
Submitted for publication

Coordinating Adaptations in Self-managing Systems

An-Cheng Huang, Shang-Wen Cheng, Peter Steenkiste, David Garlan, and Bradley Schmerl
School of Computer Science, Carnegie Mellon University

{pach, zensoul, prs, garlan, schmerl}@cs.cmu.edu

Abstract—Self-managing systems are able to dynamically
adapt to changes in the environment and user needs without
human intervention, thus reduce the administrative overhead
of system management. Many self-management modules are
being developed to provide different self-management capabili-
ties, and being able to reuse these existing modules will greatly
reduce the necessary efforts for developers of self-managing
systems. However, this requires infrastructure support for
plugging different self-management modules into the same
system and coordination mechanisms for resolving potential
conflicts among adaptations proposed by these modules. In this
paper, we propose a self-managing system architecture that
addresses these two requirements. Using a case study, we show
how multiple self-managing modules can work together on top
of a shared infrastructure that provides low-level system access
functionalities. We then focus on the issue of coordinating
conflicting adaptations and propose coordination mechanisms
based on observations from the case study.

I. INTRODUCTION

The cost of managing computing systems is becoming a
major issue as computing systems increasingly operate in
heterogeneous environments, consist of diverse and distributed
elements, and need to deal with changing user needs. To
address this problem, an emergent research direction is to
develop self-managing systems that can automatically adapt
themselves to run-time environment changes according to
high-level policies specified by human developers.

Many research projects are developing self-managing sys-
tems that focus on different aspects of self-management. For
example, some may focus on maintaining the overall system
performance, some tune the run-time parameters of individual
system elements, and others react to element failures in the
system. A natural question is: can we use these existing
self-managing systems as modules to develop self-managing
systems that can handle multiple aspects of self-management?
We believe this can be achieved by (1) providing infrastructure
support so that existing self-management modules can be
plugged into a system, and (2) providing coordination mech-
anisms to resolve any potential conflicts among adaptations
proposed by different self-management modules in a system.

In this paper, we propose a self-managing system architec-
ture that fulfills the above requirements. First, let us describe
our model of self-managing systems.

A. Self-management model

A self-managing system has been characterized as a col-
lection of Autonomic Elements (AEs) [1]. An AE consists of

one Autonomic Manager (AM) and the managed element(s).
In such a system, each AM performs adaptations within its
AE according to high-level policies established by developers
and to interactions with other AMs.

This model can be expanded by adding system-wide self-
management. In contrast to element-level adaptations such as
changing the run-time parameters of the managed element,
system-wide self-management performs higher-level adapta-
tions such as inserting a new AE into the system, removing
an old one from the system, and composing a collection of AEs
to deliver the desired functionality. Therefore, in this model,
there are two types of AMs. An Element-level AM (EAM) is
the AM in the original model and is usually integrated with
the managed element. A System-wide AM (SAM) performs
system-wide adaptations to produce an optimal configuration
of AEs according to high-level policies specified by develop-
ers.

We envision that various SAMs will be developed with
different capabilities (e.g., managing the whole system vs.
a few elements) and foci (e.g., performance vs. security
concerns). The developer of a self-managing system can select
the appropriate SAMs and plug them into the system to
add system-wide self-management capabilities. Examples of
SAMs under development include Libra [2], which finds the
globally optimal configuration for a self-managing system,
and Rainbow [3], which adapts to system and environment
changes.

To summarize, a self-managing system may consist of
multiple EAMs and SAMs. Each AM in the system monitors
the system state, evaluates a high-level objective specified
by developers, and acts on the managed system/element(s)
accordingly. Such a system can in turn be used as an element
in a higher-level system.

B. Application example

Let us use a video conferencing system to illustrate self-
management at both the element and system scopes. As shown
in Figure 1, the system is self-managed by two system-wide
AMs. SAM1 focuses on dynamically finding a globally opti-
mal (minimizing the total latency) configuration of three types
of elements—video conferencing gateway (VGW), handheld
proxy (HHP), and end-system multicast [4] proxy (ESMP)—
for the users (who have different devices and conferencing
applications). SAM2 has a more targeted focus—when the
running VGW fails, SAM2 finds a lowest-cost VGW to replace
it. On the other hand, at the element level, the three types of
elements are also self-managing, i.e., each element includes an
EAM. The ESMPs dynamically adjust the overlay multicast



Submitted for publication

vic/SDR

vic/SDR

NetMeeting

NetMeeting

handheld

VGW

HHP

Multicast
overlay

ESMP
EAM

EAM

EAM

EAM

EAM

SAM1 SAM2

(All elements)

Manage

Data
connection

Fig. 1. A self-managing video conferencing system

tree based on latency and bandwidth performance. The VGW
adjust the frame rate according to available bandwidth when
forwarding video streams. The HHP encrypts the data if the
handheld user is connecting from an open wireless network.

C. Dimensions of self-management

From the above example, we see that the adaptations per-
formed by different AMs in the system may potentially conflict
with each other. For example, when the VGW fails, SAM2
may find a replacement that is different from what SAM1
would use in a globally optimal configuration. Similarly, the
ESMPs may be adjusting the overlay while SAM1 attempt
to use a different set of ESMPs. Therefore, to integrate such
a self-managing system, it is necessary to coordinate the
adaptations of different AMs in the system.

To better understand when and how adaptations need to
be coordinated, we categorize AMs along the following three
dimensions.
Granularity: We identify three different granularities of self-
management. (1) Element-level: An EAM performs self-
management within its AE, e.g., the elements in the video con-
ferencing example. (2) Global system-wide: A SAM performs
self-management on the whole system, e.g., SAM1 finds the
optimal composition of AEs in the video conferencing system.
(3) Local system-wide: A SAM performs self-management on
a small subset of system elements, e.g., SAM2 finds a new
VGW to replace a failed one in the video conferencing system.
Time scale: AMs may be invoked at different time scales
to perform self-management. Some AMs are “periodic” (e.g.,
SAM1 is invoked to look for the optimal configuration every x
seconds), and we roughly categorize them into long-term (long
interval between invocation) and short-term (short interval).
Other AMs are invoked in response to certain events (e.g.,
SAM2 is invoked when the VGW fails), and we call them
triggered AMs. Note that a global AM is likely to be long-
term since its adaptations will likely incur a higher overhead
(monitoring global system state, optimization, etc.) and cause
more significant disruptions (e.g., replacing many elements).
Similarly, short-term and triggered AMs may be invoked
frequently, so they are likely to be local or element-level.

System Access

Translation

Environment
Measurement

Resource
Discovery Action

SAM SAM

ElementElement Element

EAMEAM EAM

Coordinator

Manage

Coordinate

AE

�
Developer

Coordination
parameters

Fig. 2. Self-managing system architecture

Concern: AMs may focus on different concerns about the sys-
tem. For example, some AMs try to improve the performance
of the system, and others try to ensure the security. Examples
of other concerns include cost, availability, etc.

These three properties are closely related to the coordination
of adaptations performed by different AMs. Granularity deter-
mines whether two AMs may conflict “spatially”, i.e., operate
on the same element(s). Time scale determines whether two
AMs may conflict “temporally”, i.e., operate at the same
time. When two AMs conflict, the relative importance of their
concerns will determine how they should be coordinated.

In the remainder of this paper, we introduce our architecture
for self-managing systems, describe a case study, and propose
mechanisms for coordinating adaptations in self-managing
systems according to observations from the case study.

II. SELF-MANAGING SYSTEM ARCHITECTURE

We propose the self-managing system architecture shown
in Figure 2. Its three main parts—coordinator, system access
infrastructure, and translation layer—are described below.

First, as already discussed, AMs may have different gran-
ularities, time scales, and concerns and may want to adapt
the system in different and potentially conflicting ways. The
coordinator receives “proposed” adaptations from the AMs and
determines which ones should be executed and which ones
should be rejected such that the system as a whole exhibits
coherent behaviors. Later we will describe our initial design
of the coordination mechanisms.

Secondly, AMs need to access the managed elements/system
to gather information for decision making and to perform self-
management actions. This is simple for EAMs since they are
tightly integrated with the managed elements. However, SAMs
cannot access the elements/system directly. If each SAM must
have its own implementation of system access functionality,
it would increase the development cost of SAMs and also
introduce potential conflicts (e.g., different SAMs measure the
same property differently). Therefore, we have identified three
commonly recurring mechanisms—environment measurement,
resource discovery, and action—that are needed by SAMs to



Submitted for publication

obtain information and effect changes. We propose a shared
system access infrastructure that provides these mechanisms
so that every SAM does not need to reimplement the system
access functionality. This also ensures that every AM uses the
same low-level system access mechanisms.

Finally, the translation layer is necessary since each SAM
may model the system/elements at different levels of abstrac-
tion (e.g., one SAM identifies the request queues within an
element while another only identifies that element as a network
host). When a SAM needs to access the system, the access
operation is transformed by the translation layer so that the
system access infrastructure can understand it (e.g., translating
an abstract element identifier to the actual IP address and port).

Next, we present a case study of integrating a self-managing
system using this proposed architecture.

III. CASE STUDY

We have developed a self-managing video conferencing sys-
tem similar to the one depicted in Figure 1. The current system
prototype can establish and maintain a video conferencing
session for users who have different devices and conferencing
applications. As described in Section I-B, there are three types
of system elements: VGW, HHP, and ESMP. We also have two
system-wide AMs: Libra [2] (as SAM1) and Rainbow [3] (as
SAM2). Libra is responsible for finding the globally optimal
configuration of elements for the users, and Rainbow reacts to
ESMP failure by finding the lowest-cost ESMP to replace the
failed one.

We have built a shared infrastructure that provides the
basic system access functionalities. We use the global network
positioning (GNP) [5] approach to provide network latency
estimates between network nodes. Network-sensitive service
discovery (NSSD) [2] is used for finding suitable system
components. Wrappers are used to provide a common interface
for effecting changes in the system.

We have designed and implemented a translation infrastruc-
ture that consists of a translation repository and individual
translators. The repository contains mappings between the
abstract models used by the SAMs and the actual system
(e.g., mapping an abstract element to a combination of an IP
address and a port). The SAMs communicate with the system
access infrastructure through the translators, which uses the
mapping information stored in the repository to translate
between the SAMs’ high-level representation and the system-
level representation used by the system access infrastructure.

The current prototype demonstrates that a shared system
access infrastructure and a translation layer allow independent
AMs to work together in the same system. On the other hand,
compared to the system described in Section I-B, the scope of
coordination in our current system is more limited, mostly due
to limitations of the component implementations. For example,
among the three elements, only ESMP has self-management
capabilities, and replacing the running VGW requires user
intervention, making it infeasible to invoke Libra periodically
to find the optimal configuration.

As a result, we currently use a simple pattern of coordi-
nation: Libra is only invoked to construct the initial configu-
ration. Once the conferencing session starts, the ESMPs will

dynamically adjust the overlay among them. If an ESMP fails,
Rainbow will override ESMPs’ adaptations by replacing the
failed ESMP with a new one. This new set of ESMPs will
then look for the best overlay, and so on.

We are now studying the coordination issues by introducing
more interesting coordination patterns into the system. In the
remainder of this paper, we describe our current design of the
coordination mechanisms.

IV. COORDINATING SELF-MANAGEMENT ADAPTATIONS

In our architecture, all AMs in the system perform self-
management adaptations by continuously monitoring the ele-
ment/system state, evaluating the observed state to determine
the best action, and performing the action to change the state.
How different adaptations should be coordinated depends on
the relations between them. For example, given adaptations
A1 and A2, if A1 observes the system state at time t1 and
performs an action at t2, and A2 observes at t3 and acts at
t4 (t1 < t2 < t3 < t4), then A1 and A2 are independent, i.e.,
they do not conflict with each other. Similarly, if A1 observes
element e1 and changes e1, and A2 observes element e2 and
changes e2, they are also independent. On the other hand, if
A1 and A2 both observe element e1, but A1 changes e2 while
A2 changes e3, then A1 and A2 do not directly conflict with
each other; however, executing both of them may eventually
cause problems. Finally, if A1 and A2 want to change the
same element at the same time, then only one of them
should be executed. Therefore, conceptually, the coordinator
can construct a “conflict graph” based on the relations among
adaptations. Such a graph identifies clusters of adaptations
where adaptations within the same cluster conflict with each
other, and adaptations from different clusters are independent
of each other. Next, we look at two important relations—
temporal and spatial relations—among adaptations and how
they affect the conflicts between adaptations.

A. Temporal and spatial relations

Let us look at these relations more formally. Each adaptation
performed by an AM can be seen as a combination of a “read”
(monitoring and evaluation) and a “write” (action) operations
on the system state. Given an adaptation A, we define the
following notations.
• r(A) and w(A) represent the time when A reads from the
system state (observes) and the time when A writes to the state
(acts), respectively. Note that we assume the state is changed
at time w(A), but in reality, it may take some time for all
changes to propagate through the system.
• M(A) is the set of elements read (monitored) by A. For
example, if A reads the load of element e1, then e1 ∈ M(A);
similarly, if A reads the latency between e1 and e2, then
{e1,e2} ⊆ M(A).
• M′(A) is the set of elements “indirectly” read by A. For
example, if A reads the video quality on e1, and the video
quality is affected by the frame rate output by e2, then e2 ∈
M′(A).
• Similarly, C(A) and C′(A) represent the sets of elements
written (changed) and indirectly written by A, respectively.



Submitted for publication

• R(A) = M(A)∪M′(A), i.e., the “read set” of A.
• W (A) = C(A)∪C′(A), i.e., the “write set” of A.
• RW(A) = R(A)∪W(A).

Given two adaptations A1 and A2, there are two kinds of
temporal relations:

(1) If “r(A1) < w(A1) < r(A2) < w(A2)”, then A1 and A2

are temporally independent.
(2) If “r(A1) < r(A2) < w(A1) < w(A2)” or “r(A1) < r(A2) <

w(A2) < w(A1)”, then they are temporally dependent.
If two adaptations are temporally independent, they can both

be executed without conflicting with each other. (Note that
they may still conflict at a higher level, e.g., one wants to
increase security, thus decreasing performance, while another
wants to do the opposite. We consider this a policy-level issue
that can be addressed using the coordination patterns described
later.) On the other hand, if they are temporally dependent
(i.e., both reads precede both writes), their spatial relation will
determine whether they conflict with each other. There are four
kinds of spatial relations between A1 and A2:

(1) RW(A1)∩RW (A2) = /0: A1 and A2 are spatially indepen-
dent, so both can be executed without conflicting with each
other.

(2) R(A1)∩R(A2) 6= /0, W (A1)∩RW (A2) = /0, and W (A2)∩
RW(A1) = /0: A1 and A2 are read dependent. If the coordinator
allows both adaptations to be executed, they will not conflict
with each other in terms of the elements they change. How-
ever, in some cases, this may cause long-term problems. For
example, suppose one AM performs an adaptation that reduces
the frame rate output of the video server in response to a drop
in available bandwidth, and another AM performs an adap-
tation that reduces the codec quality at an intermediate video
transcoder in response to the same problem. If both adaptations
are executed, the system as a whole may overcompensate for
the bandwidth problem.

(3) W (A1)∩R(A2) 6= /0 and W (A1)∩W (A2) = /0: A1 and A2

are read-write dependent, i.e., A1 will change the state that A2

is based on. As a result, if both adaptations are allowed to be
executed, A2 becomes stale. Although A1 and A2 do not make
conflicting changes to the system state, it is likely that, given
the new state, A2 may no longer be necessary or may require
some modifications.

(4) W (A1)∩W (A2) 6= /0: A1 and A2 are write dependent, i.e.,
they attempt to make conflicting changes (changing the same
element(s)). Only one of them can be executed.

B. Simplified coordination model

From the above analysis of the temporal and spatial relations
between adaptations, we see that coordinating adaptations
comprehensively is difficult for two particular reasons. (1)
Since AMs adapt at different time scales, the coordinator
cannot know when each AM will want to perform its actions;
therefore, the coordinator may need to wait indefinitely (during
which time no adaptations can proceed) to find all temporally
dependent adaptations. (2) For read dependent and read-write
dependent adaptations, it will be difficult for the coordinator
to know whether they will in fact conflict with each other
eventually. Therefore, as a first step, we adopt a simplified
coordination model as follows.

The coordinator divides time into coordination windows.
AMs monitor and evaluate the system state independently and
propose the desired actions to the coordinator. The coordinator
assumes that all proposed adaptations within each window
are based on the same system state, i.e., they are temporally
dependent (since all their writes are still pending). At the end
of each window, the coordinator examines the spatial relations
among all proposed adaptations within the window and groups
the adaptations into sets such that adaptations from different
sets are spatially independent, and adaptations within each set
are read, read-write, or write dependent. Such a grouping is
an approximation of the actual “conflict graph”. Finally, from
each set the coordinator selects one adaptation and informs
the proposing AM to execute it (i.e., always allow only one
adaptation in read, read-write, and write dependent cases).

Of course, the assumption above will not always hold,
e.g., one adaptation based on the same state as adaptations
in window i does not propose an action until window i +
1 because the evaluation takes too long. In this case, the
late adaptation will be rejected since it is based on stale
state. Therefore, each adaptation should be associated with
a time stamp of the system state that it is based on so that
the coordinator can handle stale adaptations. Another issue
to be resolved is the selection of an appropriate size for
the coordination window. If the window is too large, the
effectiveness of self-management is decreased (e.g., increased
reaction time). If it is too small, many temporally dependent
adaptations will end up in different windows, resulting in
many stale adaptations. Furthermore, coordination windows
can be dynamic and adaptive. For example, when an event
occurs that triggers adaptations, the coordinator, expecting to
receive proposed adaptations in response to the event, can
preemptively end the previous window and start a new one.
In addition, since these triggered adaptations are likely quick
repairs, the coordinator can reduce the window size to improve
the reaction time for these triggered adaptations.

C. Coordination patterns

Using the above model, after grouping adaptations into
spatially independent sets, the remaining task of the coordi-
nator is to select one adaptation from each set of spatially
dependent adaptations. This selection is determined by the
coordination pattern that the developer integrating the system
wants to enforce, which depends on both the concerns of the
individual AMs and any additional concerns of the developer.
For example, if security is more important than performance,
the developer may want to enforce a pattern where a security-
based adaptation always takes precedence over a performance-
based one if they conflict with each other. We now use the
video conferencing system in Figure 1 to illustrate several
examples of common patterns and how a developer can specify
the desired pattern to the coordinator.
(1) Compete: When AMs have “comparable” concerns, their
adaptations can be compared, and the best one selected. For
example, SAM1 proposes an action that reduces the latency
by 100 ms, and an ESMP proposes to change its connection to
reduce the latency by 60 ms. In this case, the coordinator can



Submitted for publication

compare these two actions and let SAM1 execute its action.
Note that this pattern can be coupled with the developer’s
preference, e.g., the developer may want the ESMP’s action
to be selected unless SAM1’s action is at least twice as good.
To specify such a pattern, the developer can specify a weight
parameter for each AM, for example, weights 1 and 2 for
SAM1 and ESMP, respectively.
(2) Override: When the concerns of AMs are not comparable,
the developer may have a strict precedence among the dif-
ferent concerns. For example, if cost is more important than
performance, the developer may want SAM2’s adaptations to
always take precedence over SAM1’s when they conflict with
each other. This pattern can be specified by assigning a priority
parameter to each AM (priority 1 for SAM1 and 2 for SAM2).
(3) Divide and conquer: Different AMs may work best un-
der different conditions. For example, SAM2 is suitable for
quick repair, and SAM1’s adaptations (with higher overhead
and disruption) are more cost-effective when the latency has
become relatively high. Therefore, when SAM1’s and SAM2’s
adaptations conflict with each other, the developer may want
SAM2’s action to be selected when the latency is below
a threshold (otherwise, select SAM1’s). Such a pattern can
be specified using a precondition parameter: preconditions
(latency > x) and (latency ≤ x) for SAM1 and SAM2,
respectively. Then each AM’s adaptations will only be selected
if its precondition is true.
(4) Global objective: There may be a global objective that the
developer wants to optimize. In the previous example, SAM1
and SAM2 are both capable of repairing the system config-
uration when a VGW fails. However, the developer wants to
minimize the disruption, so the action with a shorter disruption
should be selected. Therefore, the developer should be able
to specify a global objective parameter—in this case, the
minimization of the disruption caused by adaptations—such
that different AMs’ adaptations are compared accordingly.
(5) High-level constraints: In addition to the above patterns,
the developer may also have high-level constraints on whether
an AM’s actions should be selected. For example, the devel-
oper may impose a constraint on the disruption caused by
SAM1’s actions so that an action proposed by SAM1 can only
be selected if the disruption it causes is shorter than x seconds.
Such a high-level constraint for an AM can also be specified
using the precondition parameter, for example, in this case,
the developer can specify the precondition (disruption ≤ y
seconds) for SAM1.

V. RELATED WORK

Many previous studies have designed and implemented
self-management capabilities within individual elements. For
example, end-system multicast endpoints that automatically
modify the multicast overlay according to available band-
width [4], a video streaming controller that adjusts the video
quality based on available bandwidth [6], and a cluster frond-
end that distributes request within the cluster based on request
locality [7] System-wide self-management capabilities have
also been studied, for example, automatically composing a
series of adaptors to adapt a server’s output to a client’s

input [8], [9], dynamically allocating resources for resource-
intensive Grid applications [10], and the Libra and Rainbow
projects used in this paper.

In contrast to our bottom-up approach, others have looked
at a top-down approach. For example, Wolpert et al. presented
an approach for deriving appropriate objectives of individual
agents in a multi-agent system according to a global objec-
tive [11]. Ours approach may be more suitable when there is
no explicit global objective or when the global objective is not
a summary of local objectives.

VI. CONCLUSIONS

In this paper, we have proposed a self-managing system
architecture that allows developers to integrate existing self-
management modules into a coherent system. We have pre-
sented a case study where we developed a self-managing
video conferencing system using self-managing elements and
system-wide self-management modules. We have constructed
a system access infrastructure and a translation layer that are
necessary for different self-management modules in the system
to access the managed elements through a common interface.
Finally, we have described our initial design of coordination
mechanisms for enforcing the desired coordination patterns
based on the temporal and spatial relations between different
adaptations.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] A.-C. Huang and P. Steenkiste, “Network-Sensitive Service Discovery,”
in Proceedings of the Fourth USENIX Symposium on Internet Technolo-
gies and Systems (USITS ’03), Mar. 2003.

[3] S.-W. Cheng, D. Garlan, B. Schmerl, J. P. Sousa, B. Spitznagel, and
P. Steenkiste, “Using Architectural Style as a Basis for System Self-
repair,” in Proceedings of the Third Working IEEE/IFIP Conference on
Software Architecture, Aug. 2002.

[4] Y. Chu, S. Rao, and H. Zhang, “A Case for End System Multicast,” in
Proceedings of ACM Sigmetrics, June 2000.

[5] T. S. E. Ng and H. Zhang, “Predicting Internet Network Distance with
Coordinates-Based Approaches,” in Proceedings of IEEE INFOCOM
2002, June 2002.

[6] P. Chandra, Y.-H. Chu, A. Fisher, J. Gao, C. Kosak, T. E. Ng,
P. Steenkiste, E. Takahashi, and H. Zhang, “Darwin: Customizable Re-
source Management for Value-Added Network Services,” IEEE Network,
vol. 15, no. 1, Jan. 2001.

[7] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel,
and E. Nahum, “Locality-aware Request Distribution in Cluster-based
Network Servers,” in Proceedings of ASPLOS-VIII, Oct. 1998.

[8] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer, D. Culler,
N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R. Katz,
Z. Mao, S. Ross, and B. Zhao, “The Ninja Architecture for Robust
Internet-Scale Systems and Services,” IEEE Computer Networks, Special
Issue on Pervasive Computing, vol. 35, no. 4, Mar. 2001.

[9] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko, “Automated Planning
for Open Architectures,” in Proceedings for OPENARCH 2000 – Short
Paper Session, Mar. 2000, pp. 17–20.

[10] C. Liu, L. Yang, I. Foster, and D. Angulo, “Design and Evaluation of a
Resource Selection Framework for Grid Applications,” in Proceedings
of IEEE International Symposium on High Performance Distributed
Computing (HPDC-11), July 2002.

[11] D. Wolpert, K. Wheeler, and K. Tumer, “Collective Intelligence for Con-
trol of Distributed Dynamical Systems,” Europhysics Letters, vol. 49,
no. 6, Mar. 2000.


