lead to a product that satisfies its requirements and is easily modified as new requirements present themselves, while an inappropriate architecture can be disastrous. 

Despite its importance to software systems engineers, the practice of architectural design has been largely ad hoc, informal, and idiosyncratic. As a result, architectural designs are often poorly understood by developers; architectural choices are based more on default than solid engineering principles; architectural designs cannot be analyzed for consistency or completeness; architectural constraints assumed in the initial design are not enforced as a system evolves; and there are virtually no tools to help the architectural designers with their tasks.

In response to these problems a number of researchers in industry and academia have proposed formal notations for representing and analyzing architectural designs. Generically referred to as “Architecture Description Languages” (ADLs), these notations usually provide both a conceptual framework and a concrete syntax for characterizing software architectures. They also typically provide tools for parsing, unparsing, displaying, compiling, analyzing, or simulating architectural descriptions written in their associated language.

Examples of ADLs include Aesop, Adage, Meta-H, C2, Rapide, SADL, UniCon, and Wright [Garlan94Aesop, Coglianese93Adage, Binns93, Medvidovic95FSE4, Luckham95TSE, MQR95TSE, Shaw95Unicon, Allen94ICSE]. Although all of these languages are concerned with architectural design, each provides certain distinctive capabilities: Aesop supports the use of architectural styles; Adage supports the description of architectural frameworks for avionics navigation and guidance; Meta-H provides specific guidance for designers of real-time avionics control software; C2 supports the description of user interface systems using a message-based style; Rapide allows architectural designs to be simulated, and has tools for analyzing the results of those simulations; SADL provides a formal basis for architectural refinement; UniCon has a high-level compiler for architectural designs that support a mixture of heterogeneous component and connector types; and Wright supports the specification and analysis of interactions between architectural components.

The proliferation of ADLs and their supporting toolsets
 is both a blessing and a curse.  On the positive side, different ADLs have explored different facets of the overall architectural design problem. By exposing different features of architectural design and ways to exploit those features, collectively they are helping to deepen our understanding of the roles that architectural description can play in software development. At this early stage in the development of a discipline of software architecture, research exploration of multiple approaches to architectural description is both appropriate and necessary.

On the negative side, however, each ADL typically operates in a stand-alone fashion, making it difficult to combine facilities of one ADL with those of another. Furthermore, there are many common aspects of architectural design support that are reimplemented afresh for each ADL. Examples include graphical tools for visualizing and manipulating architectural structures, facilities for storing architectural designs, and certain domain-independent forms of analysis (such as checking for cycles, or the existence of dangling connections). Such gratuitous redundancy is clearly a waste of resources for individual researchers as well as the community as a whole.  

Finally, for many practitioners, deeper semantic differences between different ADLs are a second-order issue. First and foremost they need a way to describe their architectural structures at all(any way that allows them to record system structures at an appropriate level of abstraction will do.  Currently, however, adopting an existing ADL requires a substantial investment to install the ADL tools and learn to use them effectively, along with a significant “lock-in” to the selected ADL. 

One way to ameliorate these problems would be to provide an interchange language for software architecture. Ideally, such a language would permit the integration of different tools by providing a common form for interchanging architectural descriptions. It could also serve as a basis for generic, ADL-neutral structural analyses, allowing tool writers to develop architectural analysis tools that are compatible with multiple ADL’s. Further, it could clarify the relationship between different ADLs and the analyses that they provide.

ACME is an architecture description language with precisely those goals. It is being developed as a joint effort of the software architecture research community to provide a common intermediate representation for a wide variety of architecture tools.  ACME is based on the premise that there is sufficient commonality in the requirements and capabilities of ADLs that meaningful ADL-independent information can be shared. ACME attempts to embody those commonalities while also allowing the incorporation of ADL-specific information, so that auxiliary information can be retained.  This scheme permits subsets of ADL tools to share whatever architectural information is jointly understood by those tools, while tolerating the presence of information that falls outside their common vocabulary.

In this paper we describe the main features of ACME, its rationale, and technical innovations.  While ACME is still too new to tell whether it will succeed as a community-wide tool for architectural interchange, we believe it is important to expose its language design and philosophy to the broader software engineering community at this stage for feedback and critical discussion.  [RTM -- add a section here describing the idea that some aspects of the language design are very solid and others are initial proposals]
Language Design Goals

The design of a language should reflect its intended purpose.  If, for example, the primary purpose of a language is to support formal analysis, then minimality of features and semantic simplicity are likely top-level concerns. If, on the other hand, the primary purpose of a language is to support a domain-specific design activity (such as for control systems in chemical plants), then closely matching the engineers’ natural design vocabulary is crucial. It is important, therefore, to be clear about the intended purposes of ACME.

The primary purpose of ACME is to provide an interchange format for architectural development tools and environments. [RTM -- Do we really still believe this? ]  As such, the language should make it possible to integrate a broad variety of separately-developed ADL tools by providing an intermediate form for exchanging architectural information.

· In addition to its primary goal of interchange, ACME was designed with the following secondary goals in mind.  These goals are listed in decreasing order of importance.

· To provide a representational scheme that will permit the development of new tools for analyzing and visualizing architectural structures. The language should provide an architectural vocabulary that makes it straightforward for tool writers to map their intuitions about architectural structures into the forms expressible in the language.

· To provide a representational scheme that will permit the development of new tools for analyzing and visualizing architectural structures. The language should provide an architectural vocabulary that makes it straightforward for tool writers to map their intuitions about architectural structures into the forms expressible in the language.

· To provide a foundation for developing new, possibly domain-specific, ADLs. The language should not preempt the ability to build on its core capabilities with additional constructs and semantics.

· To serve as a vehicle for creating conventions and standards for architectural information. The language should make it easy for groups of ADL developers to standardize aspects of architectural specification that are not explicitly included in ACME.

· To provide expressive descriptions that are easy for humans to read and write. The language should allow compact, direct expression of architectural structures and idioms.

While these goals are complementary, taken individually they lead to quite different choices in design. In particular, the primary goal of supporting interchange of software architecture descriptions between different ADLs argues for a simple, easy-to-parse language, while the secondary goal of ease of reading and writing for humans argues for expressive language features. In the remainder of this paper we will see how ACME attempts to achieve the main goal of architectural description interchange while accommodating the secondary goals.

Reconciling Standardization and Diversity

· The existence of multiple languages arises in numerous other domains including document formatting, programming, graphical encodings, and hypertext. As with ADLs, such diversity creates problems for users of these languages.  A number of approaches have been used to cope with problems of language heterogeneity.

· Pick one: Let the community or marketplace decide on a single dominant language, and coerce future tool development to occur around that language.  

· Design a “union” language: Design a language that incorporates all of the features of all of the languages, and thereby allow users to express anything that they could have expressed in any of the individual languages. 

· Design an “intersection” language: Pick a least common denominator language that includes the aspects of architectural description that are shared by all ADLs.

· Give up: Admit that language diversity is simply too large to try to find any coordinated solution at present. This usually results in a large number of pairwise (or sometimes n-way) conversions to handle specific instances of language interoperability.

With respect to ADLs, none of the techniques is particularly appealing. As we noted earlier, the first alternative is inappropriate. Given the relative immaturity of our understanding about architectural modelling and analysis, it would be foolhardy to legislate a single fixed language at this time. Moreover, each of the existing languages can do some things well, but may be weak in other respects.  

The second alternative---a union language---is likewise unrealistic. Not only are the capabilities of different ADLs significantly different at a semantic level (hence making language synthesis difficult), but it is not yet clear what kinds of capabilities one would ideally want in a such a language.

The third alternative---an intersection language---is not likely to be successful either. The range of constructs provided by different ADLs is sufficiently broad that it would be difficult to find a single semantic core to which the capabilities could be translated.

This would suggest that the only alternative is the fourth: give up, and live with a proliferation of specialized inter-ADL solutions.  However, all is not lost. To understand why, consider the following two observations about architecture description languages.

First, an examination of existing ADLs reveals that there is, in fact, considerable agreement about the role of structure in architectural description. One of the results of the First International Workshop on Architectures for Software Systems [Garlan95ArchWorkshop] was that virtually all ADLs take as their starting point the need to express an architectural design as a hierarchical collection of interacting components. On top of this structural skeleton different ADLs then add various kinds of additional information, such as run-time semantics, code fragments, protocols of interaction, design rationale, resource consumption, topological invariants, and processor allocations. In some cases this additional information could in principle be understood and manipulated by tools for some other ADL. (For example several tools could share a common interpretation of the visual information for displaying the architecture.)

Second, although there is little beyond the use of architectural structure about which all ADLs agree, significant subsets of existing ADLs do agree on certain kinds of extra-structural information. For example, both Rapide and Wright represent interactions in terms of events.

These two observations suggest that a plausible path towards integration of ADL facilities is to design a language that centers on the shared structural core of architectural description, but that also permits the inclusion of other aspects of architectural description that may be relevant to one or more ADL. In this way all ADLs can communicate structural aspects of an architecture in a uniform manner, while permitting variability about other aspects of an architectural design. To the extent that subsets of ADL tools can agree on those additional aspects, they can also take advantage of that shared information.  Over time, one can well imagine that as the software architecture community develops a better understanding of the value of certain classes of architectural information, representation conventions will emerge that can be used by the interchange language.

This is the essence of ACME. The language provides a fixed vocabulary (or ontology) for representing architectural structure. Additionally it provides an open semantic framework in which architectural structures can be annotated with ADL-specific properties. In this way ACME achieves the benefits of both an intersection and a union language: the shared structural core represents an intersection of the expressive capabilities of most ADLs, while the use of annotations accommodates the union of ADL-specific concerns.
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Specifying Architectural Structure

Overview of the Structural Instance Language

Motivations for the ACME software architecture description language are presented in [GMW95]. ACME is a generic architecture description language (ADL) designed to be readily extensible for use as a platform for experimenting with architectural description language design.

ACME uses the following seven constructs to specify a system’s architectural structure – components, connectors, ports, roles, systems, representations, and properties.  Each of these constructs is described in detail below.

Components and Ports

Components represent the primary computational elements and data stores of a system.  Intuitively, they correspond to the boxes in box-and-line descriptions of software architectures. Typical examples of components include such things as clients, servers, filters, objects, blackboards, and databases.

Components’ interfaces are defined by a set of ports. Each port identifies a point of interaction between the component and its environment. A component may provide multiple interfaces by using different types of ports. A port can represent an interface as simple as a single procedure signature, or more complex interfaces, such as a collection of procedure calls that must be invoked in certain specified orders, or an event multi-cast interface point.

Connectors and Roles

Connectors represent and describe interactions among components.  Computationally speaking, connectors mediate the communication and coordination activities among components. Informally they provide the ``glue’’ for architectural designs, and intuitively, they correspond to the lines in box-and-line descriptions. Examples include simple forms of interaction, such as pipes, procedure call, and event broadcast. But connectors may also represent more complex interactions, such as a client-server protocol or a SQL link between a database and an application.  

Like components, connectors also have explicitly specifiable interfaces that are defined by a set of roles. Each role of a connector defines a participant of the interaction represented by the connector. Binary connectors have two roles such as the caller and callee roles of an RPC connector, the reading and writing roles of a pipe, or the sender and receiver roles of a message passing connector.  Other kinds of connectors may have more than two roles. For example, an event broadcast connector might have a single event-announcer role and an arbitrary number of event-receiver roles.

Systems

Systems represent configurations of components and connectors.   A system includes (among other things) a set of components, a set of connectors, and a set of attachments that describe the topology of the system.  An attachment describes the relationship between a connector and a component.  Specifically, it associates a port interface on a component with a role interface on a connector.

Example

As a simple illustrative example, example 1 describes a trivial architectural specification of a system with two components – a client and a server -- connected by an RPC connector.  The client component is declared to have a single send-request port, and the server has a single receive-request port. The connector has two roles designated caller and callee. The topology of this system is declared by the specified set of attachments.

System simple_cs = {


Component client = { Port send-request } 


Component server = { Port receive-request }


Connector rpc = { roles {caller, callee} }


Attachments {



client.send-request to rpc.caller ;



server.receive-request to rpc.callee }

}

Example 1: Simple client-server specification in ACME

Representations

Complex and sophisticated architectural designs generally require hierarchical decomposition.  Recognizing this, ACME supports hierarchical description of architectures.  Specifically, any component or connector can be represented by one or more detailed, lower-level descriptions. Each such description is termed a representation. The use of multiple representations allows ACME to encode multiple views of architectural entities (although there is nothing built into ACME that supports resolution of inter-view correspondences). It also supports the description of encapsulation boundaries, as well as multiple refinement levels.

Properties

There is clearly more of interest in an architectural description of a system than the topology of its components and connectors.  The property construct in ACME provides a mechanism for annotating designs and design elements with detailed, generally non-structural, information.  All of the architectural entities described to this point (components, connectors, ports, roles, systems, and representations) can be annotated with properties.

In the ACME language, a property is represented as a name-value pair.  Optionally, a type annotation describing the property’s type may be specified.  The ACME type system is described in detail in section 3.

Examples

The following example describes an extension to the simple client-server system given in example 1.  This example has been annotated with properties that describe characteristics of the various structural elements in the system design.

System simple_cs = {

  Component client = { 

        Port send-request;

        Properties { request-rate : float = 17.0;

                     source-code : external-file = 










"CODE-LIB/client.c" }}

  Component server = { 

        Port receive-request;

        Properties { idempotence : boolean = true;

                     max-concurrent-clients : integer = 1;

                     source-code : external = 










"CODE-LIB/server.c" }}

  Connector rpc  = { 

        Roles {caller, callee}

        Properties { synchronous : boolean = true;

                     max-roles : integer = 2;

                     protocol : Wright = "..." }}

  Attachments {

     client.send-request to rpc.caller ;

     server.receive-request to rpc.callee }

}

                    Example 2: Simple-client-server system with properties
Abstract syntax for ACME structural language

The following informal specification describes the abstract syntax for the untyped ACME structural description language.  A full detailed description of the language syntax is included in appendix A.

SYSTEM 


::= 
System NAME = { ENTITY-DECL* } ;

ENTITY-DECL 

::=

COMPONENT-DECL 
 






| CONNECTOR-DECL 
 






| PORT-DECL 
 






| ROLE-DECL 
 






| PROPERTY-DECL 







| REP-DECL
 






| ATTACHMENTS-DECL

GENERIC-DECL

::=  
PROPERTY-DECL | REP-DECL;

COMPONENT-DECL
::=

Component NAME = { 








(PORT-DECL | GENERIC-DECL)* } ;
CONNECTOR-DECL
::=

Connector NAME = { 








(ROLE-DECL | GENERIC-DECL)* } ;
PORT-DECL


::=   Port NAME = { GENERIC-DECL* } ;
ROLE-DECL


::=   Role NAME = { GENERIC-DECL* } ;
ATTACHMENT-DECL
::=

Attachments { (PORT-NAME to ROLE-NAME)* } ;
REP-DECL


::= 
Representation NAME = SYSTEM 







  Bindings = { (NAME to NAME)* } ;

PROPERTY-DECL
::= 
Property NAME [ : TYPE ] = VALUE ;


[NB: This bnf is both too simple to be truthful and too complex to be particularly interesting.  Adjust it to be either more illustrative or more accurate.]
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Types and Architectural Styles

Capturing Design Expertise with ACME

· Overview of the ACME model for capturing abstract design expertise

· Types

· Architectural Styles

Capturing Design Expertise

[There are three potential ways to express design expertise: predicates that must be proven by the user to hold (maintained constraints), predicates that are allegedly derivable by an oracle theorem prover (derived constraints), and predicates that the user expects a tool to check and warn of violations of (enforced constraints).  Wherever one can use one, one can use another.  The important issues involve the context of evaluation of design rules and what scope their variables and type restrictions themselves are evaluated in.]

Types

The ACME type system is an extension to ACME’s type system that better supports the expression of complex type constraints.  Type expressions can be thought of as predicates against which design elements can be checked.  A type definition therefore defines a set of design elements that satisfy a predicate.  Any element that satisfies type T’s predicate is said to satisfy type T.  

This approach should allow the design rules used to constrain and specify the configuration of design elements to use the same basic structure and semantics as the design rules used to constrain the structure and properties of individual design element types.  [NB: is this last claim really true?]
Requirements and constraints:

The ACME type system should have the following capabilities:

· The ability to define the constraints that a type imposes on its instances.

· The ability to check that a given element does (or does not) satisfy the constraints imposed by a given type.

· The quantification mechanisms, predicate language, scoping rules, and binding mechanism for type specifications should be as similar as possible to the comparable mechanisms used elsewhere in the language.

Design Element Types:

Declaring a design element type

The specification of a design vocabulary element type consists of two parts – required structure, possibly with default values, and a set of constraints (predicates) that limit how the values and structure of the element can change without violating the type specification.  

The basic syntax for declaring a design element type is:

<Category> Type <TypeName> = {


<Sequence of required structure and values>


Maintain <Set of constraints to maintain>


[Derive <Set of constraints to derive>]

[Enforce <Set of constraints to decide automatically>]
}

In the informal syntax given above, <Category> can be any of the literals Component, Connector, Port, or Role. <TypeName> specifies a valid identifier.  The <sequence of required structures and values> consists of port or role declarations (for components and connectors respectively) and/or properties. The structural elements declared in the required structure section of a type declaration define the minimal structure that all instances must have to satisfy the type <TypeName>.

The set of constraints in the “maintain” section are design rule predicates that must all hold on any element that claims to be of that type; generally, the implementer will have to convince him/herself that the rules apply in the implementation.  In some circumstances, one could imagine that the rules could be proven to hold because other maintained rules hold.  Design predicates will be discussed in greater detail later, but it is important to note that the scope of the predicates is limited to the type in which they are embedded.

[Open Issue: The set of constraints in the “derive” section are also predicates that must all hold on any element that claims to be of that type; however, these predicated must be logical consequences of the implicit structural rules and the maintained rules.  One would never need to specify derived rules.  Their purpose is to indicate a separation of concerns between specification time and implementation time. 

Open issue: should we also allow Enforce here, to mean, we firmly expect that a tool can decide automatically whether this is the case, and report failures to the user?

These issues occur throughout when the word “maintain” is used.]

The following type specification declares constraints that must be satisfied by all instances of the type in the form of required minimal structure and predicates that must be maintained.  Keywords are indicated in boldface type, comments in grayed-text.

Component Type Client = {

  // Declare the minimal structure that must exist.

  // In this case, it says that we must have a port called

  // request, and that port must have the protocol

  // rpc-client. 
  Port Request = { Property protocol = rpc-client }; 

  // The next declaration says that the client must have a

  // property of type "float" called "request-rate."  It also

  // provides a default value for that property, which can be

  // changed when an instance of this type is created.

  Property request-rate : float ;

  // Now specify the other predicates that all elements that claim

  // to satisfy this type must possess.

  Maintain {

    // all ports must support the rpc-client protocol

    Forall p in Ports(self) p.protocol = rpc-client;

    // there may be no more than 5 ports on a client

    Size(Ports) <= 5;

    // The request rate must be a non-negative value less than 100

    request-rate >= 0;

    request-rate < 100;

  }

}

Example 3.1: Declaring component type “Client”


Creating a typed instance

Instances of the four basic architectural entities – components, connectors, ports, and roles, can be created with the following (informal) syntax:

<Category>  <InstanceName>  [ : <TypeName> ]  =  <Value> ;

where 

  <value> ::= { <sequence of property and structural specs.> }




| new <TypeName>




| new <TypeName> extended with { 





 <seq. of property and structural specs.> }

Specifying an explicit type for an instance is optional.  If no type is explicitly declared for an individual instance, then the type of that instance defaults to <Category>.   Consider the following example of a component declared without an explicit type declaration:

Component C = { Port input; } ;

In this instance, the value of component C is  “{ Port input }” which satisfies the constraints of the Component type, so this instance declaration is valid.

When an instance is explicitly typed, as in the following example, the value on the right hand side of the “=” token must satisfy the predicate defined by the declared type.

Component C : Client = new Client;

In this example, a component C is declared to satisfy type Client. The value of C is defined using the ACME new operator.  The “new <TypeName>” expression creates a value expression consisting of the minimal structure declared in the declaration of <TypeName>.

The previous example would create a component with the following structure:

Component C : Client = {


Port Request = { Property protocol = rpc-client }

Property
request-rate : float;

}

The “Client” type specification imposes the following structural and “maintains” constraints on component C:

Structural constraints:

· A Client instance must have a port called request, with a property called “protocol.”  The protocol property must have a value of “rpc-client.”

· A Client instance must have a property called request-rate of type “float.” 

Maintain constraints:

· All ports of a client must have a property named protocol, which has a value of “rpc-client.”

· There may be no more than 5 ports on a client.

· The request-rate property of a Client component must have a value greater than 0 and less than 100.

It is also possible to associate values with an element created from a given type using the “extended with” construct.  The following example illustrates a client with an additional port and a new property.

Component C': Client = new Client extended with {


Port ExtraPort = {
Property protocol = rpc-client;






Property primary-port = true};


Property request-rate : float = 5.0;

}

This declaration would result in the creation of a new component “C’” with the following structure:

Component C’ : Client = {


Port Request = { Property protocol = rpc-client } ;


Port ExtraPort = {
Property protocol = rpc-client};





  
Property primary-port = true;};


Property request-rate : float = 5.0;

}

In this example, the constructor was extended with new property values that either over-rode the original structure and value, or added new structure and values.  The value that is assigned to C’ in this case is the union of the structure declared with the “extended with {... }” clause and the structure that is created with the “new <TypeName>” constructor.  Where the same property name appears in the ”extended with {...}“ clause and the type declaration, the value of that property is the value assigned in the “extended with” clause.  If two property declarations share the same name but different types this is a type error, as the property namespace permits only one type and one value per property name (within a scope).  The union operation is done recursively on all substructure declared in either the type constructor or the extended with clause.

Semantics

A type specification defines the minimal set of structure and property fields that elements of a given type must have, along with a set of predicates that need to be maintained (evaluate to true) for all instances of the type.

TheHHE ACME type semantics are outlined in [GWM95].  Every type T can be converted to a logical predicate function Ft that takes a single element E as an argument.  If the function Ft(E) evaluates to true for element E, then element E satisfies type T (written E:T).

Detailed descriptions of the semantics of the required structure and “maintain” predicates sections of a type declaration follow:

Required Structure: 

Declarations in the required structure section of type T have the following semantics:

Declaration Type
Example
Meaning

Structural element C with no type or value declaration 
Port C;
Forall E st E satisfies type T 
(written E:T), E has the port, role or representation named C as a child.

Structural element C with a type but no value declaration
Port C : t’;
Forall E st E:T, E has the port, role, or representation named C as a child, further, C satisfies t’  (C:t’)

Structural element C with a type and some value declaration
Port C : t’ = {
  Property j:t’’ =
    bar};
Forall E st E:T, E has the port, role, or representation named C as a child, further, C : t’ and C has the property j:t’’ with a value of bar.

Property named P with no type or value given
Property P;
Forall E st E:T, E has the property P of type “Property.”

Property named P with a type t’ specified, but no value given
Property P : t’;
Forall E st E:T, E has the property P of type t’.  P’s value is unconstrained beyond the requirement that the value of P satisfy type t’.

Property named P with a type t’ specified and a value v assigned directly to the property
Property P:t’ = v;
Forall E st E:T, E has the property P of type t’.  P’s value must be v for all instances E of type T.  This statement declares a constant valued property for the type.


Table 3.1 Structural Specification Semantics


“Maintain” Predicates:

The “Maintain” section of a type declaration for type T consists of a sequence of predicates that must hold on all instances of type T.  The maintain section uses a subset of the predicate language specified in chapter 4.  The primary restriction that this subset of the language imposes is that the scope of names (and entities) visible from within a predicate in the maintains section is limited to those entities (properties, ports, roles, etc.) defined in the type definition or the definition of any of its supertypes.  In order to improve modularity, the type predicates are limited to operating over values of an instance of the type.  The design rule mechanism described later in this chapter supports constraints spanning multiple types and instances.

Details of the scoping constraints for type specifications follow:

· Scope of names within a type declaration: Names are lexically (statically) scoped and the namespace for a type covers both the structural and “maintains” sections of the type specification.  No two properties and/or structural elements of a type declaration may share names.  Structural elements (e.g. ports, roles, and representations) share the name space with properties.  As a result, names used in the structure section may be unambiguously dereferenced in the “maintains” section, allowing the unambiguous use of dot notation to refer to substructure and properties, while reducing the complexity of dereferencing names.

· Scope of predicates: Predicates declared within a type specification may reference properties or structural elements named within the structural specification of the type.  They may not refer to anything outside of the scope of the element that is being typed.  A result of this strict limitation on referencing entities outside of the element should support better modularity and reuse of type specifications.  Rules limiting the interactions of and relationships between design elements should be expressed with style-wide or system-wide design rules (discussed later in this chapter) instead of type specifications.

The keyword “self” is used to refer to the instance of an element that is being type-checked.  Unless otherwise qualified, property names in the “maintains” section have an implicit “self.” preceding them, and refer to the instance being checked.

Scope of type declarations

The scope of a type declaration can be global, style-specific, or system-specific.  Type names are lexically scoped.  Types declared outside of any style or system declarations have global scope.  Types with global scope are visible within all systems in that global scope.  Types declared within a system declaration are visible throughout the enclosing system and all of that system’s substructure.  A type defined within a style specification is visible within all systems that are of that style.

Subtypes

ACME supports a strict form of subtyping that ensures substitutability between subtypes and supertypes.  That is, if type T’ is a subtype of type T (written T’ ( T), then an object that satisfies T’ may be used wherever an object of type T is required.  The following informal syntax describes the construct that ACME will use to support strict subclassing:

<Category> Type <SubTypeName> extends <SuperTypeName> with {


<Sequence of required structure and values>


Maintain <Set of constraints to maintain>

}

The semantics of this construct are quite straightforward.  The new (sub)type consists of the union of the structural requirements of both the super-type and the new declarations, and the union of the maintain section of both the supertype and the new maintain declarations.  All instances of the subtype are also instances of the supertype, and maintain all of the constraints of both the supertype and the items listed in the “extends ... with {...}” section.

Consider the following example:

Component Type BlockingClient extends Client with {


Port BlockingRequest = {Property protocol = rpc-client};


Property blocking : boolean = true;


Property timeout-sec : float ;


Maintain { 



timeout-sec < 60.0; 


}

}

An instance of a BlockingClient type component would then have all of the structure and rules to maintain that a Client type component would have, plus the additional properties and rules given in this specification.  The previous type declaration is equivalent to declaring the BlockingClient type without subclassing as done below (using the Client type definition from the previous section):

Component Type BlockingClient = {


Port Request = {Property protocol = rpc-client}; 


Port BlockingRequest = {Property protocol = rpc-client};


Property request-rate : number;


Property blocking : boolean = true;


Maintain {



Forall p in Ports(self) ( p.protocol = rpc-client;



Size(Ports) <= 5;



request-rate >= 0;



request-rate < 100;



timeout-sec < 60.0; 


}

}

Property types

The discussion of the type system to this point has described the type system used for design vocabulary elements.  Properties of these design elements can also be typed.  The type system used for element properties uses a syntax and semantics similar to the design element type system’s, but the constraints that can be imposed on properties are much simpler than those that can be imposed on design elements.  

A property of a design element is simply a scoped name with which a value can be associated.  The purpose of a property type is to define the range and structure of values that can be applied to the named property.  

A property type can be either an atomic type, an enumerated type, a compound type (set, sequence or record), or a type renaming. 

Atomic property types.  An atomic property type is one of ACME’s basic built in type primitives – int, float, boolean, char, string, or any.  All property values satisfy the type any and any value can be assigned to a property of type “any.”  Atomic types do not need to be defined by the user, as they are built into the ACME language. An example of two properties declared to have atomic types follows:

Property rate : float = 7.5;

Property purpose-description : string = “This component...”;

The declaration of a type can, but does not need to, be separated from the use of that type in specific properties.  New types are declared with the following (informal) syntax:

Property Type <TypeName> = <TypeStructure>;

where <TypeName> is an identifier to be associated with <TypeStructure>.  <TypeStructure> defines the structure of values of the type.  <TypeStructure> can define an enumerated type or a compound type, or rename an existing type.

Instances of properties are declared using the following syntax.

Property <PropertyName> [ : <TypeName> ] = <PropertyValue>;

The property named <PropertyName> is associated with the element in whose scope it is declared.  The type of <PropertyName> may be explicitly specified using the optional 
“: <Typename>” notation.  Alternatively, the type may be left unspecified, in which case the type of the property becomes “any.”

Enumerated property types.  An enumerated type defines a set of valid values that a property of that type may hold.  The following example defines a type “color” that can have any of the values white, red, blue, green, or black.

Property Type color = enum {white, red, blue, green, black};

A compound property type is a type that provides a property with structure to store multiple values.  Compound types are either sets, sequences, or records of other types.  Compound typed properties may either use named compound types or explicitly create a new type in the type signature of the property.  Alternatively, if a property does not declare a type but uses the syntax for specifying the value as a record, set, or sequence, then ACME will use simple type inferencing to store the value appropriately.

Examples of compound type declarations and usage follow:

Records. A record type contains multiple, optionally typed, fields that store distinct but related values.  Values of the fields of a record property can be referenced by the name of the field.

The syntax for record type declarations is:

Property Type <TypeName> = Record “[” <FieldDefs>* “]”;

where <FieldDefs> are a sequence of typed field names.  Examples of record type declarations and the use of record types in property declarations follow:

Property Type visualization = Record [ x,y : int; 










 fill-col : color];

Property implicit-rec = [ a:int = 19; s:string = “someval” ];
Property point : Record [x,y : int] = [x = 4; y = 10];

Property vis : visualization =  [x = 10; y = 20; 








fill-col = blue];

Sequences.  A sequence type is an ordered list of elements, separated by commas. A sequence instance may have repeated values.  A sequence type may be homogeneous, requiring all of its elements to be of a specific type, or heterogeneous, allowing it’s elements to be of any type.  The following syntax is used for specifying a sequence type:

Property Type <TypeName> = Sequence < <TypeName> > ;

where  the <TypeName> (enclosed in angle brackets, e.g. <int>) is optional.

Examples of sequence property type and sequence property instance declarations follow:

Property Type any-list = Sequence;

Property Type vis-list = Sequence <visualization>;

Property implicit-seq = <4.2, 3.752, 1.04, 10934.52>;
Property int-seq : Sequence<int> = <1, 2, 3, 4, 2, 3, 4>;

Property some-vals : any-list = <1, 2, 5.0, 2, blue, “car”>;
Property comp-vis : vis-list = 

 

< [x = 10; y = 20; fill-col = black ],



  [x = 50; y = 300; fill-col = white ] >;

Sets.  A set type defines an unordered set of elements, separated by commas, with no duplicate values.  Like a sequence type, a set type may be homogeneous, requiring all of its elements to be of a specific type, or heterogeneous, allowing it’s elements to be of any type.  The following syntax is used for specifying a set type:

Property Type <TypeName> = Set { <TypeName> } ;

where  the <TypeName> (enclosed in curly brackets, e.g. {int}) is optional.

The following examples illustrate the declaration of set property types and their use:

Property Type any-val-set = Set;

Property Type color-set = Set {color};

Property implicit-set = {1, 2, “buckle”, “my”, “shoe”};
Property set-o-vals : any-val-set = {1, 2, 5.8, “no-repeats”};

Property set-o-colors : color-set = {blue, red, green, white};

Type renaming.  A renamed  property type allows users to separate the logical meaning of a type from its underlying storage structure. A renamed type is comparable to a “typedef” in the C language. For example, both a URL and a Java method declaration can be specified as properties of a component using a string.  The semantics that tools should use to interpret the content of those two strings, however, are significantly different.  The following example shows how these types could be renamed to be more descriptive:

Property Type java-method = string;

Property Type url = string;

Property some-java-method : java-method = “foo(x,y:int){...}”;

Property some-url : url = “http://www.codeland.com”;

Architectural Styles

ACME’s architectural style construct provides a coherent collection of related vocabulary and constraints for sets of elements making up a system.

Syntax and semantics of a style declaration

An ACME architectural style specification consists of a set of vocabulary type definitions and an optional set of  constraints that must hold among the elements declared to conform to the style.  Either of these sets may be empty. The informal syntax for defining a style is:

Style <style-name> = {<style-element>* 


Maintain { predicates }} ;

   or

Style <style-name> extends <super-style-name>+


with { <style-element>* 



Maintain { predicates } } ;

<style-element> ::= <type specification>;

The syntax and semantics for declaring an individual type have been described earlier in the chapter.  A style is effectively just a named collection (or a package) of such constructs, along with constraints relating their occurrence in conjunction with one another.

System instances may make use of the design expertise packaged in a style by declaring that the system satisfies a style.  The syntax for declaring that a system instance satisfies a style is:

System sample-system : sample-style = { <system-decl-body> } ;

When a system instance declares that it is designed in a specific style the names of all of the types declared in that style become visible within the system instance.  Further, all of the maintained predicates contained in the style definition are instantiated in the body of the system instance.  That is, the binding quantifications in the style definition take effect in the scope of the system instance, binding the concrete elements in the system instance that match the quantification predicates to the appropriate abstract design rules of the style.

 Declaring that a system is designed in a specific style indicates that the constraints specified by that style in the form of  Boolean properties must be maintained in the system instance.  Failure to maintain these constraints invalidates the system specification.  

The set of type specifications given in a style declaration provides a set of vocabulary types that can be used within a system specification done in that style.  The system definition is limited to using only those types provided by the style.

[Controversial limitation.]

Name visibility within a style.  In order to insure that styles can be used as independent, modular packages, types defined within a style and constraints maintained within the style have limited visibility to names defined outside of the scope of the style definition. Type definitions within a style may only be subclasses of types defined in a superstyle or an explicitly included library.  Likewise, ports and roles defined within a type definition may only claim to satisfy types defined within the style itself or in an explicitly included library.  

Substyles

A style can extend an existing style to make use of the types defined in the existing style.  The following example illustrates such an extension:

Style super = { ... }; 

Style sub extends super with { 


Component type new-component = { ... };

};

This example creates a new style called sub that extends an existing style called super.  The new style sub will consist of the union of the types, abstract design rules, and binding statements defined in both the style “super” and those defined directly in the definition of style “sub.”  The new style “sub” is a substyle of the style “super.”  Because the substyling operation only allows additional types to be added to a style, any system that satisfies the constraints of sub will also satisfy the constraints of super.  

A substyle may not redefine types or violate constraints of the superstyle.  It may, however, create new types that extend the types defined in a superstyle and introduce new constraints to be maintained.

Multiple inheritance is supported in creating substyles.  To create a substyle of multiple superstyles, a style definer simply adds multiple superstyles to the “extends with” statement, as the example below indicates.

Style sub extends super-1, super-2, super-3 with { 


Component type new-component = { ... };


Maintain { predicates }

};

The semantics for using multiple superstyles are effectively the same as using a single superstyle. The new style “sub” will consist of the union of the types, abstract design rules, and binding statements defined in all of its “style-n” superstyles and those defined directly in the definition of style “sub.”

One of the primary problems associated with creating a substyle of multiple superstyles is the possibility of name conflicts in the superstyles.  If a single name is used in multiple superstyles of a single substyle, this will generate an error in the processing of the substyle definition. 

Systems instances can use multiple styles

A system can use multiple styles.  If a system specifies that it is using multiple styles it also claims to satisfy the constraints of all of the styles used.  The syntax for declaring that a system uses (satisfies) multiple styles is:

System sample-sys : style-1, style-2, ..., style-n = {...} ;

The semantics of a such a declaration say that the vocabulary of styles 1 through n are all available for use in the system, abstract design rules from styles 1 to n are available for binding within the sample, and all of the quantified design rule bindings from each style 1 to n are included in system sample-sys.  As a result, sample-sys needs to satisfy all of the design rules that are quantified style-wide for each style.  The style constraints of system sample-sys are the union of the vocabulary and quantified design rules of styles 1 to n.

Using multiple styles in a single system can cause various kinds of conflicts. The two primary kinds of conflicts are name conflicts and conceptual conflicts where the styles are fundamentally incompatible.  

Naming conflicts are fairly easy to deal with.  The use of an ambiguous name within a system specification is an error.  Ambiguous naming can be avoided by qualifying types and design rules specified within style definitions with the name of the desired style from which the type or design rule should be used.  For example:

Style generic-cs = { ... Component Type client = {...} ... };

Style special-cs = { ... Component Type client = {...} ... };

System sample : generic-cs, special-cs = {

  Component generic-client : generic-cs.client = {...};

  Component special-client : special-cs.client = {...};

  Maintain special-client.no-peers(...);

}
In this example, the client type is defined in both the generic-cs style and the special-cs style.  Each of the *.client type components in the system sample explicitly specify which of the client types (special-cs.client or generic-cs.client) they claim to satisfy.  The components in system sample cannot simply claim to be of type client, as the client type is provided by multiple styles used by the system, making the identifier “client” ambiguous.  Type names that appear in only one style do not need to be qualified in a system declaration.   Qualification with a style name is required only where the lack of a qualifying identifier leads to ambiguity. 

Style designers do not need to explicitly qualify references that are defined within the same style specification.  All references to types or constraints from within a style definition are implicitly qualified and, in fact, only able to, refer to types and constraints of the same style.  

Fundamental conceptual mismatch.  The second important type of conflict that can occur when using multiple styles within a single system are fundamental conceptual mismatches.  These conflicts occur because the styles being used are fundamentally incompatible with each other.  An example of such a conflict is a system that uses both a pipe-filter style that requires all components to be filters and all connectors pipes and a client-server style that requires all components to be clients or servers and all connectors to be remote-procedure-calls. Unless the required types are (accidentally) compatible with each other (e.g. instances of Filters satisfy the constraints of Client) it is unlikely that any valid system instances can be created that satisfy the constraints of both styles.

It is up to ACME users to detect and avoid such conceptual conflicts. Using multiple styles in a single system instance expands the vocabulary available for use in that system but generally constrains the design of the system further by introducing additional design rules that must be obeyed. As the previous example indicates, it is possible to overly constrain a design by using multiple styles. Tools can be developed to detect obvious style incompatibilities, but they will not alleviate users of the need to be very careful when using multiple styles for a single system instance.

Example of a complete style definition

Style naive-client-server-style = {

  // define the style’s vocabulary  

  Component Type naiveClientT = 

      Port rpc-caller;

  }

  Component Type naiveServerT = {

      Port rpc-callee;

      Property max-concurrent-requests : int;


 Maintain max-concurrent-requests <= 5;

  }

  Connector Type rpcT = {

     Roles {caller, callee}

     Maintain size(roles(self)) = 2;

  }

  // define the design rules for this style. 

  // limit the vocabulary types used in this style to 

  // naive-clients, naive-servers and rpc’s.

  Define legal-cs-comps(comp : Component) = 


naiveServerT(comp) OR naiveClientT(comp) ;

  Define legal-cs-conns(conn : Connector) = 

     rpcT(conn) ;

  // specify topological attachment constraints.

  // only allow client-server connections. 

  // client-client and server-server connections are invalid.

  Define no-peer-connections(c1,c2:Component) =

    { Connected(c1,c2) => 



~(naiveClientT(c1) AND naiveClientT(c2))



AND ~(naiveServerT(c1) and naiveServerT(c2));  };

  // declare which rules will be enforced, and do the

  // quantification over all elements in the style.

  Maintain Forall comp | component(comp) (

legal-cs-comps(comp);

  Maintain Forall conn | connector(conn) (

legal-cs-conns(conn);

  Maintain Forall c1, c2 | component(c1) and component(c2) (

no-peer-connections(c1,c2);

}  // end naive-client-server-style definition.

We can now extend this example style to create a substyle that introduces a new subtype of server called a database server and an additional constraint.  All of the structure and constraints of the previous style definition will be included in the substyle.  As a result any system developed in the substyle should also satisfy all of the constraints of the superstyle and work with any tools that are designed to work with the superstyle.

Style db-cs-style extends naive-client-server-style with {

  // define the substyle’s new database server component type

  Component Type databaseServerT extends naiveServerT with { 

  
 // By redefining rpc-callee, this type definition adds a 
      // new property to the type’s port rpc-callee.  It also


 // adds a new constraint to maintain.

      Port rpc-callee = {

  

Property query-language : protocol 










<< default = RPC>> ; }

 
 Property primary-server : boolean << default = False >>; 

   
 Maintain rpc-callee.query-language = RPC;

  }

  // I would like to add a predicate here that says “There 

  // must be exactly one server in a system that has the 

  // primary-server property set to “true.”  I don’t know

  // how to do that with the current predicate language.
}
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The ACME Predicate Language

Structural overview of the predicate language

Predicate constructs

The following primitive predicates are built into the basic ACME language.  Compound predicates may be formed by composing predicates with the supported operators, or user-specified extensions to the set of "primitive" or built-in predicates.

The set of built-in primitive predicates provided in ACME include:

Category predicates 

Component(x) 
True if x is a component.

Connector(x) 
True if x is a connector.

Port(x) 
True if x is a port.

Role(x) 
True if x is a role.

System(x) 
True if x is a system.

Property(x) 
True if x is a property.

Representation(x) 
True if x is a representation. 

Types as predicates

<Type>(x) 
For every type <Type> declared in a style, system, or global scope, there is a new predicate created named <Type>(x) that takes any object as an argument.  The predicate determines whether x satisfies all of the constraints imposed by <Type>.  <Type>(x)is true only if x does satisfy all of these constraints 


Example:

The following ACME type declarations :






Component Type Filter = {...};





Connector Type Pipe = {...};



create the two new predicates Filter(x:any) and 
Pipe(x:any), each of which true iff x satisfies the 

constraints imposed by the appropriate type declaration.

In addition, every type predicate implies the supertype predicates of all its supertypes, e.g. Filter(x) => Component(x).

Primitive Topological Relations

Component-of(comp, sys) 
True of any direct component, comp, of system, sys.  It does not traverse any representations. 

Connector-of(conn,sys)
True of any direct connector, conn, of system, sys.  It does not traverse any representations.

Port-of(port,comp)
True of any port, port, of component, comp.

Role-of(role,conn)
True of any role, role, of connector, conn.

Attached(r,p)
True if role r is attached to port p.

Parent-of(x,p) 
True of the parent, p, of any design element, x:

If x is a:
Parent-of(x,p), where p is a:

Component
The system in which the component is instantiated

Connector
The system in which the connector is instantiated

Port
The component with which the port is associated

Role
The connector with which the port is associated

System
If x is a representation, the element for which System x is a representation, else null.

Derived Graph connectivity predicates

The following predicates are derivable from the topological predicates describing a system.

Connected(comp1,comp2) 
True if component comp1 is connected to component comp2 by one or more connectors. 

Attached(conn,comp)
True if connector conn is attached to component comp.

Reachable(c1, c2)
True if component c2 is reachable from component c1.

User defined primitive predicates.

In addition to the set of “built-in” ACME primitive predicates, it is important to also allow users to create new “primitive” predicates.  These are predicates written in any valid extension to the ACME predicate language.

User defined abstract predicates.

The definition of  an abstract predicate can occur wherever an maintained predicate occurs.

Define name ( formal-parameter ^ , ) = predicate_Expression

Defines the name to be a new relation on the formals.  The context of evaluation, of course, determines the bindings of actuals to the formals.  The formal parameters are strongly typed, but the bindings for the type names themselves are with respect to the context of evaluation of the predicate, not its definition.

[DO I BELIEVE THIS?]

Literal constants

Literal constants may be used for comparison, as parameters, or as predicates that return their own value.   Examples of literal constants include: true, 124, “string”, and “zanzibar”. 

Quantification

The quantification construct available in the predicate language may use the following (informal) syntax in the predicate language:


QUANTIFICATION-EXPR ::= 


( forall | exists ) <variableName> in <setExpression>  







<predicateExpression> ;

Quantified expressions are predicates that return a boolean value indicating whether the predicate is satisfied.  The semantics of the expressions are quite straightforward.  <VariableName> is bound, in succession, to each element in <setExpression>.  <PredicateExpression> is then evaluated for each value of <VariableName>.  The value of a universally quantified expression (forall) is the logical and of the values of <predicateExpression> evaluated for each value of <variableName> in <setExpression>.  Likewise, the value of an existentially quantified expression (exists) is the logical or of the values of <predicateExpression> evaluated for each value of <variableName> in <setExpression>.

Examples:

Forall comp in Components(sys)  comp.secure = True;


Exists conn in Connectors(sys)  EventSystemType(conn);

Quantified predicates may be embedded within other quantified predicates.  For example:

Forall comp in Components(sys)  



Forall port in Ports(comp)  port.protocol = RPC;


Operators

The ACME predicate language will include the primitive relations for comparison, logical connective over expressions involving arithmetic, set, and other types.  Details for each category of operator are given in the following tables.

Comparison operators

The predicate language will include (at least) the following operators for comparing two values:

Operator
Example
Meaning

=
x = y
true if x equals y

!=
x != y
true if x does not equal y

>
x > y
true if x is greater than y else false

>=
x >= y
true if x is greater than or equal to y

<
x < y
true if x is less than y

<=
x <= y
true if x is less or equal to y

Comparison operator notes:

· Operands must be numeric for the operators >, <, >=, and <=.

· There must be a well-defined equality operator for the operand types being compared with = or  !=.

Logic operators

The predicate language will include at least the following operators for building logical expressions:

Operator
Example
Meaning

and
x and y 
true if both x and  y are true

or
x or y
true if either x or  y are true

->
x -> y
implication (if). If x is true then y must be true.  If x is false, the value is true.

<->
x <-> y 
two-way implication (iff).  true if x and y are either both true or both false.  false if they have different values.

~
~ x
not x.  True if x is false

()
(z or (x and y))
precedence operator.  all expressions in the innermost parentheses are evaluated before moving to the outer level of parentheses.  Standard C interpretation used. 

For all logical operators, both the lhs and rhs operands must be (or return) boolean values.  Likewise, all logical operators return a boolean type value.

Arithmetic operators

The predicate language will include at least the following operators for doing simple arithmetic operations:

Operator
Example
Meaning

+
x + y 
Addition.  Sum of the values of x and y

-
x - y
Subtraction.  Difference of x - y

*
x * y
Multiplication.  Product of x and y

/
x / y 
Integer division if both x and y are integers, else floating point division.  

mod
x mod y
Modular division.

For all of the arithmetic operators, the operands need to be numeric.  Modular division requires that both operands be integers.

Set and element operators:

The predicate language can deal with simple set operations.  The following operations allow the user to manipulate, merge, and query sets.  The union and intersection operators return a new set that is the union or intersection of its operands, respectively.  The isMember() operation is a predicate, and the size() operator returns an integer.

Operator
Example
Meaning

union
union (set1, set2)
the union of sets set1 and set2

intersection
intersection (set1, set2)
the intersection of sets set1 and set2

Member-of
member-of (elt, set)
true if elt is an element of set set

size
size(set)
cardinality. The number of elements in set set

Miscellaneous operators

The following miscellaneous operators will also be primitive operations in the ACME predicate language:

Operator
Example
Meaning

()
(z or (x < y))
precedence operator.  all expressions in the innermost parentheses are evaluated before moving to the outer level of parentheses.  Standard C interpretation used. 

. 
object.property

comp.portName
Qualifier and dereferencer.  The period is used to qualify names and dereference substructure within an object.   The value of the fully qualified entity is returned by the operation.

Building expressions

[DESCRIBE SYNTAX]

Meta predicate representations

BaseType(x) 
Returns the name of the base-type (category) of x (Component, Connector, Property, etc.) [NOT READY FOR RELEASE]

SubtypeOf(subType,superType)
True if subType is an explicit subtype of superType.  [Note: It’s not yet clear if the types passed as args and returned are objects, class-objects, or values (e.g. strings)].
Style(sys) 
Returns the name of the style declared for system sys.

Representation predicates

HasRep(x) 
True if the element x has one or more representations.

Parent(rep) 
Returns the design element that is the parent of rep.

Representation-of(elt,rep)
True of any  representation, rep, of design element, elt.

Property-of(prop,elt)
True of any property, prop, of design element, elt.  Does not do “implications” of the property or involve any theorem proving.  This is a purely syntactic relationship.

Parent-of(elt,p)
Extended to properties and representations of design elements, elt.  Does not do “implications” of the property or involve any theorem proving.  This is a purely syntactic relationship.

If x is a:
Parent-of(x,p), where p is a:

Property
The element of which x is a property

Representation
The element of which x is a representation
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ACME Tutorial Examples

<Develop some tutorial examples to help people walk through designing a system or an environment with ACME>
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A

ACME BNF

<Put the BNF here>

Informal Syntax:

Systems:

The informal syntax for declaring systems is:

System <SysName> [ : <StyleName> ] = {


( <Element-Declaration> 



| <Type-Declaration>



| <Design-Rule-Declaration>



| <Enforce-Statement> )*

}

Types:
The informal syntax for declaring a design element type is:

<Category> Type <TypeName> 


( = | (extends <superTypeName> with) ) {



<Sequence of required structure and values>



Maintain <Set of constraints to maintain>

}

Instances of the four basic architectural entities – components, connectors, ports, and roles, can be created with the following (informal) syntax:

<Category>  <InstanceName>  [ : <TypeName> ]  =  <Value> ;

where 

  <value> ::= { <sequence of property and structural specs.> }




| new <TypeName>




| new <TypeName> extended with { 





 <seq. of property and structural specs.> }

Design Rules:

The informal syntax for declaring an abstract design rule is:

Design (Heuristic|Invariant) <name> ( <paramList> ) [:<language>]
 
  = <predicateExpression> [ << <meta-properties>* >> ] ;

Abstract design rules are bound to concrete instances with the following syntax:
Enforce <design-rule-name> ( <actual-parameters> )








[ << meta-properties >> ];

or for anonymous design rules:

Enforce <predicate> [ << meta-properties >> ];

Design rules may be bound to a set of instances with the following quantification syntax:

Forall <sequence of var-names> | <qualifying-predicate> (


enforce <rule-name(actual-parameters)>;

Style declarations:
The informal syntax for defining a style is:

Style <style-name> = { <style-element>* } ;

or

Style <style-name> extends <super-style-name>+


with { <style-element>* } ;

where:

<style-element> ::= <type specification>





 | <abstract design rule specification>





 | <quantified enforce statement> ;

Formal Cncrete Syntax

Toplevel Entities

ACME-DESC

::= 
TOPLEVEL-DECL* ;

TOPLEVEL-DECL 
::=
STYLE-DECL 





| SYSTEM-DECL 





| DESIGN-RULE-DECL





| TYPE-DECL ;

Styles

Types

Systems

SYSTEM 


::= 
System NAME = { ENTITY-DECL* } ;

ENTITY-DECL 

::=

COMPONENT-DECL 
 






| CONNECTOR-DECL 
 






| PORT-DECL 
 






| ROLE-DECL 
 






| PROPERTY-DECL 







| REP-DECL
 






| ATTACHMENTS-DECL

GENERIC-DECL

::=  
PROPERTY-DECL | REP-DECL;

COMPONENT-DECL
::=

Component NAME = { 








(PORT-DECL | GENERIC-DECL)* } ;
CONNECTOR-DECL
::=

Connector NAME = { 








(ROLE-DECL | GENERIC-DECL)* } ;
PORT-DECL


::=   Port NAME = { GENERIC-DECL* } ;
ROLE-DECL


::=   Role NAME = { GENERIC-DECL* } ;
ATTACHMENT-DECL
::=

Attachments { (PORT-NAME to ROLE-NAME)* } ;
Architectural Elements

Properties

PROPERTY-DECL
::= 
Property NAME [ : TYPE ] = VALUE ;

Representations

REP-DECL


::= 
Representation NAME = SYSTEM 







  Bindings = { (NAME to NAME)* } ;






� In the remainder of this paper we will simply use the term “ADL” to refer to both the language and its supporting toolset.
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