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Abstract 
Abstract Component 
and Connector View Relating software architecture to implementation is es-

sential for effective software development and evolution. 
However, significant gaps exit between abstract architec-
ture models and the more concrete models supported by 
implementation tools, making it difficult to ensure that an 
architecture and implementation are consistent. 

This paper 

Concrete Component 
and Connector View 

In this paper, we characterize three key semantic chal-
lenges in refining an abstract architectural view to a 
more concrete one: mapping typing relationships, refin-
ing connectors, and handling information overlap. We 
outline general strategies for addressing these chal-
lenges, and describe a concrete tool that enables archi-
tects to make the transition from abstract to concrete ar-
chitecture more effectively. 

 UML 2.0, ArchJava,                         xADL Toolset 
 

Module View 

1. Introduction 

It is well known that multiple views are necessary for 
capturing all interesting aspects of a software architecture 
[6]. Following the process outlined in Figure 1, an archi-
tect may begin with a highly abstract, component-and-
connector-based view, which is refined into a more con-
crete view with component interfaces specified and an 
implementation strategy defined. The system is then im-
plemented in some language, leading to yet another view 
based on the module structure of the source code. Other 
views may also be useful for performing various kinds of 
architectural modeling and analysis. 

Although the views shown in Figure 1 are clearly re-
lated, there is rarely a perfect correspondence between 
them. The resulting semantic gaps can cause serious prob-
lems in the implementation and evolution of software 
systems if the program as built does not conform to the 
architecture as designed. 

Recently, a number of projects have attempted to help 
bridge these semantic gaps by capturing architectural 
components and connectors at the implementation level. 
One such project is ArchJava, a language that integrates a 
specification of a run-time component-and-connector 
architecture into the static source code of a program [2]. 
Another example is UML 2.0, which contains explicit 

modeling features for architectural components and con-
nectors, and supports source code generation from these 
models [21]. 

Figure 1. Three views of architecture, with the most ab-
stract at the top and the most concrete at the bottom. This 
paper focuses on the transition from an abstract to a con-
crete component-and-connector view, while other work 
has focused on connecting a concrete view to an imple-
mentation-based module view. 

Although these techniques can bridge the gap between 
a concrete component-and-connector (C&C) architectural 
view and source code, difficult issues remain in the gap 
between an abstract C&C view and the more concrete 
views that are used in the projects described above. This 
paper makes the following contributions to addressing 
these issues: 

• In the next section, we use a running example to 
characterize three key semantic challenges in refin-
ing an abstract architectural view to a more concrete 
one: mapping typing relationships, refining connec-
tors, and handling information overlap. 

• In Section 3, we outline general strategies for ad-
dressing each of these challenges. 

• In Section 4, we describe a tool that aids in refining 
abstract architectures to more concrete architectures. 

Section 5 discusses related work, and Section 6 concludes 
the paper. 
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2. Refinement Challenges Acme and xADL 2.0 are generic architecture descrip-
tion languages that have the capability of modeling archi-
tecture at both high and low levels of abstraction [7][10]. 
Both systems are extensible, allowing architects to model 
arbitrary architectural properties. Acme also provides 
language and tool support for architectural styles that can 
be freely composed together to form new styles. 

Although they differ in the level of abstraction, abstract 
and concrete component and connector views contain 
many of the same elements, and we initially expected that 
mapping between these levels would be straightforward. 
However, when we began designing a tool to aid archi-
tects in mapping an abstract view to a more concrete one, 
we were surprised to find a number of hard technical 
challenges. For example, we found that it is often neces-
sary to change typing relationships when refining an ar-
chitectural design. Furthermore, more concrete architec-
tural views may lack support for design-level information 
including connector representations, architectural styles, 
and properties, raising the question of how to represent 
this information at the concrete level. 

 
Concrete Views. A concrete component and connector 
view is an architectural view of the components and con-
nectors in a system that expresses the same conceptual 
architecture of the more abstract view, but commits to 
implementation strategies for each of the components and 
connectors. This view may omit non-functional require-
ments, not because they are unimportant but because they 
cannot be directly implemented. Unlike an abstract C&C 
view, a concrete view is typically complete in that it 
specifies all of the components and all of their interfaces. 

In this section, we begin by defining more precisely 
what we mean by abstract and concrete architectural 
views. Next, we describe an abstract architecture that will 
be used as a running example for the rest of the paper. 
We then discuss each of the three key refinement chal-
lenges—and corresponding refinement strategies—that 
we identified: mapping typing relationships, refining con-
nectors, and handling partially overlapping information 
between views. 

 
Relation to Module Interconnection Views. Concrete 
component and connector views of an architecture may 
appear to be similar to a module interconnection view of 
source code, but they differ in that the components in a 
concrete C&C view are potentially run-time objects, not 
static source code modules, and connectors may be richer 
than simple module bindings. In practice, a run-time com-
ponent may be implemented by many modules or by part 
of a module, and more than one component of the same 
component type (and with the same implementation code) 
may exist in the system. Furthermore, connectors may 
perform tasks such as buffering or network communica-
tion. Thus, the mapping between architectural elements in 
a concrete C&C view and modules in a module intercon-
nection view may not be one-to-one. 

2.1. Abstract and Concrete Views 

Abstract Views. An abstract component and connector 
view is an architectural view of the components and con-
nectors in a system that is focused on design-level con-
straints. In order to permit a high level of abstraction, and 
to maximize design-level reuse, this view avoids commit-
ting to an implementation strategy for the individual com-
ponents, connectors, and interfaces between them. An 
abstract architectural view may have high-level specifica-
tion information that has no direct analog at a more con-
crete level, such as non-functional requirements, the order 
of architectural events, or style information. 

The OMG’s Model-Driven Architecture (MDA) also 
defines two different architectural views: platform-
independent and platform-dependent [21].  In our taxon-
omy, both of these views generally share characteristics 
with concrete component and connector views or module 
interconnection views, depending on if they focus on 
component and connectors or code modules.  This paper 
is thus concerned with refinement at a higher level of 
abstraction compared to the refinements discussed in the 
MDA. 

Abstract architectural views may also be incomplete 
specifications in that they focus on issues that are of par-
ticular interest at the design level. For example, an ab-
stract view may represent only the main datapath through 
a system, abstracting away other possible communication 
paths.  

Examples of Concrete Views. Concrete component and 
connector views can be modeled in a number of architec-
ture description languages; ADLs that provide tool sup-
port for generating code from concrete C&C views in-
clude xADL 2.0, ArchJava,1 and UML 2.0 [2][7][21]. 
The code generation tools require specifications of com-

 
Examples. Architecture description languages based on 
process algebras provide fairly abstract views of architec-
ture, where interfaces are often represented as a collection 
of events with ordering constraints [4]. The SADL lan-
guage supports refinement from abstract designs, such as 
a generic connector, to more concrete implementation 
choices, such as a shared variable implementing that con-
nector [16].  

                                                           
1Since ArchJava is a complete language, it technically 
provides a compiler rather than a code generator. 
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Figure 2. A Simple Pipe & Filter Abstract Architecture. 

ponent interfaces that are complete and similar to those 
found in implementation languages. 

Despite their concreteness, these languages all support 
component and connector views rather than (or in addi-
tion to) simple module interconnection views. Compo-
nents in these views represent run-time objects with state 
and functionality, and which may be instantiated multiple 
times during program execution, in contrast to static code 
modules. These languages also support user-defined con-
nectors with rich functionality. 

2.2. Example Abstract Architecture 

Throughout this paper we will refer to an example of an 
abstract component and connector view for a pipe and 
filter system, presented in Figure 2. This architecture con-
sists of three components (a data source and sink, and a 
filter component called Capitalize), and two pipes connect-
ing them. The Capitalize component is decomposed into a 
sub-architecture consisting of another pipe and filter sys-
tem. The pipes have properties associated with them, such 
as buffersize and throughput. The roles of the pipes spec-
ify the protocols of interaction that the pipe understands. 
We desire to refine this architecture into an implementa-
tion. As mentioned above, this may seem straightforward, 
but there are a series of refinement decisions that need to 
be made to relate this abstract architecture to an imple-
mentation. 

2.3. Challenge: Types 

Types are an important mechanism for achieving design-
level reuse at both the abstract and concrete levels of ar-
chitecture. These two levels, however, may use types in 
quite different ways according to the intended modeling 
purpose of each level. 

Concrete architecture representations, following con-
ventional implementation languages, typically use types 
to characterize the interfaces of a component. These inter-
faces state what functions are used in inter-component 
communication, as well as what data is passed between 

these functions. In many cases, these interfaces are ex-
pected to be complete (including all relevant functions), 
both in order to guide implementors and to form the basis 
for a sound implementation-level type system. 

In contrast, an abstract architectural view is more 
likely to use types to organize component specifications. 
These specifications are generally focused on issues of 
particular interest to the architect, and may therefore omit 
interface details that are irrelevant to these issues. Al-
though component interfaces can be of interest at the ab-
stract architectural level, many abstract representations 
focus more on the ordering of communication events or 
on non-functional properties. 
 
Type Mappings. Because of these differences in empha-
sis, the type structure of an abstract architectural view 
may be quite different from that of a corresponding con-
crete view. Thus, component and connector types may not 
be in a one-to-one correspondence, complicating the chal-
lenge of refining an abstract view into a more concrete 
one. 

An abstract architecture may not attempt to character-
ize the full behavior of its components, and therefore may 
use a single component type to describe two components 
that have significant differences at the implementation 
level. In Figure 2, for example, the upper, lower, split, and 
merge components are all modeled with the Filter compo-
nent type. 

A concrete architectural view may want to represent 
these as four distinct types, both in order to capture dif-
ferences in interface or behavior and to express an im-
plementation strategy that uses different modules for the 
two components’ code. For example, an implementation 
in Java would likely use different classes to represent the 
upper and lower components, because these have differ-
ent behavior. The converse is also possible, although 
probably less likely: a single concrete implementation 
may be flexible enough to implement two different ab-
stract component types. 
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Type System Structure. In addition to differences in the 
relationships modeled between types, abstract and con-
crete ADLs may have type systems with different struc-
ture. 

Because of these differences in expressiveness, the 
subtyping relationships that hold at the abstract level may 
not be legal at the concrete level of architecture, requiring 
different type structures at the two levels of abstraction. It 
is also possible that a subtyping relationship that is not 
modeled at the abstract level could be added at the im-
plementation level, simply because inheriting the func-
tionality of one component is convenient when imple-
menting another component. 

Concrete ADLs, following implementation languages, 
often use conventional type systems that focus on imple-
mentation-level substitutability. A crucial characteristic of 
conventional type systems is that all the external services 
a component requires are stated in its type, along with a 
subset of the services that the component provides.2 This 
characteristic ensures that when the type of some compo-
nent is given, any component implementation that con-
forms to the type can be used in the actual system without 
violating basic rules of component composition. 

2.4. Challenge: Complex Connectors 

A distinguishing characteristic of architecture description 
languages is that they model architectures using explicit 
connectors, rather than bindings that implicitly connect 
one component to another [17]. Many abstract architec-
ture description languages have rich connector modeling 
features, such as the ability to declare new connector 
types or define the substructure of connectors [10][16]. 
Other ADLs provide sophisticated models of connector 
behavior through process algebras [4]. 

More abstract languages focus on modeling, and often 
their type systems have a different structure. For example, 
both the Acme ADL and the PVS theorem proving lan-
guage [24] use type systems where types are arbitrary 
logical predicates. In these systems, one type is a subtype 
of another if the predicate of the first type implies the 
predicate of the second type. 

Unfortunately, more concrete architecture description 
languages typically have weaker facilities for modeling 
connectors. For example, ArchJava allows developers to 
specify connector types and implementations, but neither 
supports an architecture-level decomposition of those 
connectors into more primitive pieces [7]. The UML 2.0 
can express connector type information through UML 
association classes [13], but it does not support connector 
decomposition. Thus, when refining an abstract architec-
tural view into a more concrete one, a key question is 
how to represent the abstract view’s rich connector in-
formation in the context of the more concrete view. 

Predicate-based type systems such as those in Acme 
and PVS are ideal for design-level modeling, because 
they allow architects to combine specifications in flexible 
and rich ways. For example, consider an abstract architec-
ture that is a hybrid of the pipe-and-filter and repository 
architectural styles [11]. In this example, a filter compo-
nent type has at least one input and one output port, while 
a client component in the repository style has at least one 
port to communicate with the repository. A component in 
this architecture might inherit specification information 
from both the filter and the repository client specifica-
tions, yielding a component that has at least three ports: 
two for communicating with other filters and one for 
communicating with the repository. 2.5. Challenge: Overlapping Information 

Unfortunately, examples like this cannot be expressed 
in the more limited, implementation-level type systems of 
concrete ADLs. A specification that a component has a 
port implies a requirement that the environment will 
match that port up with some other component, and there-
fore conventional type systems require a component type 
to list all of the ports it might possibly have (or at least all 
those ports that are expected to be connected at run time). 
There is no way to say that a filter component has “at 
least two ports”—instead, one must say that the filter has 
“at most” or “exactly” two ports. Therefore, one cannot 
combine the filter type with a repository component type 
(which defines a third port that is prohibited by the con-
crete filter specification) at the concrete level as one can 
in the abstract level. 

Abstract and concrete architectural views may have par-
tially overlapping information, making it potentially more 
complicated to relate the two in consistent ways. For ex-
ample, non-functional properties and style information in 
an abstract architecture may have no implementation arti-
fact that can be directly associated with them. Abstract 
ADLs may support more than one representation for a 
component, but in a concrete, implementation-oriented 
view only one representation will be chosen. Similarly, a 
concrete architectural view may have interface and im-
plementation details that are omitted in the abstract view. 

Overlapping information is not necessarily a problem 
for translating an abstract view into a concrete one: the 
architect need only omit those parts of the abstract archi-
tecture that are not directly realized at the concrete level, 
and add any necessary interface and implementation in-
formation. However, building tools that keep these views 
consistent as both evolve over time can be quite challeng-
ing due to information overlap. In order to synchronize 

                                                           
2This distinction in the way required and provided ser-
vices are handled is known as the contravariant subtyping 
principle. 
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abstract and concrete views that may have been individu-
ally modified, a tool must keep track of which informa-
tion overlaps and which is common to the two views, so 
as to avoid losing information during the synchronization 
operation. 

3. Refinement Strategies 

In this section, we outline general strategies for address-
ing each of the challenges outlined in Section 2. In some 
cases, the refinement strategy is straightforward as there 
is a one-to-one correspondence between elements in the 
abstract and concrete views. However, there are a number 
of cases where refinement decisions need to be made by 
the architect. In many refinement tools, these decisions 
are made before the tools are written, providing the archi-
tect with only the option chosen by the tool designer. In 
general, however, different refinement decisions are ap-
propriate in different circumstances, and so ideally a re-
finement tool should allow the architect to specify these 
decisions. 

3.1. Type and Instance Mappings 

The first refinement challenge is mapping relationships 
between types and instances from the abstract component 
and connector view to a more concrete, implementation-
oriented view. Typically, component types and instances 
in the abstract view will have corresponding types and 
instances in the implementation view. However, as dis-
cussed earlier, there are a number of exceptions that the 
architect must be able to address. 

For each element in the abstract view, the architect 
should be able to specify whether there is a corresponding 
element in the concrete view. For example, the Filter type 
in the Capitalize example is probably too generic to have 
any implementation code associated with it, because it has 
neither a concrete interface nor behavior of its own. 

On the other hand, sometimes component instances in 
the abstract architecture correspond to both a type and an 
instance at the more concrete level. For example, the up-
per and lower filters in the Capitalize example have differ-
ent behavior, and so each will probably have a corre-
sponding type in the concrete architectural model. Thus, 
architects must also be able to specify whether a compo-
nent instance should be translated into just a component 
instance or into a type/instance pair. 

As described earlier, the type systems used in abstract 
and concrete architectural views may differ, so that re-
finement will not always preserve subtyping relationships 
between the types of architectural elements. For example, 
consider a small variation of the Capitalize architecture 
above, where the architect modeled Upper, Lower, Split, and 
Merge component types that subtype the Filter type. At the 
concrete level, it might be possible for Upper and Lower to 

subtype from Filter, but Split and Merge would be prohib-
ited from subtyping from Filter because of their additional 
ports. This example illustrates that architects must be able 
to specify any changes in the inheritance hierarchy as part 
of the refinement strategy. 

3.2. Connector Mappings 

Typically, concrete models have relatively sophisticated 
facilities for representing components and ports, but 
weaker support for modeling connectors and roles. For 
example, the concrete C&C views provided by UML 2.0, 
and ArchJava do not allow developers to define the sub-
structure of a connector. Thus one of the biggest refine-
ment challenges is deciding how to refine connectors. 

In simple cases, the built-in connectors provided by 
modeling languages may be sufficient. For example, both 
ArchJava and UML 2.0 provide default connector seman-
tics that directly bind the required port of one component 
to the provided port of another. For connectors that have 
richer behavior, at least two general strategies are possi-
ble: 

1. Implement a complex connector as a component in 
the concrete view, connected by simple connectors. 
This allows architects to leverage the concrete lan-
guages’ considerable support for components, at the 
cost of blurring the distinction between components 
and connectors at the concrete level. 

2. Leverage view-specific support for connectors, de-
spite its limitations. 

Only the first strategy can be used to model the substruc-
ture of a connector in languages that do not directly sup-
port rich connector representations. However, strategy 
two can have both design-level and implementation-level 
advantages. At the design level, it better preserves the 
architect’s intent by distinguishing more clearly between 
components and connectors. It may also be beneficial at 
the implementation level due to implementation support 
for reuse of connector code. For example, object request 
brokers (ORB) allow developers to define customized, 
reusable connectors using hooks within the ORB infra-
structure. Similarly, ArchJava, UML 2.0, and xADL 2.0 
allow developers to specify a class that implements con-
nector functionality. 

3.3. Handling Information Overlap 

Dealing with the challenges of overlapping or missing 
information in architectural refinement depends largely 
on the details of the abstract and concrete views in ques-
tion. General strategies for handling information overlap 
include choosing information to omit, adding new archi-
tectural information as part of the refinement, and in some 
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cases, changing the form of architectural information to 
suit the new view. 

For example, if a component in an abstract view has 
multiple representations, it is likely that only one of these 
representations will be chosen for the concrete view, with 
the others omitted. At the same time, the concrete view 
may add additional interface and implementation details 
that are absent from the abstract view. Finally, informa-
tion on architectural style might be preserved by putting 
components from each relevant style into a corresponding 
implementation package or module. The refinement tool 
we have built, discussed in the next section, uses all of 
these refinement strategies. 

4. Refining Acme to ArchJava 

As discussed in Section 3, mapping between an abstract 
C&C view and a concrete C&C view involves choices 
about how to map specific elements. Because different 
choices may be appropriate in different circumstances, 
architects should be able to choose particular refinement 
strategies depending on the situation. This choice could 
be made by the architect as the architecture is being de-
veloped, or as part of the refinement process. 

In our work, we chose to allow the architect to indicate 
the choices in the architectural model, rather than within 
the refinement tool. We believe that this has the following 
benefits: 

1. The architect does not need to learn another tool to 
refine the architecture, and the choices are explicitly 
stored in the architectural model. 

2. The architect can specify the choices incrementally, 
as the architecture is being developed. 

3. The architectural tool can be used to check whether 
the architecture has sufficient detail to be refined, and 
not begin the refinement process until the architec-
ture is ready for refinement. 

We developed a prototype tool for refining abstract archi-
tectural descriptions in the Acme language into concrete 
architectural descriptions, represented as skeleton code in 
the ArchJava language. Programmers can then implement 
the actual behavior of the system within the ArchJava 
skeleton. 

We begin this section by providing a brief introduction 
to Acme and ArchJava, explaining why we chose these 
languages as the source and target of refinement, and con-
tinue by describing the design of the refinement tool. 

4.1. Abstract Architecture Description in Acme 

Acme represents an abstract architectural model as an 
annotated, hierarchical graph. Nodes in the graph are 
components, which represent the principal computational 

elements and data stores of the system. Arcs are connec-
tors, which represent the pathways of interaction between 
the components. Components and connectors have ex-
plicit interfaces (termed ports and roles, respectively). A 
system (or configuration) is defined as a set of compo-
nents and connectors, in addition to attachments of ports 
to roles. To support various levels of abstraction and en-
capsulation, components and connectors can be hierarchi-
cally decomposed into representations. 

 To account for semantic properties of the architecture, 
elements in a system can be annotated with extensible 
property lists. Properties associated with a connector 
might define its protocol of interaction, or performance 
attributes (e.g., delay, bandwidth). Properties associated 
with a component might define its core functionality, per-
formance attributes (e.g., average time to process a re-
quest, load, etc.), or its reliability. 

In addition to representing generic systems, Acme al-
lows architectural styles (or families) to be defined. An 
architectural style defines a set of types for components, 
connectors, roles, ports, and properties together with a set 
of rules that govern how elements of those types may be 
composed. An Acme system can declare itself to be in 
particular styles, which means that the elements in the 
system may use types defined by that style, and that the 
system satisfies the rules of that style. For example, the 
architecture in Figure 2 is in a Pipe-Filter architectural style. 
The component types available in this style are Filters, 
DataSinks, and DataSources; the only connector type is a Pipe. 
Port types discriminate between the writing and reading 
ends of a filters and data nodes, and role types between 
the source and sink ends pipes. Rules defined in the fam-
ily say, for example, that pipes may only have two ends. 

Acme’s type system supports multiple inheritance, al-
lowing an element to simultaneously extend types taken 
from multiple architectural styles. Acme’s type system is 
predicate based, as discussed in section 2.3, so that an 
element is a subtype of any type whose properties and 
rules it satisfies. Architects can exploit Acme’s predicate 
type system to specify refinement strategies, as described 
below. 

Acme is an ideal source language for our tool because 
it embodies many of the characteristics of abstract design 
languages, including a predicate-based type system, ex-
tensible property support, rich modeling of connectors, 
and support for multiple representations of architectural 
elements. However, the principles behind our tool design 
apply to any abstract ADL with similar characteristics. 

4.2. Concrete Architectures in ArchJava 

ArchJava is an extension to the Java programming lan-
guage that allows software engineers to specify a concrete 
software architecture within implementation code [2]. 
The research contribution of ArchJava is a novel type 
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system, which statically ensures that the implementation 
of a software system conforms to the declared architec-
ture. 

ArchJava is representative of other concrete architec-
tural views in the architectural features it supports, in-
cluding components, ports and explicitly typed connec-
tors. ArchJava components are run-time entities, not code 
modules, and the language supports rich forms of archi-
tectural dynamism. ArchJava’s guarantee of architectural 
conformance makes it a particularly appropriate target for 
our refinement tool, because the tool can build on 
ArchJava to provide a conformance guarantee between an 
abstract Acme architecture and the Java code that imple-
ments the ArchJava architecture. However, the refinement 
strategies used in our tool are appropriate for many other 
concrete ADLs as well. 

4.3. The ArchJava Refinement Style 

When refining an abstract Acme architecture into a more 
concrete ArchJava architecture, the architect must make a 
number of refinement choices and express these to the 
refinement tool. We have chosen to leverage Acme’s 
style support, using an ArchJavaFam style to define how 
such choices are expressed in Acme. Because Acme sys-
tems can satisfy multiple styles, we can “mix in” the 
ArchJavaFam style so that it can be used in conjunction 
with other styles. For example, if we wish to refine the 

model represented by Figure 2, it would need to satisfy 
both the Pipe-Filter family and the ArchJavaFam family 
(and filters would need to satisfy both the ArchJavaCom-
ponentT type and the FilterT type, for example). 

family ArchJavaFam = { 
 property isPreserved : boolean; 
 
 property type GenerationPolicyT =  
  enum {instanceOnly, typeOnly, instanceAndType}; 
 property type MethodSignaturesT = set{string}; 
 
 component type ArchJavaComponentT = { 
  property extendParent : boolean; 
  property classGenerationPolicy : GenerationPolicyT; 
 } 
 
 connector type ArchJavaConnectorT = { 
  property isImplicit : boolean; 
  property extendParent : boolean; 
  property classGenerationPolicy : GenerationPolicyT; 
  } 
 
 port type ArchJavaPortT = { 
  property provides : MethodSignaturesT; 
  property requires : MethodSignaturesT; 
  } 
} 
 

Figure 3. The ArchJava Architectural Style. 

Figure 3 shows the ArchJavaFam style, which defines 
how the architect expresses refinement decisions. All 
components that are intended to be refined to an ArchJava 
component must implement the ArchJavaComponentT type. 
This type defines two properties that allow the architect to 
express how the type hierarchy is mapped in the refine-
ment process (sections 2.3 and 3.1): 

• The classGenerationPolicy property determines 
whether an ArchJava class is generated correspond-
ing to the Acme type (typeOnly), or if a class is gener-
ated corresponding to an Acme instance (in-
stanceOnly), or if both classes are generated, with the 
instance class extending the type class (instanceAnd-
Type). This property allows ArchJava components to 
be generated for Acme instances (with or without ex-
tending the Acme type), in order to capture the be-
havior of different instances more effectively. 

• If the extendParent property is true for some Acme 
component type A, and Acme component type A ex-
tends some other Acme component type B, the gen-
erated ArchJava type for A will extend the generated 
ArchJava type for B; otherwise, A will not extend B. 
This property allows the ArchJava inheritance hier-
archy to differ from the Acme inheritance hierarchy. 
Note that the extendParent property is only applicable 
when the classGenerationPolicy property is either type-
Only or instanceAndType. When the classGeneration-
Policy property is instanceOnly, no information from 
Acme’s inheritance will be used. 

Connectors have the same two properties as components, 
allowing the type hierarchies representing connectors to 
differ in the two languages. In addition to custom connec-
tor types [3], ArchJava provides a built-in connector 
(which binds required methods directly to provided meth-
ods) that can be selected by setting the isImplicit property 
to true. 

To specify the details of a port’s interface in Acme, an 
architect can specify a set of provided and required meth-
ods as properties of the port. When the corresponding 
port is generated in ArchJava, method stubs are added 
corresponding to these properties. 

In addition to having to satisfy the structural character-
istics of the family, there are rules defined that each sys-
tem must satisfy. If any of these rules are unsatisfied, then 
refinement will not be allowed. Among these rules are: 

1. If an element has more than one representation, then 
only one of them may have the isPreserved property 
set to true. This is the representation that will be 
mapped to an ArchJava implementation. 
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2. All components, connectors, and ports must satisfy 
their corresponding ArchJavaFam types. 

3. No connectors can be dangling. 

4. When two ports are connected, their provides and re-
quires method signatures must match. 

Using the ArchJavaFam family allows the architect to 
specify decisions that need to be made in order for the 
Acme architecture to be refined into an ArchJava pro-
gram. Our family definition provides defaults for each of 
these decisions, allowing an architect to omit properties 
that match the default rules. For example, in our default 
refinement strategy, components and connectors do not 
extend their parents in Acme, instance classes are gener-
ated for components and type classes are generated for 
connectors, and the set of requires and provides methods 
is empty. Our preliminary experience with the refinement 
tool suggests that these defaults can eliminate many of the 
property declarations that would otherwise be required. 

4.4. Acme to ArchJava Refinement 

Figure 4 shows how an architect could specify a portion 
of the architecture from Figure 2. For the lower compo-
nent, the architect specifies a classGenerationPolicy of both, 

meaning that the refinement will create the ArchJava 
component classes Filter and Lower (with Lower extending 
Filter), and the lower instance will be of type Lower. If the 
classGenerationPolicy was typeOnly then no Lower compo-
nent class would be generated in ArchJava, and lower 
would be an instance of Filter. If the classGenerationPolicy 
was instanceOnly then the Lower component class would be 
generated, but would not extend Filter at the ArchJava 
level. In addition to this, the architect creates a Pipe 
(called pipe1), specifies that the built-in ArchJava connec-
tor will be used (by setting isImplicit to true), and then at-
taches one of the roles to the output port of lower. 

system capitalize : PipeFilterFam, ArchJavaFam = { 
 
component lower : FilterT, ArchJavaComponentT = { 
 property classGenerationPolicy = instanceAndType; 
 property extendParent = false; 
 port input : InputT, ArchJavaPortT = { 
  property requires = {}; 
  property provides = {“void processChar (int c)”}; 
 } 
 port output : OutputT, ArchJavaPortT = { 
  property requires = {“void processChar (int c)”}; 
  property provides = {}; 
 } 
} 
 
connector pipe1 : PipeT, ArchJavaConnectorT = { 
 property isImplicit = true; 
 property classGenerationPolicy = typeOnly; 
 property extendParent : false; 
 roles {src, snk}; 
} 
 
attach lower.output to pipe1.src; 
attach merge.input1 to pipe1.snk 
… 
} 
 

Figure 4. An Acme system to be refined. 

public component class Filter = { … } 
 
public component class Lower extends Filter { 
 public port input { 
  provides void processChar (int c) {} 
 } 
 public port output { 
  requires void processChar (int c) {} 
 } 
} 
 
public component class Capitalize extends Filter { 
 private final Lower lower = new Lower (); 
 
 connect lower.output, merge.input1; 
 … 
} 
 
Figure 5. The ArchJava generated from the Acme system 
in Figure 4. 

The ArchJava skeleton resulting from the refinement is 
shown in Figure 5. A component class called Filter is gen-
erated, in addition to the Lower component class. The 
Lower component class has input and output ports with the 
appropriate required and provided methods. Another 
component class, Capitalize, is created for the system en-
compassing the architecture, and a field pointing to the 
subcomponent lower (of type Lower) is generated. 

Finally, lower will be connected to the merge filter with 
a built-in connector using the connect command. Because 
of our use of ArchJava’s built-in connectors, the concrete 
architecture does not explicitly name the pipe1 connector.  

4.5. Implementation 

We have implemented an Eclipse-based tool that allows 
architects to perform architectural refinement in the man-
ner outlined in this paper. Our tool builds on Eclipse 
plugins that support development in Acme and ArchJava, 
respectively. The first plugin, AcmeStudio, provides 
graphical support for the development of architectural 
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Concrete Architecture to Code.  A number of projects 
have looked at refining a concrete architecture to code, 
using code generation, library support, or integration with 
an implementation language. In the category of code gen-
eration, for example, UniCon provides tools that use an 
architectural specification to generate connector code that 
links components together [26].  

styles and models in Acme [25]. The second plugin pro-
vides an integrated development environment for the 
ArchJava language. 

The Acme-ArchJava refinement tool is also imple-
mented as a plug-in to the Eclipse IDE framework, and 
acts as a bridge between AcmeStudio and ArchJava. Ar-
chitects develop architectures in AcmeStudio according to 
the ArchJava style described in Section 4 (in addition to 
the architectural style they would normally use), and de-
fine the properties required by the ArchJava style. Once 
this is complete, and the rules of the ArchJava style are 
satisfied, an action in AcmeStudio is enabled that gener-
ates the required ArchJava skeleton code. This code can 
then be developed in the ArchJava Eclipse plugin. 

In the category of library support, C2 and its succes-
sor, xADL 2.0, provides runtime libraries in C++ and 
Java that connect components together as specified in an 
architectural description [7][16]. Darwin also provides 
infrastructure support for implementing distributed sys-
tems specified in the Darwin ADL [14]. 

Furthermore, the Rapide system allows an architectural 
specification to be filled in with implementation code in 
an executable sub-language or in languages such as C++ 
or Ada [12]. The ArchJava language uses a similar strat-
egy but builds an architecture description language into 
the Java implementation language rather than the other 
way around. 

We continue to refine the implementation of the tool to 
make it more robust, and plan to release it as open source 
software in November, 2004. 

5. Related Work 

All of these code generation, library support, or im-
plementation language integration systems assume that 
the starting point is a fairly concrete architectural view. 
Our work is complimentary in that it starts with an ab-
stract architectural view and provides tool support for 
refining it into a more concrete view. 

Theory of Refinement.  The theoretical basis of architec-
tural refinement was discussed in the context of the 
SADL architectural description language. SADL formal-
izes architectures in terms of theories, providing a frame-
work for refining an abstract architecture into a concrete 
one, while ensuring that the resulting architecture is con-
sistent with the original architecture [19]. However, 
SADL provides no tool support for refining abstract ar-
chitectures to more concrete ones, requiring architects to 
make this transition by hand. 

6. Conclusion and Future Work 

This paper describes a number of key challenges in refin-
ing an abstract component and connector architectural 
view to a more concrete, implementation-oriented com-
ponent and connector architectural view. We propose 
general strategies for addressing each of these challenges, 
and report on the design of a concrete tool that supports 
refinement from abstract architectures expressed in Acme 
to more concrete architectures expressed in ArchJava. We 
believe that this tool-supported refinement technology 
will be essential to the long-term vision of keeping an 
architectural design consistent with implementation as a 
program evolves. 

More recent work on the theory of refinement includes 
Egyad et al.’s methodology for easing refinement by inte-
grating refinement information into family architectures 
[8], and Baresi et al.’s modeling of architectural refine-
ment in terms of graph rewriting rules [5]. 
 
Architecture to UML.  Perhaps the most related work 
comes from the work mapping architectures to UML 
[1][9][15]. In this work, many of the issues in mapping 
connectors to a more concrete view are discussed but are 
limited to representing connectors as classes at the con-
crete level. They acknowledge the issue of mapping in-
stances and types, but do not discuss this in detail. 

In future work, we plan to enhance the refinement tool 
to support round-tripping between abstract Acme and 
concrete ArchJava representations of a software architec-
ture. A key challenge will be synchronizing changes 
made separately to the two representations without losing 
the information that is particular to either representation. 

 
Refinement Process.  The OMG’s Model-Driven Archi-
tecture provides a method and set of notations for moving 
between platform-independent and platform-dependent 
designs [21].  The MDA proscribes a two-level develop-
ment process, in which deployment details are added at 
the low level so that the same abstract design can be used 
in different concrete settings.  Work on the MDA com-
pliments our work by investigating platform dependence 
issues that appear at a lower level of architectural abstrac-
tion. 
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