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en years ago, electronic instruments

such as oscilloscopes and spectrum

analyzers consisted almost entirely
of analog hardware controlled by hard-
wired knobs and switches. However, in the
last decade, software has come 10 domi-
nate the implementation of electronic in-
struments.,

A modern oscilloscope’s software com-
ponent may consist of more than a mega-
byte of code providing features such as
complex measurements, waveform stor-
age, and control via a local-area network.
Its internal architecture typically includes
multiple microprocessors running real-
time operating systems, special-purpose
coprocessors for digital signal processing,
and user interfaces that support windows,
pop-up menus, and soft knobs and switches.

The incorporation of software technol-
ogy into electronic instruments hap-
pened so rapidly that software engineers
in this area have not had a rich history of
theoryand practice to draw on. Of course,
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electronic instrument developers aren’t
alone: This problem faces developers of
many contemporary embedded systems.
In contrast, a software engineer develop-
ing a compiler can base his designs on a
well-accepted top-level architecture and
considerable supporting detail in areas
such as algorithms and data structures for
parsing and semantic analysis.

Over the last three years, we have con-
ducted in-depth studies to determine how
formal methods can help us deal with
these problems of increasing software
complexity. This case study describes one
of the outcomes of our research. It illus-
trates how oscilloscope developers can
use formal methods to express a reusable
architecture analogous to the models
available to compiler developers.

While there has been considerable in-
terest recently in applying formal meth-
ods to industrial software development,'
our focus differs from most other work.
Most applications of formal methods tend

29




SR

Signals

DD |0
o) £

AL I

Waveforms Traces

Figure 1. A simple view of an oscilloscope.

to emphasize correctness and formal re-
finement.* In contrast, we focus on using
formal specifications to gain insight into a
system’s required behavior. In this con-
text, specifications play an important role
in clarifying the design and in leading to a
good problem decomposition.

This case study presents the develop-
ment of an abstract oscilloscope specifica-
tion. Our specification uses Z notation. If
you are not familiar with Z, you should be
able to get enough information from the
context to get an intuitive idea of what our
specification does. The box on p. 34 isa
brief introduction to Z and a glossary of
symbols we used in this specification.

Problem and context

Put simply, an oscilloscope is a hard-
ware/software system that displays picto-
rial representations of ime-varying elec-
trical signals. As Figure 1 illustrates,
electrical signals come into the oscillo-
scope through one or more channels and
are converted into waveforms, After some
internal processing, the waveforms are
displayed as pictures called traces.

Several factors complicate this simpli-
fied view. First, an oscilloscope user is typi-
cally interested in only certain aspects ofa
signal, such as its periodic nature, its form
over some small time interval, or its devia-
tion from some other signal. So the user
must have some way to acquire the signal
portions he is interested in. Typically, this
is done with a ‘rigger, which determines
when waveform acquisition should occur,
The trigger could be obtained from one
of the signal channels or from an external
signal source.

A second complication is that oscillo-
scopes are limited in their ability to ac-
quire and display a signal faithfully. To get
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the best performance out of an oscillo-
scope, the user may have to adjust several
parameters so, for example, the signal
falls within the appropriate dynamic
range of acquisition hardware and so the
wavelorm fits on the small display.

A third complication is that an oscillo-
scope usually can do many things besides
displaying waveforms as traces: It can mea-
sure the waveform (for example, rise
time), store and retrieve waveforms, per-
form arithmetic operations on waveforms
(for example, adding two waveforms), dis-
play simultaneous views of one or more
waveforms, and interact with external de-
vices (like workstations). Indeed, there
may be more than 300 user-level com-
mands for configuring and operating an
oscilloscope.

The complexity of today’s oscilloscopes
demands clear user-level models for un-
derstanding how an oscilloscope func-
tions. Toward this end, we have been
working to develop formal specifications
of such models. Beyond the obvious need
to satisfy the requirements of cleanliness,
clarity, and correctness, the primary chal-
lenge in specifying an oscilloscope is to
provide a reasonable treatment of its dy-
namic behavior.

At first it may seem that a simple func-
tional approach might suffice, since, after
all, an oscilloscope basically transforms
signals into traces. However, there are
three very different forms of dynamic be-
havior that the specification must deal
with. The first is the dynamic input signal.
The second is the dynamic acquisition of
waveforms, which generates a sequence of
traces over time, And the third is the dy-
namic oscilloscope configuration, which
determines how, when, and where the sig-
nal is acquired and displayed.

An abstract oscilloscope

Our goal was to provide a users’ abstract
model of an oscilloscope to clarify its user-
accessible functions. (We've described
elsewhere how a similar specification
vields a reusable framework.”) Our model
is abstract in two ways: It suppresses the
functions’ implementation details and is
independent of any user interface. For ex-
ample, our model neither indicates which
functions are implemented in hardware
and which in software, nor tries to explain
how those functions are controlled by spe-
cific knobs, menus, or buttons.

Our plan ofattack was to adopt a simple
functional view: We described an oscillo-
scope as a mathematical function applied
to asignal to produce a series of races. We
handled the intrinsic complexity of the
mathematical function by treating it as a
composition of simpler functons, each of
which describes part of the oscilloscope
process.

To account for a user's ability to con-
figure an oscilloscope, we treated the os-
cilloscope building blocks as higher order
functions, Thus, given a set of user-pro-
vided parameters, an oscilloscope compo-
nent produces a new function that per-
forms some transformation on its input
data.

Higher order functions nicely model
both the user’s intuition about how to
configure an oscilloscope and the actual
operating behavior of typical oscilloscope
implementations. Typically, the user sets
up values for input parameters and then
the oscilloscope repeatedly applies the re-
sulting functions in real time to produce a
series of traces. Traces for periodic signals
give the illusion of being live because new
trace values rapidly overwrite nearly iden-
tical old values.

The specification. To illustrate our
approach, we specify a very simple oscillo-
scope: It has only two channels and pro-
vides no advanced functions like measure-
ment or storage.

Data types. In Z, data types are sets of val-
ues. We model our notions of time — both
absolute and relative — as natural num-
bers (N) and voltage and screen coordi-
nates in terms of integers (Z). (Both natu-
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ral numbers and integers are predefined
in Z.) Thus, we have five basic types:
AbsTime==N
RelTime==N
Volts=—=Z
Horiz=—=1
Viri=1

We choose 1o base the time domain on
natural numbers instead of real numbers
because an oscilloscope has a finite
bandwidth, and so it has finite time resolu-
tion. You can think of AbsTime as the
number of time ticks since some absolute
reference time (say, nanoseconds since
the invention of the oscilloscope). Simi-
larly, you can think of RelTime as the
number of ticks since a relative reference
time (say, nanoseconds since a particular
trigger event). We used a discrete defini-
tion of volts for a similar reason —an oscil-
loscope has a finite voltage resolution due
to the thermal noise of its electrical com-
ponents.

We define the data types Signal, Wave-
form, and Trace as mathematical func-
tions:

Signal== AbsTime — Volls

Waveferm==AbsTime—+—>Valts
Trace=— Horiz+—>Vert

A signal is modeled as a function from
time to voltage. This definition abstracts
away the passage of time: You can observe
the signal’s entire past and future at any
point in real time, A waveform is obtained
by extracting a bounded time slice of a sig-
nal. Thus, we model a waveform as a par-
tial functon from time to voltage. (That
is, the function is defined for only some
values of its domain.)

A trace isa graphical view of awaveform,
To allow for clipping when displayed on a
finite-sized display, we define the trace asa
partial function in the Horiz-Vert coordi-
nate space. Figure 2 illustrates the rela-
tionship between signals, waveforms, and
traces.

Channels. A channel represents the path
along which a signal is converted to a
trace; it is modeled as a functon from sig-
nals to traces, We define a channel’s be-
havior as a composition of higher order
functional components. Figure 3 shows a
road map for this part of the specification,
which is decomposed into components
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Figure 2. Signals, waveforms, and traces.
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Figure 3. Oscilloscope channel.

that handle cowpling, acquisition, scaling,
and clipping.

A typical oscilloscope processes the in-
coming signal in various ways before wave-
forms are extracted from it. As an exam-
ple of this kind of function, we define a
function to subtract a DC offset from a
signal. The specification offers three
choices: DG, AC, and GND. If the user
chooses DC coupling, the signal is passed
along unaltered; if AC, the dc function
subtracts the DC voltage component; and
if GND, the operation is a constant func-
tion that vields zero volts for all time val-
ues:

Coupling ::= DCI AC| GND

Couple: Coupling — Signal — Signal
de: Signal x AbsTime — Volts

Couple DC 5=5
Couple AC s= (A t: AbsTime» s (t) —de (5,1))
Couple GND s= (A t: AbsTime s D)

These Z fragments define the type Cou-
pling as a disjoint union of the constants
DC, AC, and GND. Couple and dc are de-
fined as global functions, constrained by
the predicates listed below the horizontal
line, which effectively define Couple for
each coupling option.

We have omitted the definition of the de
function, which computes a signal's aver-
age DC component at any point in time.

The Couple function is typically imple-
mented as a simple high-pass filter, and its
design iswell-understood. If you intended
to use this abstract model to compute the
signal transformation precisely, you
would need a more detailed mathematical
description,

In writing a formal specification for a
system as complex as an oscilloscope, it is
important to focus on the questions that
you seek to answer and omit irrelevant de-
tails. In the Z specification for the Couple
operation, it may seem as if we have left
out the hard part — the definition of dc —
and gone to great pains to be precise
about the easy parts.

The justification for this approach is
thatwe are more interested in defining an
abstract framework than in specifying the
low-level details of an oscilloscope. This
framework specifies oscilloscope opera-
tions as higher order functions that are
applied to userspecified parameter values
and then composed. It is important to be
able to show that all functions of an oscil-
loscope fit into this model, but the details
of many of those functions — such as Cou-
ple — may not be interesting, Further, we
gain more significant insight when we
specify more complex oscilloscope opera-
tions, such as Acquire.

The Acquire operation lets the user se-
lect the aspect of the signal he is interested
in. In effect, it converts a signal to a wave-

31



| Volts S
7 e, ; _ /-\ ~ AbsTime
scaleH and scaleV
Vert Trace
/ . PRI A T T

— posnH

Clipped trace
0,maxy \ maxX, maxy
0,— maxY maxX, — maxy

Figure 4. Converting a waveform to a trace.

form by extracting a time slice. The wave-
form is identical to the original signal ex-
cept that it is defined only for the time val-
ues within a bounded interval. A
TriggerEvent is a reference point for that
interval; two RelTime values are supplied
to specify a duration and delay relative to
the TriggerEvent, as Figure 2 illustrates.

Triggerbvent== AbsTime

Acquire. RelTime x RelTime
— Triggerfivent
—» Signal

— Waveform

Acquire (delay,dar) trig s=
[t: AbsTime | trigtdelay < t <
trigtdelayrdur] <s

A waveform is converted into a trace in
two steps, as Figure 4 illustrates. The first
step comprises the scaling and position-
ing component of the channel specifica-
tion; the second comprises the clipping
component.

The scaling and positioning compo-
nent is embodied in the WaveformTo-
Trace function, which performs a domain
conversion by converting each time /volt-
age pair into a pair of horizontal and verti-
cal values. The WaveformToTrace func-
tion also determines the horizontal and
vertical axes.

The nominal conversion (a zero-valued
posnH and posnV) aligns both the mini-
mum time point in the waveform with the
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horizontal origin and the ground voltage
level with the vertical midpoint.

WaveformToTrace:
RelTime X Volls x Horiz % Vert
— Wawveform — Trace

WaveformToTrace (scalefd, scaleV,
posnd, posnV) w=
| Lt 1z AbsTime, v: Volts|
{F=2ve wall=t—min({domzw)e
TimeToHoriz(t 1, scaleH, posnt])
= VoltsToVert (v, scaleV, posn V)|

The WaveformToTrace function uses
the TimeToHoriz and VolisToVert func-
tions to convert individual tme and volt-
age values. The parameters scaleH and
scaleV establish the calibration of the
graphical coordinates with respect to time
and voltage. The horizontal and vertical
offset positions, posnH and posnV, pan
through the coordinate space.
maxH : Horiz
maxV': Vert
TimeTolToriz:

AbsTimex RelTime % Heriz — Horiz
VoltsToVert : Volts x Volts % Vert — Vert

TimeToHoriz (LscaleH, posnH) =
(¢ = maxH) div scalef] + posnt

VoltsToVert (v.scaleV, pasnV) =
(v* maxV) div scaleV+ posnV

The second step in converting a wave-
form to a trace clips the trace to fit into a
display screen of width maxH and height

maxV. The Clip function excludes points
in the trace that lie outside the screen's
display space. (Clipping is expressed suc-
cinctly in Z using both domain and range
restriction operators, as the box on p. 34
describes.)

Clip: Traer — Traee

Clip tr= (0 .. maxH) <ir (0 ., maxV)

Now we combine the components of
the channel subsystenm: coupling, acquisi-
tion, scaling, and clipping. The channel
configuration state is explicitly defined as
a collection ol usersupplied parameters
for a channel. We encapsulate those pa
rameters in a Z schema and then, 1o get
the channel subsystem, we apply the pre-
viously defined higher order functions to
those parameters and compaese the result-
ing functions.

——ChannelParamsters———mm———
e Coupling

delay, dur: RelTime

scaleH : Rellime

scaleV: Volls

fprosnV: Vert

frosnud : Horiz

ChannelConfiguration:
Channellarameters — Triggerbivent
— Signal — Trace

ChannelConfiguration = Tk ng:
Triggerbivent »
Clipr o Wauveform ToTrace( p.scaleH,
p.scaleV,p. posnE, . posn V')
s Acgquire (p.delay, p.dur) trig
o Couple pr.c)

The resulting ChannelConfiguration
function neatly bundles each component
function of the channel subsystem (o get
yet another higher order function. In this
case, of course, the higher order function
takes the entire channel configuration
state to produce a trace from a signal.

Triggers, A waveform is acquired in re-
sponse to a TriggerEvent. Figure 5 illus-
trates the trigger part of the specification.

A TriggerEvent is an AbsTime value that
corresponds to the occurrence of an in-
teresting feature on a signal. The user
controls the parameters to define “inter-
esting.” However, the first thing a user
must do is pick the channel from which
trigger events are selected. SelectChannel
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accomplishes this:

Channel == CH1| CH2

SelectChannel: Channel
—» Sigmal % Signal — Signal

Select Channel CH | (570 85) =3
SelectChannel CH2 (5, 5) = 5

After selecting a signal source, the user
selects the coupling with the Couple func-
tion. We can use the coupling function de-
fined earlier. However, typical oscillo-
scopes do not let the trigger coupling value
be GND because a constant zero-valued
function could not be used for a trigger.
We show later how this restriction is en-
forced.

When the user has selected a signal
source and conditoned that signal, he
can look for TriggerEvents. In this simple
case, the user defines an interesting signal
event as one for which the signal crosses a
specific voltage level along a positive or
negative slope. To specily this, we first in-
troduce the types Slope and Level and
then define the function DetectTrig,
which produces a set of time values repre-
senting the extracted trigger events.

Slope::= POS| NEG
Level== Volis

DetectTrig: Level x Slope — Signal
— P Triggmtivens

Y t: DetectTrig (L sl) s @
((st=POS) = s (1=1) =l<s (1)) A
((sl= NEGY = 5(t)SI<5(1-1))

This definition does not say that the re-
sult of Detect Trig contains every point on
the signal with the given slope and level,
only that every point selected has those
properties. Such nondeterministic func-
tions are particularly uselul for leaving de-
tails of the model open for future refine-
ments.

In this case, it turns out that some oscil-
loscopes ignore some of the points on the
trigger signal, so the predicate on Detect-
Trig is just what we want. (This specilica-
tion docs, however, leave open the possi-
bility that the oscilloscope might produce
no traces.)

We then put the pieces together for the
Trigger subsystem by applying the opera-
tions to the user-supplied parameters
and composing the component func-
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Figure 5. Trigger selection.
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Figure 6. The whole oscilloscope.

tions.

—— TriggerParamelers
i Level

sl Slope

ts: Channel

te: Coupling

tee (AC DO

TriggerConfiguration :
TriggerParameters — Signal x Signal

= P Trggerfovent

TriggerConfiguration fi=
DetectTrig (fo.l, fr.s0) & Couple fo.te
& SelectChannel p.ts

This subsystem specification reuses the
Couple function but constrains the values
of its input parameler — in the predicate
of the TriggerParameters schema — to
AC and DC only.

The overall oscilloscope. With these
specifications in place, we can put all the
pieces together. Figure 6 shows the archi-
tecture: Two channels, each with its own
set of parameters, produce traces as de-
fined by trigger events selected from one
of these channels.

The following specification captures
this architecture formally. It relates each
trace in the displayed sequence to the
Triggerkivent used to acquive it. It does
not require that every trigger produce a
trace, only that every trace must have been
produced by a trigger. The overall oscillo-

scope isdefined as

Ho)l H{\'{I’J—‘ (-U;Ic
s, s2: Signal
cpl, cfi2: ChannelParameters
tpr: TriggerParameters
ts1, ts2: seq Trace

Viran sl o
3 trig: TriggerConfiguration tp (s1,52)
t= ChannelConfiguration cfl trig s1

Vi:ranis2Ze
3 trig: TriggerConfiguration ip (s1,52) »
t= ChannelConfiguration o2 trig 2

Scaling up

In scaling up this specification to deal
with more complicated, realistic oscillo-
scopes, you mustaddress three issues.

First, you must describe the instru-
ment’s electrical properties and limita-
tions more accurately. An instrumentisan
electronic circuit and so has many physi-
cal limitations. A formal oscilloscope
model must describe the details of electri-
cal behavior. For example, oscilloscope
designers are concerned with phenom-
ena like time skew and jitter, bounded fre-
quency response, and both voltage and
time calibration inaccuracies. Qur specifi-
cation defines an idealized oscilloscope
that you can further constrain to specify a
real oscilloscope that takes these limita-
tions into account. Hayes has done just
that by extending our work in a similar
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Using Z

In addition to the basic Z types defined on p. 25, we used two additional kinds of type
definitions in our oscilloscope specification. Asimple type definition is written

X==Y

which defines X as an abbreviation for Y.
An enumerated type definition is written in the form:

X:z:=C1|C2|C3

This defines X'to be a set of three atomic values: C1, C2, and C3.

The following define the symbols used in this article. In the symbols' definitions, S, X, and
Yare sets; for example, x:X, y.Y. Ris a binary relation; for example, R: X< Y. Last, fand g
are functions; for example, fg: X — X.

Z The set of integers.

N The set of natural numbers.

X—=Y The set of total functions from Xto Y.

X——=Y  Thesetof partial functions from Xto Y.

A x: Xe f(x) The function that, given an argument xof type X, produces the result f(x).
XxY Cartesian product.

X3¥ xmaps to y.

S<R Domain restriction: {x+—y| xe S » (x>} e R).

RI>S Range restriction: {x =y | ye S A (x}(=2))e R}

fog Functional compasition.

min S The minimum value of the set S.
domR The domain of the relation A.
ran A The range of the relation A.

Is Z an appropriate notation for the industrial use of formal methods? Overall; we have
found Z well suited to our needs. In particular, its ability to define both deterministic and
nondeterministic functions, coupled with the ability to encapsulate state, is sufficient for a
functional style of formal description, such as the one illustrated in this article.

This approach is loosely related to functional decomposition as a design methodology,
since it views the overall oscilloscope-design problem as one of decomposing a complex
function into many simpler functions. On the other hand, it differs considerably insofar as
those functions are basic, interchangeable, reusable components thatcan be composed inta
more complex instruments. In other specifications, we have relied more heavily on the use of
schemas and Z's schema calculus. We have written elsewhere aboutalternative ways to use
Z to model an oscilloscope and Z's drawbacks.!

Reference

1. D. Garlanand N. Delisle, "Formal Specifications as Reusable Frameworks,” VDM 80: VOM and Z1,
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formal model of an oscilloscope.”
Second, your specification must be able
to describe a rich repertoire of dynami-
cally configurable oscilloscope opera
tions. We crafted our model to aid rea-
soning about many configurations of
oscilloscope operations. Our simple oscil-
loscope hasa small repertoire of functions
arranged in a fixed configuration — its
operations are limited to modilying pa-
rameter and input-signal values.
However, more sophisticated oscillo-
scopes let you change the channel config-
uration and the trigger system. For exam-
ple, the user should be able to add a
meastrement as an operation on i wave-
[orm. There are two ways to handle sup-
port for dynamic configurations: You can
define an all-encompassing static configu-
ration and disable the operations not in
use, or you can provide explicit recon-
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figuration operations. We took the former
approach in our simple oscilloscope. Be-
cause the DC setting of Couple leaves a
signal unchanged, we might have dynami-
cally reconfigured the channel without
the Couple component. However, defin-
ing all possible configurations becomes
unwicldyas the operations repertoire grows.

Fortunately, the second solution — pro-
viding reconfiguration operations — is
straightforward. You can describe a chan-
nel’s primary flow statically; new opera-
tions tend to branch off at well-defined
points. In the most general case, an
oscilloscope’s channnels are a directed
acyclic graph whose vertices represent op-
erations and edges represent dataflow.
The directed acyclic graph representation
is powerful enough to describe inter-
channel operations, such as the addition
of two waveforms.

Third, a more realistic specification
needs more and richer types. Types are
needed for measurements. Furthermore,
you would have to enhance the definition
of waveforms. Defining a waveform as a
function (as we did) turns out to be insuf-
ficient in more complex oscilloscopes be-
cause there are special waveform types
that require more than one voltage value
for each time-domain element.

Gaining insight

Success in specification writing comes
from knowing what to include and what to
ignore. By taking a simplified view of the
passing of time, this specification be-
comes simpler and more elegant. How-
ever, italso limits the questions the formal
specification can answer.

In this case, the specification does not
clearly describe what happens when the
user modifies a parameter. For example,
the specification gives the illusion thatyou
can reacquire a waveform whose acquisi-
tion window has already passed.

Abstracting away from time turns out to
be a useful approach because there is much
to gain from a steady-state description of
oscilloscope behavior. An alternative,
more detailed formal model could be de-
veloped to explore some dynamic issues.

User’s view, This specification defines a
user's model of an oscilloscope’s internal
operations. We chose to model the user’s
perspective because an electronic instru-
ment is an interactive system that needs a
simple, clean conceptual model, We also
wanted to transcend the biases that arise
from intimate knowledge of how instru-
ments are implemented. All too early in
the design process, engineers tend to think
about concrete issues such as hardware/
software trade-offs and data representa-
tions.

We maintained a high abstraction level
by constantly asking, “Does the user need
to know about that?” Because we chose
the user’s perspective, the specification
can be used both as a basis for design and
for user-level descriptions such as user
manuals,

Formal models. Our work focuses on
using formal notations for gaining insight
into systems. We use mathematical tools
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and models to clarify how a system works
so we can produce better system designs.
Thus, for us formal models are more in-
teractive tools for posing questions and
suggesting solutions than they are away to
document a polished product. In this re-
spect, formal specifications function as
conceptual prototypes that you ask formal
questions of and reason about, much as
youwould experiment with a prototype.

To illustrate how a formal model can
lead to increased insight, consider arith-
metic operations in an oscilloscope. Sup-
pose you want to subtract one signal from
another to examine their differences.
There are three types in our oscilloscope
model on which you can define subtrac-
tion: It could operate on two signals, two
waveforms, or lwo traces.
SubtractS: Signal x Signal — Signal
SubtractW: Waueform x Waveform

— Waveform
SubtractT: Tracex Trace— Trace

SubtractS(s1, $2) = A t: dom(s1)
Idomisl) = dom(s2) e s1(t) —s2(¢)

SublractWiwl, w2) = & 1:dom(wl)
|dom(wl) =dom(u2) e wl{t) —u2(t)

SubtractT(t1,12) =A x:dom(s1)
Idom(t 1) =dom(t2) e t1({x)—12(x)

Subtracting signals and waveforms
yields similar results: At each time in ei-
ther domain the result is the voltage dif-
ference between the two operands. Trace
subtraction is performed on graphics ob-

jects, so the result depends on graphical

scaling or poesitioning operations per-
formed on either of the operands.

All three subtraction types could be use-
ful; indeed, different oscilloscopes have
defined subtraction differently. Our for-
mal oscilloscope model exposes these dis-
tinctions to help the developer define a
product that meets user requirements.

Another example that illustrates in-
creased insight is the definition of a wave-
form, ene of the first tasks in developing
an oscilloscope model. We first asked soft-
ware engineers who have built oscillo-
scopes to define waveform. Invariably,
their answers reflected an implementa-
tion-level view, such as:

» A waveform is a 1-Kbyte array of eight-
bit samples.

After some discussion it became clear
that waveforms store time-voltage values,
sowe volunteered a second definition:
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* A waveform is a function from time to
volts,

Although this was a pleasing mathemat-
ical abstraction, we quickly discovered a
serious flaw: Formally, this definition re-
quires a voltage value for sery time value.
But when oscilloscope designers refer to a
waveform, they are referring to acquired
data, which represents voltage values over
some time interval only, This realization
led to an improved definition:

* A waveform is a partial function from
time (o volts.

This is much better (and is the defini-
tion we used in our simple model) , but on
closer inspection it is apparent that it can-
not handle all waveforms that an oscillo-
scope can manipulate. In particular, some

While the goal of
producing provably
correct software is
laudable, our use of

formal reasoning has
very different goals.
We use mathematical
reasoning to explore the
properties of those
specifications.

digital acquisitions store several values for
cach time value, such as the maximum
and minimum value over some small in-
terval centered on that time value. The
third definition associates a unique volt-
age with each time value. This prompted a
fourth, more general definition:

® A waveform is a relation between time
and volts,

A relation is a collection of time-voltage
pairs, so this definition encompasses the
waveforms presented so far. But further
discussion with the software engineers re-
vealed that there are still other waveforms.
In certain acquisiion modes, waveforms
are built out of repeated samplings. Many
of these samples will be duplicates. For
these waveforms, it is important to know
how many repetitions there are of each
time-voltage pair. Asa set of pairs, our def-
inition above precludes this. Thus we ar-
rived at our final definiton:

* A waveform is a bag of timevoltage
pairs,

This example illustrates several things.
First, it underscores the discrepancy be-
tween common practice in building soft-
ware systems — in which designers view
notions like waveforms at a detailed, im-
plementation level — and the practice of
modeling such entities in an abstract
mathematical form.

Second, it illustrates how developing a
good formal model is an interactive pro-
cess that involves considerable domain-
specific knowledge as well as mathemati-
cal expertise.

Third, it shows how precise mathemati-
cal notation helps analyze a definition’s
adequacy.

Fourth, it shows how the resulting ab-
straction both unifies and simplifies the
ideas lurking behind a complex imple-
mentation. This in turn can lead to much
cleaner implementations. For example,
in the past, oscilloscope builders have had
some difficulty managing the many varie-
ties of waveforms that exist in an oscillo-
scope. In previous implementations, this
was reflected in complex, special-purpose
code for handling special waveform cases.
The formal definition exposes what is
common to all of these and leads to a
much cleaner implementation.

Formal reasoning. This nontraditional
use of formal methods to gain insightinto
system design raises questions about the
role of the formal proof. In most applica-
tions of formal methods, people usually
use proofs to verily an implementation’s
correctness: Given a specification and a
proposed implementation, a proof for-
mally demonstrates that the implementa-
tion actually does what the specification
saysit should.

While the goal of producing provably
correct softiware is a laudable one, our use
of formal reasoning has very different
goals. Instead of proving a formal rela-
tionship between specifications and their
implementations, we use mathematical
reasoning to explore the properties of
those specifications.

In this oscilloscope work, our argu-
ments were almost always informal, as the
waveform example illustrates. Of course,
if necessary, we could turn these informal
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conjectures and arguments into formal
theorems and proofs. Furthermore, we
have found that if it is difficult to reason
aboutsome expected property, it is usually
asign that the specification is poorly struc-
tured, if notwrong.

In the oscilloscope model, for example,
we might want to argue that traces portray
input signals accurately. This is relatively
easy to show for the simple oscilloscope.
But if we tried to demonstrate that all trig-
ger values result in some waveform acqui-
sition, a formal argument would quickly re-
veal that our oscilloscope model is deficient.

formal specification provides a
precise, concise system descrip-
tion that forms a basis for formal
and informal reasoning. The formal spec-
ification is both a document for commu-
nication and a tool that leads to increased
insight and understanding of system be-
havior,
Asaconsequence, formal specifications
take on a pivotal role in system develop-
ment as nonexeculable prototypes. We use
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the term “nonexecutable” to contrast for-
mal specifications with prototype code. In
fact, a formal specification — such as the
oscilloscope specification described here
— may be exceutable. However, the bene-
fits from executing such a specification
are very different from those obtained by
reasoning about it.

The insight gained from a formal speci-
fication has two tangible benefits. First, it
can clarify user requirements, leading 1o
products that better meet the users’ needs.
For example, we used the oscilloscope
model to reason about the results of arith-
metic operations on signals, waveforms,
and traces. Second, it can form the basis
for design. There are many possible de-
signs that satisty the formal specification
presented here; there are also many fac-

tors not addressed here, such as details of

the overall system and hardware architec-
tures, that help determine which of these
possibilities are the best. The formal
model can play a key role in making com-
plex problems intellectually manageable
and in searching for solutions.
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Clearly, there is much more work to be
done to understand how formal specifica-
tions can best be used in industrial prod-
uct development. However, our early ex-
perience suggests that they can play an
important role in improving our under-
standing and engineering of complex
software systems. .
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