
Submitted for publication.

Semantic Issues in Architectural Refinement

Tony Tseng, Jonathan Aldrich, David Garlan, and Bradley Schmerl
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
{tttseng,aldrich,garlan,schmerl}@cs.cmu.edu

Abstract
Abstract Component
and Connector View Relating software architecture to implementation is es-

sential for effective software development and evolution.
However, significant gaps exit between abstract architec-
ture models and the more concrete models supported by
implementation tools, making it difficult to ensure that an
architecture and implementation are consistent.

This paper

Concrete Component
and Connector View

In this paper, we characterize three key semantic chal-
lenges in refining an abstract architectural view to a
more concrete one: mapping typing relationships, refin-
ing connectors, and handling information overlap. We
outline general strategies for addressing these chal-
lenges, and describe a concrete tool that enables archi-
tects to make the transition from abstract to concrete ar-
chitecture more effectively.

 UML 2.0, ArchJava, xADL Toolset

Module View

1. Introduction

It is well known that multiple views are necessary for
capturing all interesting aspects of a software architecture
[6]. Following the process outlined in Figure 1, an archi-
tect may begin with a highly abstract, component-and-
connector-based view, which is refined into a more con-
crete view with component interfaces specified and an
implementation strategy defined. The system is then im-
plemented in some language, leading to yet another view
based on the module structure of the source code. Other
views may also be useful for performing various kinds of
architectural modeling and analysis.

Although the views shown in Figure 1 are clearly re-
lated, there is rarely a perfect correspondence between
them. The resulting semantic gaps can cause serious prob-
lems in the implementation and evolution of software
systems if the program as built does not conform to the
architecture as designed.

Recently, a number of projects have attempted to help
bridge these semantic gaps by capturing architectural
components and connectors at the implementation level.
One such project is ArchJava, a language that integrates a
specification of a run-time component-and-connector
architecture into the static source code of a program [2].
Another example is UML 2.0, which contains explicit

modeling features for architectural components and con-
nectors, and supports source code generation from these
models [21].

Figure 1. Three views of architecture, with the most ab-
stract at the top and the most concrete at the bottom. This
paper focuses on the transition from an abstract to a con-
crete component-and-connector view, while other work
has focused on connecting a concrete view to an imple-
mentation-based module view.

Although these techniques can bridge the gap between
a concrete component-and-connector (C&C) architectural
view and source code, difficult issues remain in the gap
between an abstract C&C view and the more concrete
views that are used in the projects described above. This
paper makes the following contributions to addressing
these issues:

• In the next section, we use a running example to
characterize three key semantic challenges in refin-
ing an abstract architectural view to a more concrete
one: mapping typing relationships, refining connec-
tors, and handling information overlap.

• In Section 3, we outline general strategies for ad-
dressing each of these challenges.

• In Section 4, we describe a tool that aids in refining
abstract architectures to more concrete architectures.

Section 5 discusses related work, and Section 6 concludes
the paper.

 1

Submitted for publication.

2. Refinement Challenges Acme and xADL 2.0 are generic architecture descrip-
tion languages that have the capability of modeling archi-
tecture at both high and low levels of abstraction [7][10].
Both systems are extensible, allowing architects to model
arbitrary architectural properties. Acme also provides
language and tool support for architectural styles that can
be freely composed together to form new styles.

Although they differ in the level of abstraction, abstract
and concrete component and connector views contain
many of the same elements, and we initially expected that
mapping between these levels would be straightforward.
However, when we began designing a tool to aid archi-
tects in mapping an abstract view to a more concrete one,
we were surprised to find a number of hard technical
challenges. For example, we found that it is often neces-
sary to change typing relationships when refining an ar-
chitectural design. Furthermore, more concrete architec-
tural views may lack support for design-level information
including connector representations, architectural styles,
and properties, raising the question of how to represent
this information at the concrete level.

Concrete Views. A concrete component and connector
view is an architectural view of the components and con-
nectors in a system that expresses the same conceptual
architecture of the more abstract view, but commits to
implementation strategies for each of the components and
connectors. This view may omit non-functional require-
ments, not because they are unimportant but because they
cannot be directly implemented. Unlike an abstract C&C
view, a concrete view is typically complete in that it
specifies all of the components and all of their interfaces.

In this section, we begin by defining more precisely
what we mean by abstract and concrete architectural
views. Next, we describe an abstract architecture that will
be used as a running example for the rest of the paper.
We then discuss each of the three key refinement chal-
lenges—and corresponding refinement strategies—that
we identified: mapping typing relationships, refining con-
nectors, and handling partially overlapping information
between views.

Relation to Module Interconnection Views. Concrete
component and connector views of an architecture may
appear to be similar to a module interconnection view of
source code, but they differ in that the components in a
concrete C&C view are potentially run-time objects, not
static source code modules, and connectors may be richer
than simple module bindings. In practice, a run-time com-
ponent may be implemented by many modules or by part
of a module, and more than one component of the same
component type (and with the same implementation code)
may exist in the system. Furthermore, connectors may
perform tasks such as buffering or network communica-
tion. Thus, the mapping between architectural elements in
a concrete C&C view and modules in a module intercon-
nection view may not be one-to-one.

2.1. Abstract and Concrete Views

Abstract Views. An abstract component and connector
view is an architectural view of the components and con-
nectors in a system that is focused on design-level con-
straints. In order to permit a high level of abstraction, and
to maximize design-level reuse, this view avoids commit-
ting to an implementation strategy for the individual com-
ponents, connectors, and interfaces between them. An
abstract architectural view may have high-level specifica-
tion information that has no direct analog at a more con-
crete level, such as non-functional requirements, the order
of architectural events, or style information.

The OMG’s Model-Driven Architecture (MDA) also
defines two different architectural views: platform-
independent and platform-dependent [21]. In our taxon-
omy, both of these views generally share characteristics
with concrete component and connector views or module
interconnection views, depending on if they focus on
component and connectors or code modules. This paper
is thus concerned with refinement at a higher level of
abstraction compared to the refinements discussed in the
MDA.

Abstract architectural views may also be incomplete
specifications in that they focus on issues that are of par-
ticular interest at the design level. For example, an ab-
stract view may represent only the main datapath through
a system, abstracting away other possible communication
paths.

Examples of Concrete Views. Concrete component and
connector views can be modeled in a number of architec-
ture description languages; ADLs that provide tool sup-
port for generating code from concrete C&C views in-
clude xADL 2.0, ArchJava,1 and UML 2.0 [2][7][21].
The code generation tools require specifications of com-

Examples. Architecture description languages based on
process algebras provide fairly abstract views of architec-
ture, where interfaces are often represented as a collection
of events with ordering constraints [4]. The SADL lan-
guage supports refinement from abstract designs, such as
a generic connector, to more concrete implementation
choices, such as a shared variable implementing that con-
nector [16].

1Since ArchJava is a complete language, it technically
provides a compiler rather than a code generator.

 2

Submitted for publication.

Figure 2. A Simple Pipe & Filter Abstract Architecture.

ponent interfaces that are complete and similar to those
found in implementation languages.

Despite their concreteness, these languages all support
component and connector views rather than (or in addi-
tion to) simple module interconnection views. Compo-
nents in these views represent run-time objects with state
and functionality, and which may be instantiated multiple
times during program execution, in contrast to static code
modules. These languages also support user-defined con-
nectors with rich functionality.

2.2. Example Abstract Architecture

Throughout this paper we will refer to an example of an
abstract component and connector view for a pipe and
filter system, presented in Figure 2. This architecture con-
sists of three components (a data source and sink, and a
filter component called Capitalize), and two pipes connect-
ing them. The Capitalize component is decomposed into a
sub-architecture consisting of another pipe and filter sys-
tem. The pipes have properties associated with them, such
as buffersize and throughput. The roles of the pipes spec-
ify the protocols of interaction that the pipe understands.
We desire to refine this architecture into an implementa-
tion. As mentioned above, this may seem straightforward,
but there are a series of refinement decisions that need to
be made to relate this abstract architecture to an imple-
mentation.

2.3. Challenge: Types

Types are an important mechanism for achieving design-
level reuse at both the abstract and concrete levels of ar-
chitecture. These two levels, however, may use types in
quite different ways according to the intended modeling
purpose of each level.

Concrete architecture representations, following con-
ventional implementation languages, typically use types
to characterize the interfaces of a component. These inter-
faces state what functions are used in inter-component
communication, as well as what data is passed between

these functions. In many cases, these interfaces are ex-
pected to be complete (including all relevant functions),
both in order to guide implementors and to form the basis
for a sound implementation-level type system.

In contrast, an abstract architectural view is more
likely to use types to organize component specifications.
These specifications are generally focused on issues of
particular interest to the architect, and may therefore omit
interface details that are irrelevant to these issues. Al-
though component interfaces can be of interest at the ab-
stract architectural level, many abstract representations
focus more on the ordering of communication events or
on non-functional properties.

Type Mappings. Because of these differences in empha-
sis, the type structure of an abstract architectural view
may be quite different from that of a corresponding con-
crete view. Thus, component and connector types may not
be in a one-to-one correspondence, complicating the chal-
lenge of refining an abstract view into a more concrete
one.

An abstract architecture may not attempt to character-
ize the full behavior of its components, and therefore may
use a single component type to describe two components
that have significant differences at the implementation
level. In Figure 2, for example, the upper, lower, split, and
merge components are all modeled with the Filter compo-
nent type.

A concrete architectural view may want to represent
these as four distinct types, both in order to capture dif-
ferences in interface or behavior and to express an im-
plementation strategy that uses different modules for the
two components’ code. For example, an implementation
in Java would likely use different classes to represent the
upper and lower components, because these have differ-
ent behavior. The converse is also possible, although
probably less likely: a single concrete implementation
may be flexible enough to implement two different ab-
stract component types.

 3

Submitted for publication.

Type System Structure. In addition to differences in the
relationships modeled between types, abstract and con-
crete ADLs may have type systems with different struc-
ture.

Because of these differences in expressiveness, the
subtyping relationships that hold at the abstract level may
not be legal at the concrete level of architecture, requiring
different type structures at the two levels of abstraction. It
is also possible that a subtyping relationship that is not
modeled at the abstract level could be added at the im-
plementation level, simply because inheriting the func-
tionality of one component is convenient when imple-
menting another component.

Concrete ADLs, following implementation languages,
often use conventional type systems that focus on imple-
mentation-level substitutability. A crucial characteristic of
conventional type systems is that all the external services
a component requires are stated in its type, along with a
subset of the services that the component provides.2 This
characteristic ensures that when the type of some compo-
nent is given, any component implementation that con-
forms to the type can be used in the actual system without
violating basic rules of component composition.

2.4. Challenge: Complex Connectors

A distinguishing characteristic of architecture description
languages is that they model architectures using explicit
connectors, rather than bindings that implicitly connect
one component to another [17]. Many abstract architec-
ture description languages have rich connector modeling
features, such as the ability to declare new connector
types or define the substructure of connectors [10][16].
Other ADLs provide sophisticated models of connector
behavior through process algebras [4].

More abstract languages focus on modeling, and often
their type systems have a different structure. For example,
both the Acme ADL and the PVS theorem proving lan-
guage [24] use type systems where types are arbitrary
logical predicates. In these systems, one type is a subtype
of another if the predicate of the first type implies the
predicate of the second type.

Unfortunately, more concrete architecture description
languages typically have weaker facilities for modeling
connectors. For example, ArchJava allows developers to
specify connector types and implementations, but neither
supports an architecture-level decomposition of those
connectors into more primitive pieces [7]. The UML 2.0
can express connector type information through UML
association classes [13], but it does not support connector
decomposition. Thus, when refining an abstract architec-
tural view into a more concrete one, a key question is
how to represent the abstract view’s rich connector in-
formation in the context of the more concrete view.

Predicate-based type systems such as those in Acme
and PVS are ideal for design-level modeling, because
they allow architects to combine specifications in flexible
and rich ways. For example, consider an abstract architec-
ture that is a hybrid of the pipe-and-filter and repository
architectural styles [11]. In this example, a filter compo-
nent type has at least one input and one output port, while
a client component in the repository style has at least one
port to communicate with the repository. A component in
this architecture might inherit specification information
from both the filter and the repository client specifica-
tions, yielding a component that has at least three ports:
two for communicating with other filters and one for
communicating with the repository. 2.5. Challenge: Overlapping Information

Unfortunately, examples like this cannot be expressed
in the more limited, implementation-level type systems of
concrete ADLs. A specification that a component has a
port implies a requirement that the environment will
match that port up with some other component, and there-
fore conventional type systems require a component type
to list all of the ports it might possibly have (or at least all
those ports that are expected to be connected at run time).
There is no way to say that a filter component has “at
least two ports”—instead, one must say that the filter has
“at most” or “exactly” two ports. Therefore, one cannot
combine the filter type with a repository component type
(which defines a third port that is prohibited by the con-
crete filter specification) at the concrete level as one can
in the abstract level.

Abstract and concrete architectural views may have par-
tially overlapping information, making it potentially more
complicated to relate the two in consistent ways. For ex-
ample, non-functional properties and style information in
an abstract architecture may have no implementation arti-
fact that can be directly associated with them. Abstract
ADLs may support more than one representation for a
component, but in a concrete, implementation-oriented
view only one representation will be chosen. Similarly, a
concrete architectural view may have interface and im-
plementation details that are omitted in the abstract view.

Overlapping information is not necessarily a problem
for translating an abstract view into a concrete one: the
architect need only omit those parts of the abstract archi-
tecture that are not directly realized at the concrete level,
and add any necessary interface and implementation in-
formation. However, building tools that keep these views
consistent as both evolve over time can be quite challeng-
ing due to information overlap. In order to synchronize

2This distinction in the way required and provided ser-
vices are handled is known as the contravariant subtyping
principle.

 4

Submitted for publication.

abstract and concrete views that may have been individu-
ally modified, a tool must keep track of which informa-
tion overlaps and which is common to the two views, so
as to avoid losing information during the synchronization
operation.

3. Refinement Strategies

In this section, we outline general strategies for address-
ing each of the challenges outlined in Section 2. In some
cases, the refinement strategy is straightforward as there
is a one-to-one correspondence between elements in the
abstract and concrete views. However, there are a number
of cases where refinement decisions need to be made by
the architect. In many refinement tools, these decisions
are made before the tools are written, providing the archi-
tect with only the option chosen by the tool designer. In
general, however, different refinement decisions are ap-
propriate in different circumstances, and so ideally a re-
finement tool should allow the architect to specify these
decisions.

3.1. Type and Instance Mappings

The first refinement challenge is mapping relationships
between types and instances from the abstract component
and connector view to a more concrete, implementation-
oriented view. Typically, component types and instances
in the abstract view will have corresponding types and
instances in the implementation view. However, as dis-
cussed earlier, there are a number of exceptions that the
architect must be able to address.

For each element in the abstract view, the architect
should be able to specify whether there is a corresponding
element in the concrete view. For example, the Filter type
in the Capitalize example is probably too generic to have
any implementation code associated with it, because it has
neither a concrete interface nor behavior of its own.

On the other hand, sometimes component instances in
the abstract architecture correspond to both a type and an
instance at the more concrete level. For example, the up-
per and lower filters in the Capitalize example have differ-
ent behavior, and so each will probably have a corre-
sponding type in the concrete architectural model. Thus,
architects must also be able to specify whether a compo-
nent instance should be translated into just a component
instance or into a type/instance pair.

As described earlier, the type systems used in abstract
and concrete architectural views may differ, so that re-
finement will not always preserve subtyping relationships
between the types of architectural elements. For example,
consider a small variation of the Capitalize architecture
above, where the architect modeled Upper, Lower, Split, and
Merge component types that subtype the Filter type. At the
concrete level, it might be possible for Upper and Lower to

subtype from Filter, but Split and Merge would be prohib-
ited from subtyping from Filter because of their additional
ports. This example illustrates that architects must be able
to specify any changes in the inheritance hierarchy as part
of the refinement strategy.

3.2. Connector Mappings

Typically, concrete models have relatively sophisticated
facilities for representing components and ports, but
weaker support for modeling connectors and roles. For
example, the concrete C&C views provided by UML 2.0,
and ArchJava do not allow developers to define the sub-
structure of a connector. Thus one of the biggest refine-
ment challenges is deciding how to refine connectors.

In simple cases, the built-in connectors provided by
modeling languages may be sufficient. For example, both
ArchJava and UML 2.0 provide default connector seman-
tics that directly bind the required port of one component
to the provided port of another. For connectors that have
richer behavior, at least two general strategies are possi-
ble:

1. Implement a complex connector as a component in
the concrete view, connected by simple connectors.
This allows architects to leverage the concrete lan-
guages’ considerable support for components, at the
cost of blurring the distinction between components
and connectors at the concrete level.

2. Leverage view-specific support for connectors, de-
spite its limitations.

Only the first strategy can be used to model the substruc-
ture of a connector in languages that do not directly sup-
port rich connector representations. However, strategy
two can have both design-level and implementation-level
advantages. At the design level, it better preserves the
architect’s intent by distinguishing more clearly between
components and connectors. It may also be beneficial at
the implementation level due to implementation support
for reuse of connector code. For example, object request
brokers (ORB) allow developers to define customized,
reusable connectors using hooks within the ORB infra-
structure. Similarly, ArchJava, UML 2.0, and xADL 2.0
allow developers to specify a class that implements con-
nector functionality.

3.3. Handling Information Overlap

Dealing with the challenges of overlapping or missing
information in architectural refinement depends largely
on the details of the abstract and concrete views in ques-
tion. General strategies for handling information overlap
include choosing information to omit, adding new archi-
tectural information as part of the refinement, and in some

 5

Submitted for publication.

cases, changing the form of architectural information to
suit the new view.

For example, if a component in an abstract view has
multiple representations, it is likely that only one of these
representations will be chosen for the concrete view, with
the others omitted. At the same time, the concrete view
may add additional interface and implementation details
that are absent from the abstract view. Finally, informa-
tion on architectural style might be preserved by putting
components from each relevant style into a corresponding
implementation package or module. The refinement tool
we have built, discussed in the next section, uses all of
these refinement strategies.

4. Refining Acme to ArchJava

As discussed in Section 3, mapping between an abstract
C&C view and a concrete C&C view involves choices
about how to map specific elements. Because different
choices may be appropriate in different circumstances,
architects should be able to choose particular refinement
strategies depending on the situation. This choice could
be made by the architect as the architecture is being de-
veloped, or as part of the refinement process.

In our work, we chose to allow the architect to indicate
the choices in the architectural model, rather than within
the refinement tool. We believe that this has the following
benefits:

1. The architect does not need to learn another tool to
refine the architecture, and the choices are explicitly
stored in the architectural model.

2. The architect can specify the choices incrementally,
as the architecture is being developed.

3. The architectural tool can be used to check whether
the architecture has sufficient detail to be refined, and
not begin the refinement process until the architec-
ture is ready for refinement.

We developed a prototype tool for refining abstract archi-
tectural descriptions in the Acme language into concrete
architectural descriptions, represented as skeleton code in
the ArchJava language. Programmers can then implement
the actual behavior of the system within the ArchJava
skeleton.

We begin this section by providing a brief introduction
to Acme and ArchJava, explaining why we chose these
languages as the source and target of refinement, and con-
tinue by describing the design of the refinement tool.

4.1. Abstract Architecture Description in Acme

Acme represents an abstract architectural model as an
annotated, hierarchical graph. Nodes in the graph are
components, which represent the principal computational

elements and data stores of the system. Arcs are connec-
tors, which represent the pathways of interaction between
the components. Components and connectors have ex-
plicit interfaces (termed ports and roles, respectively). A
system (or configuration) is defined as a set of compo-
nents and connectors, in addition to attachments of ports
to roles. To support various levels of abstraction and en-
capsulation, components and connectors can be hierarchi-
cally decomposed into representations.

 To account for semantic properties of the architecture,
elements in a system can be annotated with extensible
property lists. Properties associated with a connector
might define its protocol of interaction, or performance
attributes (e.g., delay, bandwidth). Properties associated
with a component might define its core functionality, per-
formance attributes (e.g., average time to process a re-
quest, load, etc.), or its reliability.

In addition to representing generic systems, Acme al-
lows architectural styles (or families) to be defined. An
architectural style defines a set of types for components,
connectors, roles, ports, and properties together with a set
of rules that govern how elements of those types may be
composed. An Acme system can declare itself to be in
particular styles, which means that the elements in the
system may use types defined by that style, and that the
system satisfies the rules of that style. For example, the
architecture in Figure 2 is in a Pipe-Filter architectural style.
The component types available in this style are Filters,
DataSinks, and DataSources; the only connector type is a Pipe.
Port types discriminate between the writing and reading
ends of a filters and data nodes, and role types between
the source and sink ends pipes. Rules defined in the fam-
ily say, for example, that pipes may only have two ends.

Acme’s type system supports multiple inheritance, al-
lowing an element to simultaneously extend types taken
from multiple architectural styles. Acme’s type system is
predicate based, as discussed in section 2.3, so that an
element is a subtype of any type whose properties and
rules it satisfies. Architects can exploit Acme’s predicate
type system to specify refinement strategies, as described
below.

Acme is an ideal source language for our tool because
it embodies many of the characteristics of abstract design
languages, including a predicate-based type system, ex-
tensible property support, rich modeling of connectors,
and support for multiple representations of architectural
elements. However, the principles behind our tool design
apply to any abstract ADL with similar characteristics.

4.2. Concrete Architectures in ArchJava

ArchJava is an extension to the Java programming lan-
guage that allows software engineers to specify a concrete
software architecture within implementation code [2].
The research contribution of ArchJava is a novel type

 6

Submitted for publication.

system, which statically ensures that the implementation
of a software system conforms to the declared architec-
ture.

ArchJava is representative of other concrete architec-
tural views in the architectural features it supports, in-
cluding components, ports and explicitly typed connec-
tors. ArchJava components are run-time entities, not code
modules, and the language supports rich forms of archi-
tectural dynamism. ArchJava’s guarantee of architectural
conformance makes it a particularly appropriate target for
our refinement tool, because the tool can build on
ArchJava to provide a conformance guarantee between an
abstract Acme architecture and the Java code that imple-
ments the ArchJava architecture. However, the refinement
strategies used in our tool are appropriate for many other
concrete ADLs as well.

4.3. The ArchJava Refinement Style

When refining an abstract Acme architecture into a more
concrete ArchJava architecture, the architect must make a
number of refinement choices and express these to the
refinement tool. We have chosen to leverage Acme’s
style support, using an ArchJavaFam style to define how
such choices are expressed in Acme. Because Acme sys-
tems can satisfy multiple styles, we can “mix in” the
ArchJavaFam style so that it can be used in conjunction
with other styles. For example, if we wish to refine the

model represented by Figure 2, it would need to satisfy
both the Pipe-Filter family and the ArchJavaFam family
(and filters would need to satisfy both the ArchJavaCom-
ponentT type and the FilterT type, for example).

family ArchJavaFam = {
 property isPreserved : boolean;

 property type GenerationPolicyT =
 enum {instanceOnly, typeOnly, instanceAndType};
 property type MethodSignaturesT = set{string};

 component type ArchJavaComponentT = {
 property extendParent : boolean;
 property classGenerationPolicy : GenerationPolicyT;
 }

 connector type ArchJavaConnectorT = {
 property isImplicit : boolean;
 property extendParent : boolean;
 property classGenerationPolicy : GenerationPolicyT;
 }

 port type ArchJavaPortT = {
 property provides : MethodSignaturesT;
 property requires : MethodSignaturesT;
 }
}

Figure 3. The ArchJava Architectural Style.

Figure 3 shows the ArchJavaFam style, which defines
how the architect expresses refinement decisions. All
components that are intended to be refined to an ArchJava
component must implement the ArchJavaComponentT type.
This type defines two properties that allow the architect to
express how the type hierarchy is mapped in the refine-
ment process (sections 2.3 and 3.1):

• The classGenerationPolicy property determines
whether an ArchJava class is generated correspond-
ing to the Acme type (typeOnly), or if a class is gener-
ated corresponding to an Acme instance (in-
stanceOnly), or if both classes are generated, with the
instance class extending the type class (instanceAnd-
Type). This property allows ArchJava components to
be generated for Acme instances (with or without ex-
tending the Acme type), in order to capture the be-
havior of different instances more effectively.

• If the extendParent property is true for some Acme
component type A, and Acme component type A ex-
tends some other Acme component type B, the gen-
erated ArchJava type for A will extend the generated
ArchJava type for B; otherwise, A will not extend B.
This property allows the ArchJava inheritance hier-
archy to differ from the Acme inheritance hierarchy.
Note that the extendParent property is only applicable
when the classGenerationPolicy property is either type-
Only or instanceAndType. When the classGeneration-
Policy property is instanceOnly, no information from
Acme’s inheritance will be used.

Connectors have the same two properties as components,
allowing the type hierarchies representing connectors to
differ in the two languages. In addition to custom connec-
tor types [3], ArchJava provides a built-in connector
(which binds required methods directly to provided meth-
ods) that can be selected by setting the isImplicit property
to true.

To specify the details of a port’s interface in Acme, an
architect can specify a set of provided and required meth-
ods as properties of the port. When the corresponding
port is generated in ArchJava, method stubs are added
corresponding to these properties.

In addition to having to satisfy the structural character-
istics of the family, there are rules defined that each sys-
tem must satisfy. If any of these rules are unsatisfied, then
refinement will not be allowed. Among these rules are:

1. If an element has more than one representation, then
only one of them may have the isPreserved property
set to true. This is the representation that will be
mapped to an ArchJava implementation.

 7

Submitted for publication.

2. All components, connectors, and ports must satisfy
their corresponding ArchJavaFam types.

3. No connectors can be dangling.

4. When two ports are connected, their provides and re-
quires method signatures must match.

Using the ArchJavaFam family allows the architect to
specify decisions that need to be made in order for the
Acme architecture to be refined into an ArchJava pro-
gram. Our family definition provides defaults for each of
these decisions, allowing an architect to omit properties
that match the default rules. For example, in our default
refinement strategy, components and connectors do not
extend their parents in Acme, instance classes are gener-
ated for components and type classes are generated for
connectors, and the set of requires and provides methods
is empty. Our preliminary experience with the refinement
tool suggests that these defaults can eliminate many of the
property declarations that would otherwise be required.

4.4. Acme to ArchJava Refinement

Figure 4 shows how an architect could specify a portion
of the architecture from Figure 2. For the lower compo-
nent, the architect specifies a classGenerationPolicy of both,

meaning that the refinement will create the ArchJava
component classes Filter and Lower (with Lower extending
Filter), and the lower instance will be of type Lower. If the
classGenerationPolicy was typeOnly then no Lower compo-
nent class would be generated in ArchJava, and lower
would be an instance of Filter. If the classGenerationPolicy
was instanceOnly then the Lower component class would be
generated, but would not extend Filter at the ArchJava
level. In addition to this, the architect creates a Pipe
(called pipe1), specifies that the built-in ArchJava connec-
tor will be used (by setting isImplicit to true), and then at-
taches one of the roles to the output port of lower.

system capitalize : PipeFilterFam, ArchJavaFam = {

component lower : FilterT, ArchJavaComponentT = {
 property classGenerationPolicy = instanceAndType;
 property extendParent = false;
 port input : InputT, ArchJavaPortT = {
 property requires = {};
 property provides = {“void processChar (int c)”};
 }
 port output : OutputT, ArchJavaPortT = {
 property requires = {“void processChar (int c)”};
 property provides = {};
 }
}

connector pipe1 : PipeT, ArchJavaConnectorT = {
 property isImplicit = true;
 property classGenerationPolicy = typeOnly;
 property extendParent : false;
 roles {src, snk};
}

attach lower.output to pipe1.src;
attach merge.input1 to pipe1.snk
…
}

Figure 4. An Acme system to be refined.

public component class Filter = { … }

public component class Lower extends Filter {
 public port input {
 provides void processChar (int c) {}
 }
 public port output {
 requires void processChar (int c) {}
 }
}

public component class Capitalize extends Filter {
 private final Lower lower = new Lower ();

 connect lower.output, merge.input1;
 …
}

Figure 5. The ArchJava generated from the Acme system
in Figure 4.

The ArchJava skeleton resulting from the refinement is
shown in Figure 5. A component class called Filter is gen-
erated, in addition to the Lower component class. The
Lower component class has input and output ports with the
appropriate required and provided methods. Another
component class, Capitalize, is created for the system en-
compassing the architecture, and a field pointing to the
subcomponent lower (of type Lower) is generated.

Finally, lower will be connected to the merge filter with
a built-in connector using the connect command. Because
of our use of ArchJava’s built-in connectors, the concrete
architecture does not explicitly name the pipe1 connector.

4.5. Implementation

We have implemented an Eclipse-based tool that allows
architects to perform architectural refinement in the man-
ner outlined in this paper. Our tool builds on Eclipse
plugins that support development in Acme and ArchJava,
respectively. The first plugin, AcmeStudio, provides
graphical support for the development of architectural

 8

Submitted for publication.

Concrete Architecture to Code. A number of projects
have looked at refining a concrete architecture to code,
using code generation, library support, or integration with
an implementation language. In the category of code gen-
eration, for example, UniCon provides tools that use an
architectural specification to generate connector code that
links components together [26].

styles and models in Acme [25]. The second plugin pro-
vides an integrated development environment for the
ArchJava language.

The Acme-ArchJava refinement tool is also imple-
mented as a plug-in to the Eclipse IDE framework, and
acts as a bridge between AcmeStudio and ArchJava. Ar-
chitects develop architectures in AcmeStudio according to
the ArchJava style described in Section 4 (in addition to
the architectural style they would normally use), and de-
fine the properties required by the ArchJava style. Once
this is complete, and the rules of the ArchJava style are
satisfied, an action in AcmeStudio is enabled that gener-
ates the required ArchJava skeleton code. This code can
then be developed in the ArchJava Eclipse plugin.

In the category of library support, C2 and its succes-
sor, xADL 2.0, provides runtime libraries in C++ and
Java that connect components together as specified in an
architectural description [7][16]. Darwin also provides
infrastructure support for implementing distributed sys-
tems specified in the Darwin ADL [14].

Furthermore, the Rapide system allows an architectural
specification to be filled in with implementation code in
an executable sub-language or in languages such as C++
or Ada [12]. The ArchJava language uses a similar strat-
egy but builds an architecture description language into
the Java implementation language rather than the other
way around.

We continue to refine the implementation of the tool to
make it more robust, and plan to release it as open source
software in November, 2004.

5. Related Work

All of these code generation, library support, or im-
plementation language integration systems assume that
the starting point is a fairly concrete architectural view.
Our work is complimentary in that it starts with an ab-
stract architectural view and provides tool support for
refining it into a more concrete view.

Theory of Refinement. The theoretical basis of architec-
tural refinement was discussed in the context of the
SADL architectural description language. SADL formal-
izes architectures in terms of theories, providing a frame-
work for refining an abstract architecture into a concrete
one, while ensuring that the resulting architecture is con-
sistent with the original architecture [19]. However,
SADL provides no tool support for refining abstract ar-
chitectures to more concrete ones, requiring architects to
make this transition by hand.

6. Conclusion and Future Work

This paper describes a number of key challenges in refin-
ing an abstract component and connector architectural
view to a more concrete, implementation-oriented com-
ponent and connector architectural view. We propose
general strategies for addressing each of these challenges,
and report on the design of a concrete tool that supports
refinement from abstract architectures expressed in Acme
to more concrete architectures expressed in ArchJava. We
believe that this tool-supported refinement technology
will be essential to the long-term vision of keeping an
architectural design consistent with implementation as a
program evolves.

More recent work on the theory of refinement includes
Egyad et al.’s methodology for easing refinement by inte-
grating refinement information into family architectures
[8], and Baresi et al.’s modeling of architectural refine-
ment in terms of graph rewriting rules [5].

Architecture to UML. Perhaps the most related work
comes from the work mapping architectures to UML
[1][9][15]. In this work, many of the issues in mapping
connectors to a more concrete view are discussed but are
limited to representing connectors as classes at the con-
crete level. They acknowledge the issue of mapping in-
stances and types, but do not discuss this in detail.

In future work, we plan to enhance the refinement tool
to support round-tripping between abstract Acme and
concrete ArchJava representations of a software architec-
ture. A key challenge will be synchronizing changes
made separately to the two representations without losing
the information that is particular to either representation.

Refinement Process. The OMG’s Model-Driven Archi-
tecture provides a method and set of notations for moving
between platform-independent and platform-dependent
designs [21]. The MDA proscribes a two-level develop-
ment process, in which deployment details are added at
the low level so that the same abstract design can be used
in different concrete settings. Work on the MDA com-
pliments our work by investigating platform dependence
issues that appear at a lower level of architectural abstrac-
tion.

References

[1] Marwan Abi-Antoun and Nenad Medvidovic. Enabling
Refinement of a Software Architecture into a Design. UML
’99.

[2] Jonathan Aldrich, Craig Chambers, and David Notkin.
ArchJava: Connecting Software Architecture to

 9

Submitted for publication.

Implementation. Proc. International Conference on
Software Engineering, Orlando, Florida, May 2002.

[3] Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and
David Notkin. Language Support for Connector
Abstractions. Proc. European Conference on Object-
Oriented Programming, Darmstadt, Germany, July 2003.

[4] Robert Allen and David Garlan. A Formal Basis for
Architectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3), July 1997.

[5] Luciano Baresi, Reiko Heckel, Sebastian Thöne, and
Dániel Varró. Style-Based Refinement of Dynamic
Software Architectures. Proc. WICSA, 2004.

[6] Paul Clements, Felix Bachmann, Len Bass, David Garlan,
James Ivers, Reed Little, Robert Nord, Judith Stafford.
Documenting Software Architectures: Views and Beyond.
SEI Series in Software Engineering, Addison Wesley, 2003

[7] Eric M. Dashofy, André van der Hoek, Richard N. Taylor.
An Infrastructure for the Rapid Development of XML-
Based Architecture Description Languages. Proc.
International Conference on Software Engineering,
Orlando, Florida, May 2002.

[8] Alexander Egyed, Nikunj Mehta, and Nenad Medvidovic.
Software Connectors and Refinement in Family
Architectures. Proc. 3rd International Workshop on the
Development and Evolution of Software Archtiectures for
Product Families (IWSAPF), Spain, 2000.

[9] David Garlan, Andrew Kompanek, and Shang-Wen Cheng.
Reconciling the Needs of Architectural Description with
Object-Modeling Notations. Science of Computing,
Elsevier Press, 2002.

[10] David Garlan, Robert Monroe, and Dave Wile. “Acme:
Architectural Description of Component-Based Systems.”
Foundations of Component-Based Systems, Leavens, G.T,
and Sitaraman, M. (eds), Cambridge University Press,
2000.

[11] David Garlan and Mary Shaw. An Introduction to Software
Architecture. In Advances in Software Engineering and
Knowledge Engineering, I (Ambriola V, Tortora G, Eds.)
World Scientific Publishing Company, 1993.

[12] David C. Luckham and James Vera. An Event Based
Architecture Definition Language. IEEE Trans. Software
Engineering 21(9), September 1995.

[13] James Ivers, Paul Clements, David Garlan, Robert Nord,
Bradley Schmenl, and Jaime Oviedo Silva. Documenting
Component and Connector Views with UML 2.0.
Technical Report CMU/SEI-2004-TR-008, Software
Engineering Institute, Carnegie Mellon University, 2004.

[14] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff
Kramer. Specifying Distributed Software Architectures.
Proc. 5th European Software Engineering Conference
(ESEC’95), Sitges, September 1995. (LNCS 989.)

[15] Nenad Medvidovic, David Rosenblum, David Redmiles,
and Jason Robbins. Modeling Software Architectures in the
Unified Modeling Language. TOSEM 11(1), 2002.

[16] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and
Richard N. Taylor. Using Object-Oriented Typing to
Support Architectural Design in the C2 Style. Proc.
Foundations of Software Engineering, San Francisco, CA,
October 1996.

[17] Nenad Medvidovic and Richard N. Taylor. A Classification
and Comparison Framework for Software Architecture
Description Languages. IEEE Trans. Software
Engineering, 26(1), January 2000.

[18] Robert Monroe. “Capturing Architecture Design Expertise
with Armani.” Carnegie Mellon University School of
Computer Science Technical Report CMU-CS-98-163,
1998.

[19] Mark Moriconi, Xiaolei Qian, and Robert A.
Riemenschneider. Correct Architecture Refinement. IEEE
Trans. Software Engineering, 21(4), April 1995.

[20] Object Technology International Inc. “Eclipse Platform
Technical Overview.”
http://www.eclipse.org/whitepapers/eclipse-overview.pdf,
2003.

[21] Object Management Group. MDA: The Architecture of
Choice for a Changing World. http://www.omg.org/mda.

[22] Object Management Group. UML 2.0 Superstructure
Specification: Final Adopted Specification. OMG
document ptc/08-03-02, 2003.

[23] Dewayne E. Perry and Alexander L. Wolf. Foundations for
the Study of Software Architecture. ACM SIGSOFT
Software Engineering Notes, 17:40--52, October 1992.

[24] John Rushby, Sam Owre, and N. Shankar. Subtypes for
Specifications: Predicate Subtyping in PVS. IEEE Trans.
Software Engineering 24(9), September 1998.

[25] Bradley Schmerl and David Garlan. Supporting Style-
Centered Architecture Development. Proc. 26th
International Conference on Software Engineering,
Edinburgh, Scotland, 2004.

[26] Mary Shaw, Rob DeLine, Daniel V. Klein, Theodore L.
Ross, David M. Young, and Gregory Zelesnik.
Abstractions for Software Architecture and Tools to
Support Them. IEEE Trans. Software Engineering, 21(4),
April 1995.

 10

	Abstract
	Introduction
	Refinement Challenges
	Abstract and Concrete Views
	Example Abstract Architecture
	Challenge: Types
	Challenge: Complex Connectors
	Challenge: Overlapping Information

	Refinement Strategies
	Type and Instance Mappings
	Connector Mappings
	Handling Information Overlap

	Refining Acme to ArchJava
	Abstract Architecture Description in Acme
	Concrete Architectures in ArchJava
	The ArchJava Refinement Style
	Acme to ArchJava Refinement
	Implementation

	Related Work
	Conclusion and Future Work
	References

