

Carnegie Mellon University

School of Computer Science / Robotics Institute

nter-

rocess

ommunication

A Reference Manual

Reid Simmons Dale James

Manual Version: August 2011

for IPC Version 3.9.1

I

P

C

 IPC Reference Manual

 2

Abstract

This manual is a programmer’s guide to using the

Inter-Process Communication (IPC) library, a plat-

form-independent package for distributed network-

based message passing. IPC provides facilities for

both publish/subscribe and client/server type com-

munications. It can efficiently pass complicated da-

ta structures between different machines, and even

between different languages (currently, C/C++, Ja-

va, Python and LISP). IPC can run in either centra-

lized-routed mode or direct point-to-point mode.

With centralized routing, message traffic can be

logged automatically, and there are tools available

for visualizing and analyzing the message traffic.

Credits

The IPC was designed by Reid Simmons, a Re-

search Professor in the School of Computer Science

at Carnegie Mellon University. It is based on the

communications infrastructure used by the Task

Control Architecture (TCA), with changes needed

to support the NASA New Millennium Program.

The primary implementers of TCA were Christo-

pher Fedor, Reid Simmons, and Richard Goodwin,

although contributions were made by other mem-

bers of Reid Simmons’ research group. Trey Smith

designed and implemented the xdrgen facility

(see Appendix B).

Contacts

Questions about IPC, and suggestions for future re-

leases may be addressed to:

Reid Simmons (reids@cs.cmu.edu)

Robotics Institute

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh PA 15213-3891

If you send a suggestion for the manual, or a correc-

tion to it, please be sure to specify the manual ver-

sion, which is printed on the cover page. If you

have a question about IPC, be sure to include the

version number, which is printed when the central

server is started.

The IPC mailing list is no longer functional (too

much spam). To request to be informed when new

IPC versions are created, please send email to re-

ids@cs.cmu.edu..

Obtaining IPC Code

IPC is available via the IPC web page:

http://www.cs.cmu.edu/~IPC. The “alpha” release

is typically a stable release with the latest features

and bug fixes, so feel assured using that version (al-

though back versions are also available). The down-

load contains the latest version of this manual, the

IPC source code, installation instructions for most

supported operating systems, the Comview visuali-

zation tool (has not been updated in many years),

and the xdrgen tool for generating IPC format

strings. In addition, the web site contains back-

ground information on IPC.

You can also retrieve IPC via anonymous ftp. Login

to ftp.cs.cmu.edu as “anonymous” and use your

email address as the password. “cd” to

“project/TCA”. That directory contains tarred and

compressed copies of the latest IPC releases.

http://www.cs.cmu.edu/~IPC
ftp://ftp.cs.cmu.edu/

 IPC Reference Manual

 iii

Table of Contents

1 INTRODUCTION .. 1

2 THE CENTRAL SERVER................................ 3

3 DEFINING MESSAGE DATA FORMATS...... 6

4 BASIC IPC INTERFACE FUNCTIONS 10

4.1 Return Type ... 10

4.2 Describe Detectable Errors 10

4.3 Define a Byte Array 10

4.4 Variable Length Byte Array 10

4.5 Message Handler Type 10

4.6 Message Handler Type for Automatic

Unmarshalling .. 10

4.7 Handler Type for Non-Message Events 11

4.8 Handler Type for Connection Notifications11

4.9 Handler Type Subscription Notifications .. 11

4.10 Describe Level of “Verbosity” for IPC

Output .. 11

4.11 Set Variable to Last Detected Error 11

4.12 Print Error Message 11

4.13 Initialize IPC Data Structures 11

4.14 Connect to IPC Communication Network on

a Given Host Machine 12

4.15 Connect to IPC Communication Network . 12

4.16 Connect to IPC Communication Network

without Listening 12

4.17 Disconnect from IPC Communication

Network ... 12

4.18 Is the IPC Network Connected 12

4.19 Is the Named Module Connected 13

4.20 Register Message with IPC Network 13

4.21 Is the Message Defined 13

4.22 Publish a Message 13

4.23 Publish a Variable Length Message 14

4.24 Publish a Fixed-Length Message 14

4.25 Return Message Name 14

4.26 Subscribe to Specific Message Type......... 14

4.27 Subscribe to Specific Message Type with

Automatic Unmarshalling 15

4.28 Unsubscribe to Specific Message Type 15

4.29 Integrate Non-Message Event Handling with

Message Event Handling 15

4.30 Unsubscribe to File-Descriptor Type........ 16

4.31 Get the Open IPC Sockets 16

4.32 Listen for Subscribed Events 16

4.33 Listen for Queued Subscribed Events....... 16

4.34 Listen for Given Amount of Time 16

4.35 Handle One IPC Event 16

4.36 Enter Infinite Dispatch Loop 17

4.37 Return Message Size................................ 17

4.38 Enable Receiving Multiple Messages 17

4.39 Select Level of “Verbosity” for Module

Output ... 17

4.40 Set Priority for Message Instances 17

4.41 Set Message Queue Length 18

4.42 Notify of New Connections 18

4.43 Notify of New Disconnections 18

4.44 Unsubscribe to Connection Notifications . 18

4.45 Unsubscribe to Disconnection Notifications18

4.46 Number of Current Subscribers 18

4.47 Notify of New Subscribers 19

4.48 Unsubscribe to Subscription Notifications 19

4.49 Shut Down Central Server 19

4.50 Shut Down Specific Task 19

5 QUERY/RESPONSE 21

5.1 Reply to a Query Message 21

5.2 Enable Replies Outside a Handler 21

5.3 Await Response to a Query 22

5.4 Send a Query and Block Waiting 22

5.5 Respond with a Variable Length Message 22

5.6 Await a Response with a Variable Length

Message... 23

5.7 Send a Variable Length Query and Block

Waiting .. 23

6 MARSHALLING DATA 24

6.1 Compile a Format String 24

6.2 Define a New Format............................... 24

6.3 Is Format Consistent 25

6.4 Format Associated with a Message Name 25

6.5 Format Associated with a Message Instance25

6.6 Converting Data Structures to Byte Arrays25

6.7 Converting Byte Arrays to Data Structures26

 IPC Reference Manual

 iv

6.8 Unmarshalling a Pre-Allocated Data

Structure .. 26

6.9 Free up a Byte Array 27

6.10 Free the Data Pointer 27

6.11 Free the Elements of the Structure 27

6.12 Marshall a Structure and Publish a Message28

6.13 Combine Marshalling and Response 28

6.14 Combine Marshall and Query 28

6.15 Combine Marshall, Query, and Response . 29

6.16 Write a Textual Representation of The Data29

6.17 Force Data Structure to be an Array 29

6.18 Automatic Data Unmarshalling 29

7 CONTEXTS ... 31

7.1 Get the Current Context 31

7.2 Set the Current Context 31

8 TIMERS ... 32

8.1 Timer Callback Type................................ 32

8.2 Add a Timer ... 32

8.3 Add Timer Invoked Once 32

8.4 Add Timer Invoked Periodically 33

8.5 Remove a Timer 33

8.6 Add a Timer by Reference 33

8.7 Remove a Timer by Reference 33

Appendix A Example Programs........................ 34

Appendix B xdrgen .. 56

 IPC Reference Manual

 1

IPC Reference

Manual

1 INTRODUCTION

The IPC (Inter-Process Communication) software

package is designed to facilitate communication

between heterogeneous control processes in a large

engineered system. An important design principle

for the IPC package was that it should provide suf-

ficient functionality and flexibility to meet the

needs of real-time autonomous systems, being ro-

bust and reliable without weighing the IPC imple-

mentation down with unnecessary “bells and whis-

tles.” IPC can be used by C, C++, Java, Python and

LISP (currently Allegro and Lispworks) processes.

It is supported on a number of different machine

types (including Sun, SGI, x86, PPC, Rad6000,

M68K) and operating systems (SunOS, Solaris,

VxWorks, Linux, IRIX, Windows, MacOS).

An IPC-based system consists of an application-

independent central server and any number of ap-

plication-specific processes (see Figure 1). The cen-

tral server is a repository for system-wide informa-

tion (such as defined message names), and routes

messages and logs message traffic. IPC also sup-

ports direct point-to-point communications between

processes. The application-specific processes inter-

face with the central server, and with each other,

using a linkable library. The interface is the main

subject of this manual.

The basic IPC communication package is quite

simple: It is essentially a publish/subscribe model,

where tasks/processes indicate their interest in re-

ceiving messages of a certain type, and when other

tasks/processes publish messages, the subscribers

all receive a copy of the message. Since message

reception is asynchronous, each subscriber provides

a callback function (a “handler”) that is invoked for

each instance of the message type. Tasks/processes

can connect to the IPC network, define messages,

publish messages, and listen for (and process) in-

stances of messages to which they subscribe.

In addition to IPC message events, tasks/processes

can indicate their interest in responding to other

events (X window events, keyboard inputs, etc.),

where such events can be characterized by input on

a C-language “file descriptor” (fd). This provides

needed functionality to implement more sophisti-

cated event loops.

IPC also supports a version of the client/server pa-

radigm: sending a directed response to a “query”.

Both blocking and non-blocking versions of this

facility are provided. This facility should be used

with caution, as query/response is typically not as

safe a way of programming as pure pub-

lish/subscribe.

To facilitate passing messages containing complex

data structures, IPC provides utilities for marshal-

ling (serializing) a data structure (in any of the sup-

ported languages) into a byte stream, suitable for

publication as a message, and for unmarshalling a

byte stream back into a data structure in the appro-

priate language by the subscribing handlers. These

facilities enable programs to transparently send a

wide variety of data formats, including structures

that include pointers (strings, variable length arrays,

linked lists, etc.) to machines with possibly different

byte orderings and packing schemes and to pro-

grams running different languages. It is recom-

mended that, rather than sending byte-streams di-

rectly, these marshalling/unmarshalling functions be

used as they may improve safety of the overall sys-

tem (by dealing with byte ordering, packing, and

non-flat data structures) with only a small penalty in

added computation time and memory.

IPC can also be used to invoke a user-specified

function at a specific time, or with a specified fre-

quency. These “timer” capabilities enable a module

to perform time-critical actions, or to dispatch

events at specific times.

The IPC package supports message logging and

message data logging. The Comview tool (see the

Comview Reference Manual) can be used to visual-

ize and analyze patterns of communication. How-

ever, the software has not been updated for a num-

ber of years, and may no longer work with current

compilers/OS.

 IPC Reference Manual

 2

Figure 1. Sample Layout of an IPC-Based Distributed System

Central

Server

/* Controlling Module */

main ()

{

 Connect to server

 …
 Publish “A” message

 …

1.1.1.1.1.1.1.1.1 Publish “F” message

 … (etc.)

}

/* ABC Module */

main ()
{

 Connect to server

 Define messages

 Subscribe to messages

 Listen for messages

 (infinite loop)
}

/* Message handlers */

AHander(ref, byteArray)
{

 unmarshall byte array

 code to handle “A” msg

 free byte array and

 unmarshalled data
}

BHander(ref, byteArray)
{

 (Handlers can publish
 messages)

 …

 Publish “Y” message

 …

 Publish “G” message

 …
}

CHander(ref, byteArray)
{

 code to handle “C” msg
}

/* Other routines */

…

…

/* XYZ Module */

main ()
{

 Connect to server

 Define messages

 Subscribe to messages

 Listen for messages

 (infinite loop)
}

/* Message handlers */

XHander(ref, byteArray)
{

 code to handle “X” msg
}

YHander(ref, byteArray)
{

 code to handle “Y” msg
}

ZHander(ref, byteArray)
{

 code to handle “Z” msg
}

/* Other routines */

…

…

…

/* FG Module */

main ()
{

 Connect to server

 Define messages

 Subscribe to messages
 Listen for messages

 (infinite loop)
}

/* Message handlers */

FHander(ref, byteArray)
{

 code to handle “F” msg
}

GHander(ref, byteArray)
{

 code to handle “G” msg
}

/* Other routines */

…

 IPC Reference Manual

 3

Installing IPC

For Linux, doing make install in the src di-

rectory to create central (installed in

bin/<OS>, where <OS> is an identifier for your

operating system) and libipc.a (installed in

lib/<OS>). The Java interface to IPC can be

created by doing make install in the Java di-

rectory, and similarly for Python in the python di-

rectory (you will need SWIG in order to make the

Python version). To create libraries for LISP, do

make USE_LISP=1 install in the src direc-

tory. In addition, for the Java interface, one needs

to add the USE_JAVA=1 directive to the make

command. In addition, the

MAKE_SHARED_LIBS=1 directive makes sharea-

ble libraries (.so and .sa), the THREADED=1 direc-

tive makes a thread-safe version of IPC, and the

DEBUG=NONE directive makes a version of IPC

without debugging symbols.

To run the Python version of IPC, set

PYTHONPATH to include both the IPC python

and lib/<OS> directories. To run the Java ver-

sion, set CLASSPATH to include the java/build

directory and set LD_LIBRARY_PATH to include

the lib/<OS> directory.

For Windows, the src/Windows directory has

Visual Studio projects for both central and the IPC

library. IPC for Windows has been tested on XP,

Vista, and Windows 7.

Finally, the test directory contains a number of test

programs (both for Linux – look at the GNUmake-

file – and for Windows – look at the

test/Windows directory). One suggestion is to

start with sizesTest, which tries to ensure that

the marshalling functions understand your

OS/compiler correctly. If it runs without printing

out any error information, you should be able to

send any data structure around without problems.

This manual serves as a central information re-

source for programmers building complex systems.

Section 2 describes the central server and the

process to start it. Section 3 explains how to de-

scribe basic data structures for message passing.

Section 4 is a directory of the basic IPC interface

function. Section 5 describes query/response func-

tions that IPC provides. Section 6 details the IPC

data-marshalling functions. Sections 7 and 8 de-

scribe IPC contexts and timers, respectively. Exam-

ple programs are provided in the appendix.

2 THE CENTRAL SERVER

IPC uses an application-independent central server

module to maintain system-wide information and to

route and log message traffic. Before starting any

modules, a program named “central” must first be

started (Figure 2 lists command line options). The

most basic service that the central server provides is

message passing. A message sent from any module

connected to the server will be forwarded by the

server to the module containing the handler for the

message (optionally, messages my be sent directly

between application modules; see below).

More than one server can run on the same machine,

using separate communication ports for each server.

Having multiple servers is especially useful for

software development – if independent developers

must run their IPC servers on the same machine,

there is a way to distinguish them.

On machines other than those running VxWorks,

one can give commands to the central server while

it is running, to display status or change some op-

tions.

Modules must first connect to the IPC central server

using IPC_connect. They then can define mes-

sages, together with a description of their data for-

mats, using IPC_defineMsg. Modules that want

to handle messages must indicate their interest us-

ing IPC_subscribeData or

IPC_subscribe. Definitions and subscriptions

can be done in any order – including subscribing to

a message before it is defined. When all messages

have been thus registered, modules can publish

messages using IPC_publishData or

IPC_publish, and the appropriate message han-

dlers will be invoked. Finally, before exiting a

module, IPC_disconnect should be called, to

cleanly disconnect from the network.

The environment variable CENTRALHOST must be

set before starting the module. Specify the machine

on which the central server is running:

 IPC Reference Manual

 4

setenv CENTRALHOST lung.learning.cs.cmu.edu

The default TCP socket port is 1381. If the desired

server uses a different socket port (i.e., the -p option

to central was used to start the server), the port

number must be provided:
setenv CENTRALHOST lung.learning.cs.cmu.edu:1621

Starting a module after making this definition at-

tempts to connect to TCP port 1621 of the host

“lung....”.

Access Control

[LINUX VERSION ONLY]

You may have an application where it would be

beneficial to have the IPC central server be running

all the time, but you are hesitant to do so because of

possible security holes (e.g., someone from the out-

side could connect to the IPC port and potentially

wreak havoc). To handle this, starting in version

3.7, the IPC central server provides an (optional)

capability for access control.

Access control is a layer of network security that

automatically denies connections from untrusted

hosts, as described by hosts_access (5). In par-

ticular, portscanners are denied connections on

access-controlled open sockets, and therefore can-

not exploit potential bugs in network-level code,

either at the user level or the system level. Connec-

tions are allowed by consulting the

/etc/hosts.allow and /etc/hosts.deny

files, where clients listed in hosts.deny but not

in hosts.allow are automatically denied access.

Access control can be enabled in IPC by compiling

with the ACCESS_CONTROL flag set:

% gmake ACCESS_CONTROL=1 install

Note that this only affects the central server.

The access control language is specified fully in the

man page hosts_access (5), but in brief, the

two files contain lines of the form
daemon : hostname

where hostname can be an IP address or a domain

name. The daemon name used by the IPC central

server is “central”.

For instance, a typical /etc/hosts.deny con-

trol file might look like simply:
ALL : ALL

and /etc/hosts.allow might look like:

central : localhost

sshd : .cs.cmu.edu

sshd-x11 : .cs.cmu.edu

This example denies access to all connections out-

side the .cs.cmu.edu domain, allows ssh con-

nections inside .cs.cmu.edu, and allows IPC

connections only on the local host. For message

passing between computers, a second, comma-

separated, hostname could be added to the entry for

central:

The following are central commands:
 help: print this message

 display: display the active and pending messages

 status: display the known modules and their status

 memory: display total memory usage

 close <module>: close a connection to a module

 unlock <resource>: unlock a locked resource

The following command line options can also be used as com-

mands:

 -v: display server version information

 -l<option>: logging onto terminal. Options are:

 m (message traffic)

 s (status of IPC)

 t (time messages are received by central)

 d (data associated with messages)

 i (ignore logging certain internal messages)

 h (handle time summary of incoming messages)

 r (log the reference ID as well as the message name)

 p (log the reference ID of the message’s parent)
 x (no logging)

 -l (no options) is equivalent to -lmstdh; the default is -lmsi

 -L<option>: logging into file.

 Options are the same as above, with the addition of

 F (don’t flush file after each line)

 n (don’t prompt user for comments)

 The default is -Lx

 -f<filename>: filename to use for logging; If not specified,

 name is automatically generated.

 -p<port>: connect to central server on this port number.

 -c: Use direct (not via central) connections when possible
 -I<msgName>: Ignore logging this message (can occur

 multiple times).

 -I<filename>: File with names of messages to ignore logging

 -s: silent running; don’t print anything to terminal.

 -u: don’t run the user (tty) interface.

 -r: try resending non-completed messages when modules

crash and then reconnect.

Figure 2. Starting the Central Server

 IPC Reference Manual

 5

central : localhost, foo.cs.cmu.edu

Remember that the only affected program is cen-

tral, and so access control only works when IPC

connections are central mode, not in direct mode

(direct connections are used by starting central with

the -c option). However, since all IPC modules

start by connecting with the central server, even

peer-to-peer mode, coupled with access control, is

pretty safe.

 IPC Reference Manual

 6

3 DEFINING MESSAGE

DATA FORMATS

This section explains how to describe data struc-

tures that will be passed in messages. IPC can send

raw byte arrays between processes, but it also pro-

vides a powerful data-marshalling facility that

enables it to pass data transparently between

processes, even if the hosts have different byte or-

der or different alignment. To use the facility, one

must specify the data formats used by each mes-

sage. A programmer provides such a structural spe-

cification (called a “format string”) in parameters to

message definition routines. Once this is done, IPC

can know how to convert the data structure to a byte

stream and how to reconstruct it in the receiving

module.

Suppose that the programmer needs to define a

message called “SendData.” It passes a single in-

teger of data. He would use the following call to

define it:
IPC_defineMsg(“SendData”,

 IPC_VARIABLE_LENGTH, “int”);

Generally, however, one needs to pass more com-

plicated data structures. Suppose that the message

must pass a data structure containing an integer, a

character string, and another integer. This call

would register the message:
IPC_defineMsg(“SendData”,

 IPC_VARIABLE_LENGTH,

 “{int, string, int}”)

Rather than specifying data formats directly in mes-

sage registration calls, we recommend first defining

a data type, defining a format specifier for that type,

and then using the format specifier in the message

definition call:
typedef struct {

 int x;

 char *y;

 int z;

} DATA1_TYPE;

#define DATA1_FORM “{int, string, int}”

#define SEND_DATA_QUERY “SendData”

IPC_defineMsg(SEND_DATA_QUERY,

 IPC_VARIABLE_LENGTH,

 DATA1_FORM);

Keeping the type definitions close to the format

specifiers ensures that if one needs to make changes

to a type, the corresponding definitions can be lo-

cated and changed quickly. We also recommend

that all message names be defined as macros to

avoid the possibility of misspelling message names.

As in standard programming languages, IPC format

strings are composed of primitive data type specifi-

ers and composite specifiers that enable users to

define more complex data types. The following sec-

tions describe both of these types of specifiers. Ap-

pendix B describes a program called xdrgen that

automatically constructs IPC format strings from

XDR type definitions.

IPC formats for Primitive Data Types

The previous example used the form “string” to

stand for a list of characters. IPC also provides

names for other data primitives; some of these

names coincide with standard C language types,

while others do not. Here is a complete list of primi-

tives:

 char: an 8-bit piece of information, probably

an ASCII code; this can be either signed or

unsigned.

 byte: any 8-bit piece of information (signed

or unsigned);

 short: any 16-bit piece of information

(signed or unsigned);

 long: any 32-bit piece of information

(signed or unsigned);

 int: 32 bits of information (signed or un-

signed);

 float: 32 bits of information;

 double: 64 bits of information;

 Boolean: information that takes on one of

two values: TRUE or FALSE. In C, 1 is

TRUE and 0 is FALSE; Java uses true and

false; Python uses True and False;

LISP uses T and NIL. In the rest of the ma-

nual, we use Boolean (TRUE and FALSE)

as shorthands for the above language-

specific values.

 string: A list of characters–in C, this list is

terminated by NULL (`\0');

 IPC Reference Manual

 7

A table of the various IPC formats, their equivalent

LISP and C types, and (for C) size in bytes is given

in Figure 3. While some computers/compilers use

different sizes for primitives (e.g., 64 bit longs),

IPC currently supports only those formats listed.

Generalizing IPC to handle different sized primi-

tives is being contemplated.

IPC Formats for Composite Data Types

Composite data formats are aggregates of other data

types. The supported composites include:

Structures

To describe a C language “struct” to IPC, surround

the component data type names with braces, and

place commas between them.
typedef struct {

 int x;

 char *str;

 int y;

} DATA_TYPE;

#define DATA_FORM “{int, string, int}”

#define USE_DATA_COMMAND “UseData”

IPC_defineMsg(USE_DATA_COMMAND,

 IPC_VARIABLE_LENGTH,

 DATA_FORM);

Structures can be nested. For example, a pair of

DATA_TYPE components could be specified as fol-

lows:
“{{int, string, int},{int, string, int}}”

Unlike the other supported languages, Python does

not support structures that have a fixed sequence of

attributes. Thus, without further information, the

marshalling/unmarshalling functions will not know

which components correspond with which portions

of the format string. To rectify this, one can define

Python classes that have the _fields component,

which is a tuple of the names (not the types) of each

component, in order. In addition, for nested struc-

tures or embedded arrays, one can supply a tuple of

(<name>, <type>) to provide additional in-

formation to help the marshalling functions allocate

the correct instances. Subclassing off of IPCdata

provides a print function that uses the _fields

information to format the data structure nicely. For

instance:
class DATA_TYPE(IPCdata) :

 _fields = („x‟, „str‟, („y‟, int))

If the _fields information is not provided, IPC

names the attributes _f0, _f1, etc.

Format Name LISP Type C Type Bytes

“ubyte” (unsigned-byte 8) unsigned char 1

“byte” (signed-byte 8) signed char 1

“ushort” (unsigned-byte 16) unsigned short 2

“short” (signed-byte 16) signed short 2

“uint” (unsigned-byte 32) unsigned int 4

“int” (signed-byte 32) signed int 4

“ulong” (unsigned-byte 32) unsigned long 4

“long” (signed-byte 32) signed long 4

“float” single-float float 4

“double” double-float double 8

“boolean” int 4

Figure 3. Primitive Data Types: Names and Lengths

 IPC Reference Manual

 8

Fixed-length and Variable-length Arrays

To describe a fixed-length array, use the following

form:
“[data_type: n]”

data_type is the base type of the array, and n

is the array dimension. If the array is multi-

dimensional, separate the dimension numbers by

commas, as in the following example:
typedef int array[17][42] DATA_TYPE;

#define DATA_FORM “[int:17, 42]”

Variable-length arrays are specified as part of a

larger structure, which must contain “int” elements

specifying dimensions. The notation
“<char: 1,2,3>”

indicates that a three dimensional array is contained

in a larger data structure whose 1st, 2nd, and 3rd

elements specify the dimensions of the array.

For example, a two-dimensional variable array of

integers can be specified by placing it inside of the

following structure:
typedef struct {

 int dimension1;

 int dimension2;

 int **variableArray;

} VARIABLE_ARRAY_TYPE;

The appropriate IPC format string would be:
#define VARIABLE_ARRAY_FORM

 “{int, int, <int: 1, 2>}”

Pointers, Linked Lists, Recursive Data

Structures

Pointers are denoted by an asterisk followed by a

data format name. If the pointer value is NULL (or

NIL in LISP, or None in Python) no data is sent.

Otherwise the data is sent and the receiving end

creates a pointer to the data. Note that only the data

is passed, not the actual pointers, so that structures

that share structure or point to themselves (cyclic or

doubly linked lists) will not be correctly recon-

structed.
typedef struct {

 int x, *pointerToX;

} POINTER_EXAMPLE_TYPE;

#define POINTER_EXAMPLE_FORM

 “{int, *int}”

The “self pointer” notation, !*, is used in defining

linked (or recursive) data formats. IPC will translate

linked data structures into a linear form before

sending and then recreate the linked form in the re-

ceiving module. IPC routines assume that the end of

any linked list is designated by a NULL (or None or

NIL) pointer value. Therefore it is important that all

linked data structures be NULL terminated so that

the data translation routines work correctly.
typedef struct _LIST {

 int x;

 struct _LIST *next;

} LIST_TYPE;

#define LIST_TYPE_FORMAT”{int,!*}”

While only C/C++ differentiates between objects

and pointers to objects, the pointer format is still

useful in Java, Python and LISP as a way of indicat-

ing whether data actually exists to be transmitted.

Enumerated Types

There are two forms for specifying an enumerated

type. The basic format is “{enum : <max-

Val>}”, which indicates that the format is an enu-

merated type whose last element has the value

maxVal. For example, the format string for

“typedef enum {A, B, C, D} ENUM_TYPE”

would be “{enum : 3}”, since 3 is the implicit

value of D. Similarly, the format for:

typedef enum{E=1,F=2,G=4,H=8} ENUM1_TYPE

would be “{enum : 8}”. Note that this cannot be

used for enumerated types that have negative values

– for those types, you need to represent them using

“int”.

The alternate form for specifying an enumerated

type includes the actual values themselves: “{enum
<enumVal0>, <enumVal1>, <enumVal2>, …,

<enumValN>}”. For example, the format for

ENUM_TYPE given above would be “{enum A,

B, C, D}”. There are two advantages of this form

of specification: (1) the logs produced by the central

server, and the output of IPC_printData, will

contain the symbolic values of the enumeration, ra-

ther than just the integer values; (2) The LISP ver-

sion will automatically convert the symbolic value

to the associated integer (for C), and vice versa. The

symbolic value is the upper-case version of

<enumVali>, interned into the :KEYWORD pack-

age. For instance, a LISP module could send a mes-

sage containing the atom :B, and a C-language

 IPC Reference Manual

 9

module would receive the enumerated value “B”

(which would have the integer value 1, given the

example above). Note that you cannot use the alter-

nate form if the type declaration explicitly sets the

enumerated values (e.g., “{enum E, F, G,

H}” will not correctly represent ENUM1_TYPE,

given above). Python uses integers as enumerated

values.

Of course, as with all of the other format specifiers,

enumerated formats can be embedded in more com-

plex format specifications:
“{int, {enum A, B, C, D},

 [double : 3], {enum : 10}}”

Another caveat: The colon (:) is a reserved symbol

in the format specification language. You cannot

use a colon in any of the enumerated values (same

for braces, brackets, commas, and periods).

 IPC Reference Manual

 10

4 BASIC IPC INTERFACE

FUNCTIONS

Types and function prototypes are defined in

ipc.h for C users, IPC.java for Java users, IPC.py

for Python users, and in ipc.lisp for LISP users.

Unless otherwise indicated, all functions are availa-

ble in all supported languages. The Python and

LISP functions are all in the IPC package, and have

identical names, arguments, and return types as

their C equivalents, except where indicated. The

Java functions are also in the IPC package but, for

historical reasons, they currently do not have the

“IPC_” prefix (it is anticipated that this will change

in the near future).

4.1 Return Type
typedef enum {

 IPC_Error, IPC_OK, IPC_Timeout

} IPC_RETURN_TYPE

Return type for most IPC functions. If the return

type is IPC_Error, the cause of the error will be

indicated by the variable IPC_errno (4.11).

4.2 Describe Detectable Errors
typedef enum {

 IPC_No_Error,

 IPC_Not_Connected,

 IPC_Not_Initialized,

 IPC_Message_Not_Defined,

 IPC_Not_Fixed_Length,

 IPC_Message_Lengths_Differ,

 IPC_Argument_Out_Of_Range,

 IPC_Null_Argument,

 IPC_Illegal_Formatter,

 IPC_Mismatched_Formatter,

 IPC_Wrong_Buffer_Length,

 IPC_Communication_Error

} IPC_ERROR_TYPE

Type for describing the different types of errors that

IPC can detect.

4.3 Define a Byte Array
typedef void *BYTE_ARRAY

An array of bytes (chars) that is passed around by

the IPC communication functions. Not often

needed, but for Python, can be created using

createByteArray(numBytes). Not cur-

rently implemented for Java or LISP.

4.4 Variable Length Byte Array
typedef struct {

 unsigned int length;

 BYTE_ARRAY content;

}IPC_VARCONTENT_TYPE,*IPC_VARCONTENT_PTR

Type used to represent a variable length array of

bytes. Used to facilitate interfacing between the

publish/subscribe functions and the marshal-

ling/unmarshalling functions (Section 6).

For Python, can be created using

IPC_VARCONTENT_TYPE() and accessed using

vc.length and vc.content. Not currently

implemented for Java or LISP.

4.5 Message Handler Type
typedef void (*HANDLER_TYPE)

 (MSG_INSTANCE msgInstance,

 BYTE_ARRAY callData,

 void *clientData)

The type of message handlers. MSG_INSTANCE is

a predefined type that is not accessible to the user

(although attributes of it can be accessed – see Sec-

tion 4.37 and Section 6.5). callData is the con-

tent of the message, as sent via a “publish” invoca-

tion. clientData is a pointer to any user-defined

data, and is associated with the message handler in

the “subscribe” call (Section 4.26). Java version

currently does not support client data.

4.6 Message Handler Type for Auto-

matic Unmarshalling
typedef void (*HANDLER_DATA_TYPE)

 (MSG_INSTANCE msgInstance,

 void *callData,

 void *clientData)

The type of message handlers used with

IPC_subscribeData (Section 4.27). Similar to

HANDLER_TYPE (Section 4.5), except that the

 IPC Reference Manual

 11

second argument is a pointer to the unmarshalled

content of the message. Java version currently does

not support client data.

4.7 Handler Type for Non-Message

Events
typedef void (*FD_HANDLER_TYPE)

 (int fd, void *clientData)

The type of handlers for non-message events (e.g.,

X window events, keyboard input). fd is a C-

language file descriptor. clientData is a pointer

to any user-defined data, and is associated with the

message handler in the “subscribe” call. Note that it

is the responsibility of these types of event handlers

to actually read the input that is on the fd file. Java

version currently does not support client data. For

Python, the fileno() method can be used to get

the file descriptor from a Python file object.

4.8 Handler Type for Connection Noti-

fications
typedef void (*CONNECT_HANDLE_TYPE)

 (const char *moduleName,

 void *clientData)

The type of handlers for notification of new mod-

ules connecting or disconnecting to the IPC server.

moduleName is the name of the module that just

connected/disconnected. clientData is a pointer

to any user-defined data, and is associated with the

handler in the “subscribe” call (see 4.42 and 4.43).

Java version currently does not support client data.

4.9 Handler Type Subscription Notifi-

cations
typedef void (*CHANGE_HANDLE_TYPE)

 (const char *msgName,

 int numHandlers,

 void *clientData)

The type of handlers for notification of new sub-

scriptions to messages. msgName is the name of

the message that just had a subscriber added to, or

removed from, it. numHandlers is the total num-

ber of handlers currently subscribed to that mes-

sage. clientData is a pointer to any user-defined

data, and is associated with the handler in the “sub-

scribe” call (see 4.47). Java version currently does

not support client data.

4.10 Describe Level of “Verbosity” for

IPC Output
typedef enum {

 IPC_Silent,

 IPC_Print_Warnings,

 IPC_Print_Errors,

 IPC_Exit_On_Errors

} IPC_VERBOSITY_TYPE

Type for describing the different levels of “verbosi-

ty” that IPC supports. IPC_Silent produces no

output; IPC_Print_Warnings prints only

warning (but not error) messages;

IPC_Print_Errors prints both warning and

error messages; IPC_Exit_On_Errors prints

warnings, and if an error occurs, prints the error

message (using IPC_perror, see 4.12) and exits.

The default verbosity is IPC_Exit_On_Errors.

The verbosity level can be changed with

IPC_setVerbosity (see 4.39).

4.11 Set Variable to Last Detected Error
IPC_ERROR_TYPE IPC_errno;

Variable set to the last error detected by an IPC

function. Possible error values are given in Section

 4.2. Initially set to IPC_NO_ERROR. Not currently

available through the Java and Python interfaces.

4.12 Print Error Message
void IPC_perror (cont char *msg)

This function prints out the message msg to

stderr, followed by a textual description of the

current error (see also Sections 4.1 and 4.2).

4.13 Initialize IPC Data Structures
IPC_RETURN_TYPE IPC_initialize (void)

 IPC Reference Manual

 12

After initialization, one can parse format strings,

and marshall and unmarshall data, but not define,

subscribe or publish messages (which can only be

done after connecting to the network, see 4.14 and

 4.15). It is not necessary to call

IPC_initialize before calling

IPC_connect (4.15), but it is not an error to do

so. This function always returns IPC_OK.

4.14 Connect to IPC Communication

Network on a Given Host Machine
IPC_RETURN_TYPE IPC_connectModule

 (const char *taskName,

 const char *serverName)

Connect the task/process to the IPC communication

network. taskName is used only for message log-

ging purposes, and needs not be unique (although it

is preferable to give each task a unique name).

Connects to the central server running on the ma-

chine named serverName (see Section 2).

If serverName is NULL, use the machine defined

by the environment variable CENTRALHOST. If

CENTRALHOST is not set, tries to connect to the

local machine.

IPC_connectModule returns IPC_OK if a con-

nection is made or the task is already connected. If a

connection cannot be made (e.g., if the central serv-

er task that manages communications is not res-

ponding), IPC_Error is returned and

IPC_errno is set to IPC_Not_Connected.

4.15 Connect to IPC Communication

Network
IPC_RETURN_TYPE IPC_connect

 (const char *taskName)

Connect the task/process to the IPC communication

network. Equivalent to:
 IPC_connectModule(taskName, NULL)

(see Section 4.14).

4.16 Connect to IPC Communication

Network without Listening
IPC_RETURN_TYPE

IPC_connectModuleNoListen

 (const char *taskName,

const char *serverName)

IPC_RETURN_TYPE IPC_connectNoListen

 (const char *taskName)

Most IPC modules listen periodically for message

traffic (using IPC_dispatch, Section 4.36, or any of

the IPC_listen variants, Sections 4.32- 4.35). Some

modules, though, merely publish and do not listen.

In those cases, it is best to use one of the variants of

IPC_connect above, to tell IPC that the module will

not be listening periodically for incoming messages.

This will prevent the central process from sending

internal messages to the module. It may affect the

functionality of point-to-point (direct) message

communication, so this should be used only when

absolutely necessary.

A warning is printed if a module subscribes to a

message (Section 4.26) or file descriptor (Section

 4.29) when in the “no listen” condition, since it is

likely that the module will not receive incoming

communications on a timely basis.

Not currently implemented in Java or LISP.

4.17 Disconnect from IPC Communica-

tion Network
IPC_RETURN_TYPE IPC_disconnect (void)

Disconnect the task/process from the IPC commu-

nication network. Any messages that the

task/process subscribes to are unsubscribed, and the

task can no longer listen for messages or events.

This function provides tasks with a clean way of

shutting down. Always returns IPC_OK (even if the

task is not currently connected).

4.18 Is the IPC Network Connected
Boolean IPC_isConnected(void)

Determine if the task/process is currently connected

to the IPC network (i.e., to the central server).

 IPC Reference Manual

 13

Returns a Boolean value, which depends on the lan-

guage being used (see Section 3).

4.19 Is the Named Module Connected
Boolean IPC_isModuleConnected

 (const char *moduleName)

Determine if the named module is currently con-

nected to the IPC network (i.e., to the central serv-

er).

Returns a Boolean value, which depends on the lan-

guage being used (see Section 3). In addition, the C

version returns -1 on error (which can occur if the

module invoking the function is not itself currently

connected to the IPC server).

The LISP version is currently not implemented.

4.20 Register Message with IPC Net-

work
IPC_RETURN_TYPE IPC_defineMsg

 (const char *msgName,

 unsigned int length,

 const char *formatString)

Register a message with the IPC network. The mes-

sage is referred to by its msgName. The msgName

can be any valid string, although it is preferable (but

not required) that it consist of alphanumeric charac-

ters, plus “-”, “_” and “*”. Message instances pass

arrays of length bytes. length may be the con-

stant IPC_VARIABLE_LENGTH, in which case

each message instance can have a variable length

byte array – which is published using

IPC_publish, IPC_publishVC, or

IPC_publishData (Section 4.22, Section 4.23,

Section 6.12). formatString is used to provide

information for use by the marshal-

ling/unmarshalling functions (Section 6).

A message needs to be defined only once, in just

one task/process. Its definition is propagated to all

publishing/subscribing tasks (in particular, a mod-

ule gets message information from the central serv-

er the first time it is published or subscribed, and

then caches the definition). It is an error to define a

message if it already exists and if length and

formatString are different from the existing

definition.

Typically a message is defined in the task that pub-

lishes the message. An exception is for messages

that essentially are the “request” portion of a

query/response pair of messages (e.g., there may be

a pair of messages

“NAV_request_emphemeris” and

“NAV_emphemeris”). In such cases, the sub-

scriber to the message (who is also the publisher of

the response) typically defines both messages.

The function returns IPC_Error if the task is not

currently connected to the IPC network (setting

IPC_errno to IPC_Not_Connected).

The Java version does not take the length argu-

ment (it is always IPC_VARIABLE_LENGTH).

4.21 Is the Message Defined
Boolean IPC_isMsgDefined

 (const char *msgName)

Determine whether some task/process has registered

a message with the name msgName. Returns a

Boolean value, which depends on the language be-

ing used (see Section 3).

Note that FALSE is also returned if an error occurs.

In C, this can be distinguished from “not defined”

by checking the value of IPC_errno: It is set to

IPC_Not_Connected if the process is not con-

nected to the central server, and is set to

IPC_Null_Argument if msgName is NULL.

4.22 Publish a Message
IPC_RETURN_TYPE IPC_publish

 (const char *msgName,

 unsigned int length,

 BYTE_ARRAY content)

Publish (broadcast) an instance of the message

msgName, sending a copy of the content byte

array to all subscribers of that message. length is

the number of bytes of the array pointed to by

content. This function can be used to publish

fixed length messages: either by passing the con-

stant IPC_FIXED_LENGTH as the length argu-

 IPC Reference Manual

 14

ment, or by passing the length provided when the

message was defined.

The function returns IPC_Error if the task is not

currently connected to the IPC network (setting

IPC_errno to IPC_Not_Connected). It also

returns IPC_Error if the message has not been

defined (IPC_Message_Not_Defined), if the mes-

sage is fixed length and the lengths are not equal

(IPC_Message_Lengths_Differ), or if the

message is variable length and the length argument

is IPC_FIXED_LENGTH

(IPC_Not_Fixed_Length).

There is no way for IPC to determine if length

matches the actual number of bytes in the byte ar-

ray.

Not implemented in Java or LISP – use

IPC_publishData, instead; implemented in Python,

but not really useful.

4.23 Publish a Variable Length Mes-

sage
IPC_RETURN_TYPE IPC_publishVC

 (const char *msgName,

 IPC_VARCONTENT_PTR varcontent)

Equivalent to:
IPC_publish(msgName, varcontent->length,

 varcontent->content),

but, in addition, it returns IPC_Error if var-

content is NULL (setting IPC_errno to

IPC_Null_Argument). Not implemented in

Java – use IPC_publishData, instead.

4.24 Publish a Fixed-Length Message
IPC_RETURN_TYPE IPC_publishFixed

 (const char *msgName,

 BYTE_ARRAY content)

Equivalent to:
IPC_publish(msgName, IPC_FIXED_LENGTH,

 content)

Not implemented in Java or LISP; Implemented in

Python, but not really useful.

4.25 Return Message Name
const char *IPC_msgInstanceName

 (MSG_INSTANCE msgInstance)

Return the message name of the given instance of

the message.

4.26 Subscribe to Specific Message

Type
IPC_RETURN_TYPE IPC_subscribe

 (const char *msgName,

 HANDLER_TYPE handler,

 void *clientData)

Indicate interest in receiving messages of type

msgName. When a message instance of that type is

received (Sections 4.22, 4.23, 4.24), the handler

function is invoked and passed three arguments: an

identifier of the specific message instance, the mes-

sage content sent in the publish call, and the

clientData, which is a pointer to any user-

defined data (and which may be NULL). Java ver-

sion currently does not support client data.

A given task may subscribe to a message before it is

defined, and it may subscribe to the same message

type multiple times: if the handler is the same as in

a previous subscription, the new clientData

replaces the old (in which case, a warning message

is issued); if the handler differs from all other

handlers for that message, it is added as an addi-

tional handler. This enables tasks to subscribe to a

message for a specific purpose, and then unsub-

scribe (Section 4.28) after some period of time,

without impacting the rest of the task.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

communication network (IPC_Not_Connected)

Not implemented in Java – use

IPC_subscribeData, instead.

 IPC Reference Manual

 15

4.27 Subscribe to Specific Message

Type with Automatic Unmarshal-
ling

IPC_RETURN_TYPE IPC_subscribeData

 (const char *msgName,

 HANDLER_DATA_TYPE handler,

 void *clientData)

Indicate interest in receiving messages of type

msgName. When a message instance of that type is

received(Sections 4.22, 4.23, 4.24), the handler

function is invoked and passed three arguments: an

identifier of the specific message instance, the un-

marshalled message content sent in the publish call,

and the clientData, which is a pointer to any

user-defined data (and which may be NULL). Java

version currently does not support client data.

IPC_subscribeData function behaves identi-

cally to IPC_subscribe, except that, when in-

voked, the handler is passed unmarshalled data, ra-

ther than a raw byte array. It is still the user’s re-

sponsibility to free the data (preferably using

IPC_freeData, Section 6.10).

The Java and Python interfaces enable one to speci-

fy the class type of the data that will be received.

For Java, this is the required third argument (no

clientData argument); For Python, it is an op-

tional fourth argument – if the class is not specified

(or None), a structure of type IPCdata will be

created.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

communication network (IPC_Not_Connected)

4.28 Unsubscribe to Specific Message

Type
IPC_RETURN_TYPE IPC_unsubscribe

 (const char *msgName,

 HANDLER_TYPE handler)

Indicate that the task/process is no longer interested

in having the handler invoked on messages of the

given type. Note that if a task/process subscribes to

multiple handlers for that message, only the speci-

fied handler is removed. If handler is NULL, then

all handlers for that message type, subscribed to by

that task, are removed (thus, that task will no longer

receive any messages of that type). It is not an error

to unsubscribe a handler that is not currently sub-

scribed. Message instances that have been pub-

lished, but not received, when the handler is unsub-

scribed will not be processed by that handler.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

communication network (IPC_Not_Connected)

4.29 Integrate Non-Message Event

Handling with Message Event
Handling

IPC_RETURN_TYPE IPC_subscribeFD

 (int fd,

 FD_HANDLER_TYPE handler,

 void *clientData)

Some tasks/processes need to handle events other

than IPC message traffic (e.g., X events, keyboard

input, RS232 input from hardware devices).

IPC_subscribeFD is used to integrate such ad-

ditional event handling with the IPC message event

handling. fd is a C-language file descriptor that can

be used in a select system call. clientData is

the same as in IPC_subscribe (Section 4.26,

Java version currently does not support client data).

The handler for an fd-event is invoked with the file

descriptor that raised the event and the client-

Data. Note that the data which is on the file de-

scriptor is not read by the IPC – it is up to the

handler to read that data, or to handle it in the

appropriate manner (e.g., read and parse tty input,

invoke a standard X event handler function).

This function always returns IPC_OK. Since it is up

to the handler function to determine how to han-

dle input on the file descriptor, it does not make

sense for multiple handlers to subscribe to the same

fd input. Note that this is contrary to the behavior

of IPC_subscribe: IPC_subscribeFD will

never have more than one handler per file descrip-

tor. If an additional handler is subscribed for an fd,

it will replace the old handler (and old client data).

 IPC Reference Manual

 16

4.30 Unsubscribe to File-Descriptor

Type
IPC_RETURN_TYPE IPC_unsubscribeFD

 (int fd,

 FD_HANDLER_TYPE handler)

Similar to IPC_unsubscribe (Section 4.28),

except that the handlers are associated with file de-

scriptor (fd) events, rather than with message

types.

The function always returns IPC_OK.

4.31 Get the Open IPC Sockets
fd_set IPC_getConnections(void)

Returns the set of file descriptors that represent all

the communication sockets currently open within

IPC. This set may change over time as new modules

connect to the system or as messages are sent to, or

received from, other modules (especially when

messages are sent peer-to-peer).

The function returns the empty set (all zeroes) if

IPC is not connected.

4.32 Listen for Subscribed Events
IPC_RETURN_TYPE IPC_listen

 (unsigned int timeoutMSecs)

Listen for events (messages or other fd events) that

have been subscribed to. The appropriate handlers

are invoked for each message instance, or other

event, received. The function returns IPC_Error

if the task/process is not currently connected

(IPC_Not_Connected). It returns with

IPC_Timeout if timeoutMSecs pass without

the task having received an event. The function re-

turns, with IPC_OK, immediately after handling an

event. Actually, if several events arrive simulta-

neously, or several events are waiting when

IPC_listen is invoked, then they will all be

handled before the function returns – but events that

arrive after event handling begins will not be han-

dled within that invocation of IPC_listen. The

predefined constant IPC_WAIT_FOREVER indi-

cates that the listen call should never time out.

4.33 Listen for Queued Subscribed

Events
IPC_RETURN_TYPE IPC_listenClear

 (unsigned int timeoutMSecs)

A message can still be waiting when IPC_listen

returns if it arrives while the IPC_listen is han-

dling another message. To ensure that no messages

are in the queue, use IPC_listenClear, which

is roughly equivalent to:
if (IPC_listen(timeoutMSecs) !=

 IPC_Timeout)

 while (IPC_listen(0) != IPC_Timeout)

If the first call to IPC_listen does not time out,

the function will continue listening for messages

until there are none (note that a timeout of zero mil-

liseconds means to return immediately, unless an

event is already waiting). The function returns

IPC_Error if the task/process is not currently

connected (IPC_Not_Connected).

4.34 Listen for Given Amount of Time
IPC_RETURN_TYPE IPC_listenWait

 (unsigned int timeoutMSecs)

This function handles messages until at least

timeoutMSecs have passed. It is a bit like the

UNIX “sleep” function, except that it will handle

messages while it waits. It differs from

IPC_listenClear in that it will continue to

wait the requested time, even if there are no more

messages to process.

Note that the function may take longer than time-

outMSecs to return if it is in the middle of

processing a message. The function returns

IPC_Error if the task/process is not currently

connected (IPC_Not_Connected).

4.35 Handle One IPC Event
IPC_RETURN_TYPE IPC_handleMessage

 (unsigned int timeoutMSecs)

Handle a single IPC message or external event. Re-

turn after either (a) the message/event was handled

or (b) timeoutMSecs have passed.

 IPC Reference Manual

 17

IPC_Error is returned if the task/process is not

currently connected (IPC_Not_Connected).

The function returns with IPC_Timeout if

timeoutMSecs pass without the task having re-

ceived an event.

4.36 Enter Infinite Dispatch Loop
IPC_RETURN_TYPE IPC_dispatch (void)

IPC_dispatch is essentially equivalent to:
while (IPC_listen(IPC_WAIT_FOREVER) !=

IPC_Error)

It returns (with IPC_Error) only if the

task/process is not connected to the IPC network

(IPC_Not_Connected).

4.37 Return Message Size
unsigned int IPC_dataLength

 (MSG_INSTANCE msgInstance)

A message handler receives three arguments: A

pointer to the message instance, a byte array of

message data, and client data. This function takes as

its argument the message instance and returns the

number of bytes in the message data (which may be

zero or greater). This function may be useful when

the message is a variable length message, but the

user does not want to (or cannot) unmarshall it into

a known data structure.

4.38 Enable Receiving Multiple Mes-

sages
IPC_RETURN_TYPE IPC_setCapacity

 (int capacity)

When used in the mode in which a central server

routes messages, the server by default sends a mod-

ule only one message at a time. There are situations

in which this may produce undesired latencies.

IPC_setCapacity can be used to change the

default behavior, causing the central server to send

up to capacity messages at a time to the module

(where they will be queued on the socket until han-

dled).

Warning: capacity should not be set too high,

especially if large messages are being sent, as the

central server could possibly become blocked if the

socket/pipeline to the module becomes full. Typi-

cally, a capacity of 2-4 is sufficient for all purposes.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

network (IPC_Not_Connected), or if capacity

is less than 1 (IPC_Argument_Out_Of_Range).

4.39 Select Level of “Verbosity” for

Module Output
IPC_RETURN_TYPE IPC_setVerbosity

 (IPC_VERBOSITY_TYPE verbosity)

Set the IPC current “verbosity” level of the module.

Affects if, and how, warning and errors are re-

ported. The function returns IPC_Error (with

IPC_errno set to the value

IPC_Argument_Out_Of_Range if verbosity is

not a legal value of IPC_VERBOSITY_TYPE

(Section 4.10).

4.40 Set Priority for Message Instances
IPC_RETURN_TYPE IPC_setMsgPriority

 (char *msgName,

 int priority)

This function sets the priority (an integer value) for

all instances of the given message name. The mes-

sages are queued, and dispatched, according to

priority value. All messages with the same priority

value are queued in order of receipt. Messages that

have not been explicitly assigned a priority value

are assumed to be at the lowest priority.

As of IPC 3.2, this function works both for messag-

es that are queued within IPC central, as well as for

messages that are sent directly, with direct module-

to-module communications. This function returns

an error if priority is less than zero

(IPC_Argument_Out_Of_Range) or if IPC is

not connected (IPC_Not_Connected).

 IPC Reference Manual

 18

4.41 Set Message Queue Length
IPC_RETURN_TYPE IPC_setMsgQueueLength

 (char *msgName,

 int length)

This function sets the maximum queue length (an

integer value) for instances of the given message

name. If length messages of the given type are

already queued for a module, and a new message of

that type arrives, then the oldest message is dis-

carded in order to maintain the maximum queue

length.

This function works for both centrally queued mes-

sages and point-to-point messages. Currently, there

appears to be a bug if length is zero. This func-

tion returns an error if priority is less than one

(IPC_Argument_Out_Of_Range) or if IPC is

not connected (IPC_Not_Connected).

4.42 Notify of New Connections
IPC_RETURN_TYPE IPC_subscribeConnect

 (CONNECT_HANDLE_TYPE handler,

 void *clientData)

Invoke handler whenever a new module con-

nects to the IPC server. The handler is invoked

with the name of the connecting module and the

clientData (see 4.8). Note that the handler is

invoked only for modules that connect after the

subscription – if a module is already connected, no

notification is given (you can use

IPC_isModuleConnected, Section 4.19, for

that purpose). If the function is called with same

handler, the old client data is replaced with the new

clientData, but the handler is invoked only

once per connection. Java version currently does

not support client data.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

network (IPC_Not_Connected).

4.43 Notify of New Disconnections
IPC_RETURN_TYPE IPC_subscribeDisconnect

 (CONNECT_HANDLE_TYPE handler,

 void *clientData)

Invoke handler whenever a module disconnects

from the IPC server (either because the module ex-

ited or because it explicitly called

IPC_disconnect). The handler is invoked

with the name of the connecting module and the

clientData (see 4.8). If the function is called

with same handler, the old client data is replaced

with the new clientData, but the handler is in-

voked only once per disconnection. Java version

currently does not support client data.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

network (IPC_Not_Connected).

4.44 Unsubscribe to Connection Notifi-

cations
IPC_RETURN_TYPE IPC_unsubscribeConnect

 (CONNECT_HANDLE_TYPE handler)

Tells IPC to no longer invoke handler when a

new module connects to the IPC server. Note: Does

not free the clientData associated with the

handler (see 4.42) – that is up to the user.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

network (IPC_Not_Connected).

4.45 Unsubscribe to Disconnection Noti-

fications
IPC_RETURN_TYPE IPC_unsubscribeDisconnect

 (CONNECT_HANDLE_TYPE handler)

Tells IPC to no longer invoke handler when a

module disconnects from the IPC server. Note:

Does not free the clientData associated with the

handler (see 4.43) – that is up to the user.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

network (IPC_Not_Connected).

4.46 Number of Current Subscribers
IPC_RETURN_TYPE IPC_numHandlers

 (const char *msgName)

 IPC Reference Manual

 19

Returns the number of handlers currently sub-

scribed to message msgName. The function returns

zero (0) if the message is not currently defined.

The function returns -1 on error. The error condi-

tions include if the module is not currently con-

nected to the IPC network

(IPC_Not_Connected) or if msgName is null

(IPC_Null_Argument).

4.47 Notify of New Subscribers
IPC_RETURN_TYPE

IPC_subscribeHandlerChange

 (const char *msgName,

 CHANGE_HANDLE_TYPE handler,

 void *clientData)

Tells IPC to invoke handler whenever the sub-

scription information changes for message

msgName, that is, whenever some module either

subscribes to receive instances of the message, or

unsubscribes to the message. The handler is in-

voked with the name of the message, the total num-

ber of handlers currently subscribed for that mes-

sage, and the user-define clientData (see 4.9,

Java version currently does not support client data).

Note that the handler is not invoked for any current

subscriptions – only for those that are added or re-

moved after this function is invoked. To determine

the number of handlers currently subscribed, you

can use IPC_numHandlers (see 4.46). If the

function is called with same handler, the old client

data is replaced with the new clientData, but

the handler is invoked only once per change in sub-

scription status.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

network (IPC_Not_Connected), if msgName is

null (IPC_Null_Argument), or if the message is

not currently defined

(IPC_Message_Not_Defined). Note that, in

particular, it is not currently possible to use this

function on messages that have not been defined

(via IPC_defineMsg). This is a limitation that

may be lifted in the future, especially if any IPC

user feels a need for it.

4.48 Unsubscribe to Subscription Notifi-

cations
IPC_RETURN_TYPE

IPC_unsubscribeHandlerChange

 (const char *msgName,

 CHANGE_HANDLE_TYPE handler)

Tells IPC to no longer invoke handler when the

subscription information changes for message

msgName. Note: Does not free the clientData

associated with the handler (see 4.47) – that is up to

the user.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

network (IPC_Not_Connected), if msgName is

null (IPC_Null_Argument), or if the message is

not currently defined

(IPC_Message_Not_Defined).

4.49 Shut Down Central Server
void killCentral (void)

[VXWORKS VERSION ONLY]

This function, which is meant to be invoked from

the VxWorks shell, cleanly shuts down the central

server, closing all sockets and file descriptors. This

enables the central server to be restarted, without

having to reboot the real-time board.

Implementationally, the task id of the central server

is saved at startup, and killCentral sends a

SIGTERM to that task. The same functionality can

be had by using “i” to print a list of active tasks,

then doing “kill 0x<taskid>,15” (15 is the

value of SIGTERM).

4.50 Shut Down Specific Task
void killModule (char *taskName)

[VXWORKS VERSION ONLY]

This function, which is meant to be invoked from

the VxWorks shell, cleanly shuts down the named

task, closing all sockets and file descriptors. This

tells the central server that the task has discon-

 IPC Reference Manual

 20

nected, and enables the task to be restarted without

having to reboot the real-time board.

Implementationally, the task id is looked up from

the task name, and killModule sends a

SIGTERM to that task. The same functionality can

be had by using “i” to print a list of active tasks,

then doing “kill 0x<taskid>,15” (15 is the

value of SIGTERM).

 IPC Reference Manual

 21

5 QUERY/RESPONSE

While there is evidence that pure event-driven (pub-

lish/subscribe) systems are more reliable and main-

tainable than those that include query/response

(client/server), it is also difficult to restructure exist-

ing code to fit this paradigm. Thus, the IPC contains

functions for query/response, but it is recommended

that they be used with caution (in particular

IPC_queryResponse, the blocking form of

query/response).

5.1 Reply to a Query Message
IPC_RETURN_TYPE IPC_respond

 (MSG_INSTANCE msgInstance,

 const char *msgName,

 unsigned int length,

 BYTE_ARRAY content)

Similar to IPC_publish, except that it sends the

message msgName directly to the task that sent the

message represented by msgInstance (where

msgInstance is the first argument of a message

handler). The receiving task should be expecting a

response by having invoked IPC_queryNotify

or IPC_queryResponse. Note that IPC_respond

will not trigger any other handlers that subscribe to

that message type, either in the same task or differ-

ent tasks.

For example, suppose task “A” includes the follow-

ing code:
IPC_subscribe(“foo”, fooHandler, NULL);

IPC_queryNotify(“bar”, length, content,

 fooResponse, NULL);

and suppose task “B” includes subscribes the fol-

lowing handler to receive message “bar”:

void barHandler

 (MSG_INSTANCE msgInstance,

 BYTE_ARRAY callData,

 void *clientData)

{

 IPC_respond(msgInstance, “foo”,

 length, bar1(callData));

 free(callData);

}

When task “A” publishes “bar” (via

IPC_queryNotify), barHandler will be in-

voked in task “B” (via IPC_dispatch or

IPC_listen). Task “B” responds to the request

by computing some result (function bar1), and

sending a directed response back to task “A”. In

task “A”, only the fooResponse handler will be

invoked – the fooHandler function will not be

invoked in this situation, even though it subscribes

to “foo” messages, in general.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

network (IPC_Not_Connected). It returns

IPC_Error if the message has not been defined

(IPC_Message_Not_Defined), if the message

is fixed length and the lengths are not equal

(IPC_Message_Lengths_Differ), or if the

message is variable length and the length argument

is IPC_FIXED_LENGTH

(IPC_Not_Fixed_Length).

Not implemented in Java – use

IPC_respondData, instead.

5.2 Enable Replies Outside a Handler
IPC_RETURN_TYPE IPC_delayResponse

 (MSG_INSTANCE msgInstance)

Typically, IPC considers a message has been com-

pleted when a handler returns. In particular, the

message instance passed to that handler is rec-

laimed. Occasionally, one needs to respond to a

query message outside of the handler – for instance,

a query handler might set up something to monitor a

piece of hardware and return a result when it be-

comes available.

To prevent IPC from assuming that the message is

completed, one should invoke this function before

exiting the handler. In this way, when

IPC_respond (Section 5.1) is invoked with that

message instance, IPC will consider the message

completed and reclaim the message instance.

The function returns IPC_Error if the message

instance is NULL or invalid

(IPC_Null_Argument).

 IPC Reference Manual

 22

5.3 Await Response to a Query
IPC_RETURN_TYPE IPC_queryNotify

 (const char *msgName,

 unsigned int length,

 BYTE_ARRAY content

 HANDLER_TYPE handler,

 void *clientData)

Set up the handler to await the response to the

(query) message msgName. Assumes that the re-

ceiver of msgName will use a call to

IPC_respond to direct the response. The handler

is invoked exactly as any other message handler –

with the message instance identifier, call data, and

client data. Java version currently does not support

client data.

This function is non-blocking. The handler is in-

voked asynchronously, from within an

IPC_dispatch or IPC_listen invocation.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

network (IPC_Not_Connected). It returns

IPC_Error if the message has not been defined

(IPC_Message_Not_Defined), if the message

is fixed length and the lengths are not equal

(IPC_Message_Lengths_Differ), or if the

message is variable length and the length argument

is IPC_FIXED_LENGTH

(IPC_Not_Fixed_Length).

Not implemented in Java – use

IPC_queryNotifyData, instead.

5.4 Send a Query and Block Waiting
IPC_RETURN_TYPE IPC_queryResponse

 (const char *msgName,

 unsigned int length,

 BYTE_ARRAY content,

 BYTE_ARRAY *replyHandle,

 unsigned int timeoutMSecs)

Sends the (query) message msgName, and blocks

waiting for a response (sent via IPC_respond) to

that particular message instance. When the response

is received, sets the replyHandle to point to the

data contained within the response. Returns

IPC_Timeout if the reply has not been received

within the specified interval.

Note that although this function is blocking, the

calling task can still process other messages while it

is awaiting the response. Thus, the state of the

task/process may change during the time the func-

tion is invoked! For this reason, this function should

be used with extreme caution – either check the lo-

cal state when the function returns, or somehow

guarantee that the local state you depend on will not

be altered by any other message that you could re-

ceive during that time.

The function returns IPC_Error if the

task/process is not currently connected to the IPC

network (IPC_Not_Connected), if the message

has not been defined

(IPC_Message_Not_Defined), if the message

is fixed length and the lengths are not equal

(IPC_Message_Lengths_Differ), or if the

message is variable length and the length argu-

ment is IPC_FIXED_LENGTH

(IPC_Not_Fixed_Length).

Not implemented in Java – use

IPC_queryResponseData, instead. For Py-

thon, the fifth argument (replyHandle) is not

used; instead, the function returns a tuple of two

values – the reply byte-array and the

IPC_RETURN_TYPE value.

5.5 Respond with a Variable Length

Message
IPC_RETURN_TYPE IPC_respondVC

 (MSG_INSTANCE msgInstance,

 const char *msgName,

 IPC_VARCONTENT_PTR varcontent)

Equivalent to IPC_respond (Section 5.1), except

that it uses a pointer to a structure that includes both

the length and content of the message data. De-

signed to facilitate interfacing with the marshal-

ling/unmarshalling functions. In addition to the re-

turn values of IPC_respond, it returns

IPC_Error if varcontent is NULL

(IPC_Null_Argument).

 IPC Reference Manual

 23

5.6 Await a Response with a Variable

Length Message
IPC_RETURN_TYPE IPC_queryNotifyVC

 (const char *msgName,

 IPC_VARCONTENT_PTR varcontent

 HANDLER_TYPE handler,

 void *clientData)

Equivalent to IPC_queryNotify (Section 5.3),

except that it uses a pointer to a structure that in-

cludes both the length and content of the message

data. Designed to facilitate interfacing with the

marshalling/unmarshalling functions. In addition to

the return values of IPC_queryNotify, it re-

turns IPC_Error if varcontent is NULL

(IPC_Null_Argument). Java version currently

does not support client data.

5.7 Send a Variable Length Query and

Block Waiting
IPC_RETURN_TYPE IPC_queryResponseVC

 (const char *msgName,

 IPC_VARCONTENT_PTR varcontent

 BYTE_ARRAY *replyHandle,

 unsigned int timeoutMSecs)

Equivalent to IPC_queryResponse (Section

 5.4), except that it uses a pointer to a structure that

includes both the length and content of the message

data. Designed to facilitate interfacing with the

marshalling/unmarshalling functions. In addition to

the return values of IPC_queryResponse, it

returns IPC_Error if varcontent is NULL

(IPC_Null_Argument).

 IPC Reference Manual

 24

6 MARSHALLING DATA

Strictly speaking, these functions are not needed to

run the basic IPC. They are included in the IPC API

because they provide a powerful interface between

the low-level IPC protocols (which deal in byte

streams) and higher-level functions (which deal in

C, Java, Python, and LISP structures).

It is suggested, for reasons of both safety and ease

of use, that these functions be utilized for all mes-

sages, as they can correctly deal with byte ordering

and packing between machines. In particular, code

that uses them does not need to be changed (except

for specifying the format string) if the format of the

data structure changes. The overhead for using

these functions is small, both in time and memory

used.

IMPORTANT: In order to deal with inter-machine

differences, it is imperative that messages sent us-

ing IPC_marshall be handled by calling

IPC_unmarshall. Your code should NOT de-

pend in any way on assumptions about the way the

marshalling functions transform data structures.

6.1 Compile a Format String
FORMATTER_PTR IPC_parseFormat

 (const char *formatString)

Returns a pointer to a data structure that encodes the

format represented textually by formatString,

where formatString adheres to the syntax de-

scribed in Section 3). Returns NULL if the for-

matString argument is NULL. Sets IPC_errno

to IPC_Illegal_Formatter if the syntax of

formatString is illegal (and exits if the verbosi-

ty is IPC_Exit_On_Errors, see Section 4.10),

and sets it to IPC_Not_Initialized if the IPC

has not been initialized (see Section 4.13).

6.2 Define a New Format
IPC_RETURN_TYPE IPC_defineFormat

 (const char *formatName,

 const char *formatString)

Enable users to associate names with format strings,

and use the names in other format strings. For ex-

ample, one could write:
IPC_defineFormat

 (“point”,”{double, double, double}”);

IPC_defineFormat

 (“point-array”, “[point:5]”);

IPC_defineFormat

 (“two-point-arrays”,

 “{point-array, point-array}”);

Without named formatters, the latter would have to

be written:
“{[{double, double, double}:5],

 [{double, double, double}:5]}”

The use of named formatters reduces the chances of

mistyping format strings, promotes modularity (if a

type definition changes, the format string need be

changed in only one place), and promotes unders-

tandability, by enabling one to define names for

semantic types (e.g.,
IPC_defineFormat(“radians”, ”double”)).

It is suggested that you actually use #define’s

and defconstant’s, rather than explicit strings

in the calls to IPC_defineFormat:

#define RADIANS_NAME “radians”

#define RADIANS_FORMAT “double”

IPC_defineFormat(RADIANS_NAME,

 RADIANS_FORMAT);

One thing to note: You must be connected to the

IPC server before calling IPC_defineFormat.

You do not have to define a named format before

you use it in another IPC_defineFormat or an

IPC_defineMsg call, but it must be defined be-

fore it is used (either explicitly or implicitly) in a

marshalling or unmarshalling call.

Defined formats propagate among modules, so only

one module need define each format (although it is

not an error for multiple modules to define a format

- if the definitions are inconsistent, the last defini-

tion will take precedence).

IPC_Error is returned if the task/process is not

currently connected to the IPC network (with

IPC_errno being set to

IPC_Not_Connected) or if formatName is

NULL (IPC_Null_Argument); otherwise

IPC_OK is returned.

 IPC Reference Manual

 25

6.3 Is Format Consistent
IPC_RETURN_TYPE IPC_checkMsgFormats

 (const char *msgName,

 const char *formatString)

Check whether formatString is the same as the

format associated with the message msgName.

Checks for semantic equality, not just syntactic

equality (that is, the format strings don’t have to be

exactly the same - the question is whether they

parse to the same formatter).

Returns IPC_OK if the formatString is the

same as the format associated with msgName.

IPC_Error is returned if the formats differ

(IPC_errno is set to

IPC_Mismatched_Formatter). The function

also returns IPC_Error if the task/process is not

currently connected to the IPC network

(IPC_Not_Connected), if msgName is NULL

(IPC_Null_Argument), or if the message has

not been defined

(IPC_Message_Not_Defined).

6.4 Format Associated with a Message

Name
FORMATTER_PTR IPC_msgFormatter

 (const char *msgName)

Return a pointer to a “formatter” that encodes the

format string associated with msgName in the

IPC_defineMsg call. Returns NULL if the mes-

sage has not been defined, if the format string asso-

ciated with the message is NULL, or if the format

string does not adhere to the format string syntax

(Section 3). The way to differentiate these situations

is that in the latter case, IPC_errno will be set to

IPC_Illegal_Formatter). Also returns

NULL and sets IPC_errno to

IPC_Not_Initialized if IPC has not been

initialized (see Section 4.13). In addition, will exit if

the verbosity is IPC_Exit_On_Errors (see

Section 4.10).

The message formatter is cached so that, except for

the first call, it is very efficient to retrieve.

6.5 Format Associated with a Message

Instance
FORMATTER_PTR IPC_msgInstanceFormatter

 (MSG_INSTANCE msgInstance)

Equivalent to (but more efficient than)
IPC_msgFormatter(IPC_msgInstanceNa

me(msgInstance)). Included in the IPC API

because it is useful in unmarshalling data within a

message handler.

6.6 Converting Data Structures to Byte

Arrays
IPC_RETURN_TYPE IPC_marshall

 (FORMATTER_PTR formatter,

 void *dataptr,

 IPC_VARCONTENT_PTR varcontent)

“Marshalling” a data structure means converting it

to a format (byte array) that is suitable for transmis-

sion by the IPC. Based on the formatter data

structure, IPC_marshall sets varcontent-

>content to the marshalled byte array that

represents the data structure pointed to by da-

taptr, and sets varcontent->length to the

length of that array. The result can then be used to

publish the message.

For example (blithely ignoring errors):
{ IPC_VARCONTENT_TYPE varcontent;

 IPC_marshall(IPC_msgFormatter(msgName),

 &datastruct, &varcontent);

 IPC_publishVC(msgName, &varcontent);

 IPC_freeByteArray(varcontent.content);

}

The implementation of IPC_marshall and

IPC_unmarshall uses the data formatter facili-

ties (refer to Section 3), which can transform a large

variety of structures, in all the supported languages

(C, Java, Python, LISP), including structures with

pointers (strings, variable length arrays, matrices,

linked lists, etc.), taking into account differences in

byte ordering and packing between machine types.

For example, the format string for the data struc-

ture:
struct _matrixList {

 float matrix[2][2];

 IPC Reference Manual

 26

 char *matrixName;

 int count;

 struct _matrixList *next;

}

is: “{[float:2,2], string, int, *!}”.

This function returns IPC_Error if IPC has not

been initialized (IPC_Not_Initialized), if

the formatter is invalid

(IPC_Illegal_Formatter) or if varcon-

tent is NULL (IPC_Null_Argument). Other-

wise returns IPC_OK.

Note that, in general, there is no way to determine

whether the byteArray actually matches the for-

mat of the formatter. There may be some spe-

cific error conditions that can be detected, and if so,

IPC_Error will be returned.

6.7 Converting Byte Arrays to Data

Structures
IPC_RETURN_TYPE IPC_unmarshall

 (FORMATTER_PTR formatter,

 BYTE_ARRAY byteArray,

 void **dataHandle)

Allocates and fills in a data structure based on the

formatter (Section 3) and the byteArray.

Sets the dataHandle to the newly created struc-

ture (note that the third argument is not simply a

pointer, it is a handle – a pointer to a pointer). For

example, a handler may be written:
void fooMsgHandler

 (MSG_INSTANCE msgInstance,

 BYTE_ARRAY callData,

 void *clientData)

{ FOO_MSG_PTR fooDataPtr;

 FORMATTER_PTR formatter;

 formatter = IPC_msgInstanceFormatter

 (msgInstance);

 IPC_unmarshall(formatter, callData,

 (void **)&fooDataPtr);

 IPC_freeByteArray(callData);

 fooFn(fooDataPtr->foo,

 fooDataPtr->bar);

 IPC_freeData(formatter,

 (void *)fooDataPtr);

}

The intent is that the result of unmarshalling a byte

array produced by the IPC_marshall function

should return an identical data structure, up to poin-

ter equality.

For Java and Python, the dataHandle argument

is not used; instead, the Java function (called un-

marshallMsgData) returns the newly created

structure and the Python function returns a tuple of

the structure and the IPC_RETURN_TYPE. In ad-

dition, the Java and Python interfaces enable one to

specify the class type of the data that will be created

as the third argument to the function. For Java, this

argument is required; For Python, it is optional – if

the class is not specified (or None), a structure of

type IPCdata will be created.

This function returns IPC_Error if IPC has not

been initialized (IPC_Not_Initialized), or if

the formatter is invalid

(IPC_Illegal_Formatter). Otherwise, the

function returns IPC_OK.

6.8 Unmarshalling a Pre-Allocated Da-

ta Structure
IPC_RETURN_TYPE IPC_unmarshallData

 (FORMATTER_PTR formatter,

 BYTE_ARRAY byteArray,

 void *dataptr,

 int dataSize)

This function is similar to IPC_unmarshall,

except that it does not allocate new space for the

unmarshalled data, but instead fills in the dataptr

pointer. The function assumes that dataptr points

to an already allocated data structure (either on the

stack or the heap), that is described by the for-

matter and is dataSize bytes long. In general,

it is a bit more efficient than IPC_unmarshall,

in that it does less memory allocation and byte co-

pying.

For example, one could write:
static void fooMsgHandler

 (MSG_INSTANCE msgInstance,

 BYTE_ARRAY callData,

 void *clientData)

{ FOO_MSG_TYPE fooData;

 FORMATTER_PTR formatter;

 formatter = IPC_msgInstanceFormatter

 (msgInstance);

 IPC_unmarshallData(formatter,

 IPC Reference Manual

 27

 callData, &fooData,

 sizeof(fooData));

 IPC_printData(formatter, stdout,

 &fooData);

 IPC_freeDataElements(formatter,

 &fooData)

 IPC_freeByteArray(callData);

}

Note the call to IPC_freeDataElements in the

above example. While IPC does not allocate new

space for the top-level data structure (pointed to by

dataptr), it will allocate space for substructures

that may occur (for instance, if the structure con-

tains pointers or strings). To perform proper memo-

ry management, you should be sure to free such al-

located memory using

IPC_freeDataElements (Section 6.11). While

you do not need to do this if you are sure the struc-

ture is fixed-size, it does not hurt to always call

IPC_freeDataElements.

Not implemented in Java. For Python, the dataS-

ize argument is not used and the function takes an

optional class type argument (in case the dataPtr

argument is None, in which case a new structure is

created). The Python function returns a tuple of the

new structure and the IPC_RETURN_TYPE.

The function returns IPC_Error if IPC has not

been initialized (IPC_Not_Initialized), if

the formatter is invalid

(IPC_Illegal_Formatter), if dataPtr is

NULL but the formatter is not

(IPC_Null_Argument), or if dataSize does

not match the size as dictated by the formatter

(IPC_Wrong_Buffer_Length). Note that, in

general, there is no way to determine whether the

byteArray actually matches the format of the

formatter. There may be some specific error

conditions that can be detected, and if so,

IPC_Error will be returned.

6.9 Free up a Byte Array
void IPC_freeByteArray

 (BYTE_ARRAY byteArray)

The basic IPC protocols pass around C byte arrays.

This function is used to perform memory manage-

ment by freeing up those byte arrays. This is done

automatically in the IPC_xxxData functions.

This function should be used in C programs instead

of free, since that enables the memory to be rec-

laimed by IPC and reused.

6.10 Free the Data Pointer
IPC_RETURN_TYPE IPC_freeData

 (FORMATTER_PTR formatter,

 void *dataptr)

Frees the dataptr, and any substructures it may

have, according to the given format. For example, if

dataptr were of type “struct _matrixList

*” (see Section 6.6), IPC_freeData would free

the top-level structure pointed to by dataptr, the

matrixName string, and would recursively free

each element of the list.

This function is not available in Java, Python, or

LISP (it is not needed).

Returns IPC_Error if IPC is not initialized

(IPC_Not_Initialized), if the formatter

is invalid (IPC_Illegal_Formatter), or if

dataptr is NULL but formatter is not

(IPC_Null_Argument). Otherwise returns

IPC_OK.

6.11 Free the Elements of the Structure
IPC_RETURN_TYPE IPC_freeDataElements

 (FORMATTER_PTR formatter,

 void *dataptr)

Frees any substructure the dataptr may have,

according to the given format. For example, if the

dataptr were of type “struct _matrixList

*” (see Section 6.6), IPC_freeDataElements

would free the matrixName string, and would

recursively free each element of the list, but would

not free the top-level structure pointed to by da-

taptr. This function may be useful in conjunction

with IPC_unmarshallData (Section 6.8).

This function is not available in Java, Python, or

LISP (it is not needed).

Returns IPC_Error if IPC is not initialized

(IPC_Not_Initialized), if the formatter

 IPC Reference Manual

 28

is invalid (IPC_Illegal_Formatter), or if

dataptr is NULL but formatter is not

(IPC_Null_Argument). Otherwise returns

IPC_OK.

6.12 Marshall a Structure and Publish a

Message
IPC_RETURN_TYPE IPC_publishData

 (const char *msgName,

 void *dataptr)

Use the formatter associated with the msgName to

marshall the structure pointed to by dataptr into

a byte array, and publish the message. Combines

the marshalling and publish functionality. Roughly

equivalent to:
{IPC_VARCONTENT_TYPE varcontent;

 IPC_marshall(IPC_msgFormatter(msgName),

 dataptr, &varcontent);

 IPC_publishVC(msgName, &varcontent);

 IPC_freeByteArray(varcontent->content);

}

One can subscribe to messages using either

IPC_subscribeData or IPC_subscribe.

With IPC_subscribeData the data is automati-

cally unmarshalled, so you never need to unmar-

shall or deal with byte arrays. With

IPC_subscribe, you should put the following at

the beginning of your handler functions:
IPC_unmarshall

 (IPC_msgInstanceFormatter(msgInstance)

 byteArray, (void **)&dataPtr);

IPC_freeByteArray(byteArray);

(in the LISP version, there is another alternative –

using the macro IPC_defun_handler (Section

 6.18).

Returns IPC_Error under all the situations that

IPC_marshall (Section 6.6) and

IPC_publish (Section 4.22) would return

IPC_Error.

6.13 Combine Marshalling and Re-

sponse
IPC_RETURN_TYPE IPC_respondData

 (MSG_INSTANCE msgInstance,

 const char *msgName,

 void *dataptr)

Use the formatter associated with the msgName to

marshall the structure pointed to by dataptr into

a byte array, and respond to the message instance.

Combines the marshalling and query/response func-

tionality. Roughly equivalent to:
{ IPC_VARCONTENT_TYPE varcontent;

 IPC_marshall(IPC_msgFormatter(msgName),

 dataptr, &varcontent);

 IPC_respond(msgInstance, msgName,

 varcontent.length,

 varcontent.content);

 IPC_freeByteArray(varcontent.content);

}

Returns IPC_Error under all the situations that

IPC_marshall (Section 6.6) and

IPC_respond (Section 5.1) would return

IPC_Error.

6.14 Combine Marshall and Query
IPC_RETURN_TYPE IPC_queryNotifyData

 (const char *msgName,

 void *dataptr,

 HANDLER_TYPE handler,

 void *clientData)

Use the formatter associated with the msgName to

marshall the structure pointed to by dataptr into

a byte array, and send a query. Combines the mar-

shalling and query/response functionality. Roughly

equivalent to:
{ IPC_VARCONTENT_TYPE varcontent;

 IPC_marshall(IPC_msgFormatter(msgName)

 dataptr, &varcontent);

 IPC_queryNotifyVC(msgName, varcontent,

 handler, clientData);

 IPC_freeByteArray(varcontent.content);

}

Java version currently does not support client data.

The Java version takes, instead, a fourth argument

that is the class type of the data to be passed to the

handler. The Python version has an optional fifth

argument that likewise indicates the class type.

Returns IPC_Error under all the situations that

IPC_marshall (Section 6.6) and

IPC_queryNotify (Section 5.3) would return

IPC_Error.

 IPC Reference Manual

 29

6.15 Combine Marshall, Query, and Re-

sponse
IPC_RETURN_TYPE IPC_queryResponseData

 (const char *msgName,

 void *dataptr,

 void **replyData,

 unsigned int timeoutMSecs)

Use the formatter associated with the msgName to

marshall the structure pointed to by dataptr into

a byte array, send a query, and wait for the re-

sponse. Unmarshall the response into a data struc-

ture, and sets replyData to that value. Combines

the marshalling and query/response functionality.

Roughly equivalent to:
{ IPC_VARCONTENT_TYPE varcontent;

 FORMATTER_PTR formatter;

 BYTE_ARRAY reply;

 formatter = IPC_msgFormatter(msgName);

 IPC_marshall(formatter, dataptr,

 &varcontent);

 IPC_queryResponseVC(msgName,

 varcontent,

 &reply,

 timeoutMSecs);

 IPC_unmarshall(formatter, reply,

 replyData);

 IPC_freeByteArray(varcontent.content);

 IPC_freeByteArray(reply);

}

Neither the Java nor Python versions use the third

argument (replyData); instead, both return the

data (with the Python version returning a tuple of

the reply data and the IPC_RETURN_TYPE value).

Instead, the Java version has a required third argu-

ment that is the class type of the data to be returned;

the Python version has an optional fourth argument

(after timeoutMSecs) that is the class type.

Returns IPC_Error under all the situations that

IPC_marshall (Section 6.6) and

IPC_queryResponse (Section 5.4) would re-

turn IPC_Error.

6.16 Write a Textual Representation of

The Data
IPC_RETURN_TYPE IPC_printData

 (FORMATTER_PTR formatter,

 FILE *stream,

 void *dataptr)

Write on the given stream a (human-readable)

textual representation of the dataptr, including

any substructures it may have, according to the giv-

en formatter. The stream can be an open file

or the terminal (stdout or stderr).

This function is included mainly for debugging pur-

poses.

Returns IPC_Error if IPC is not initialized

(IPC_Not_Initialized), if the stream is not

open for writing, the formatter is invalid

(IPC_Illegal_Formatter), or if dataptr is

NULL but formatter is not

(IPC_Null_Argument). Otherwise returns

IPC_OK.

6.17 Force Data Structure to be an Ar-

ray
(IPC_defstruct (name) &rest slots)

[LISP ONLY]

Has the same syntax as the LISP defstruct con-

struct, but forces the structure to be an array, so that

the marshalling/unmarshalling functions can access

and set slots of the structure, without having to

know the names of its accessory functions. For ex-

ample:
(IPC:IPC_defstruct (sample)

 (i1 0 :type integer)

 (str1 ““ :type string)

 (d1 0.0 :type float))

6.18 Automatic Data Unmarshalling
(IPC_defun_handler name

 (msg-instance lisp-data client-data)

 &rest body)

[LISP ONLY]

Has the same syntax as the LISP defun construct,

but produces an IPC handler function that automati-

cally unmarshalls the data and creates a LISP data

structure for use by the handler. The following are

roughly equivalent:

 IPC Reference Manual

 30

(IPC:IPC_defun_handler barHnd

 (msg-ref msg-data client-data)

 (declare (ignore client-data))

 (format T “~a~%” msg-data)

 (IPC_publishData “fooMsg” msg-data))

(defun barHnd

 (msg-ref byte-array client-data)

 (declare (ignore client-data))

 (let (msg-data)

 (IPC_unmarshall

 (IPC_msgInstanceFormatter msg-ref)

 byte-array msg-data)

 (format T “~a~%” msg-data)

 (IPC_publishData “fooMsg” msg-data)

 (IPC_freeByteArray byte-array)))

This facility is now largely superceded by use of

IPC_subscribeData (Section 4.27).

 IPC Reference Manual

 31

7 CONTEXTS

There are occasions when a module needs to con-

nect to more than one central server. For instance, if

you have two robots with a relatively slow radio

link connecting them, it may be desirable for rea-

sons of bandwidth and latency to have a central

server residing on each robot. However, if one robot

wants to send a message to the other robot, it needs

to (temporarily) access the other robot’s IPC sub-

network.

The following functions can be used to achieve this.

A module/task can call IPC_connectModule

multiple times, giving different serverName’s

each time (Section 4.14). Each call to

IPC_connectModule (or IPC_connect) sets

up a different context, which is essentially a connec-

tion to a particular central server, along with all the

messages defined by the modules connected to that

server.

To use the context mechanism, it is advisable to

store all the contexts in global variables. That is,

call IPC_getContext immediately after a call to

IPC_connectModule, and store the return val-

ue. Then, one can call IPC_setContext with the

stored context value before sending a message to a

module on that context’s subnetwork.

For instance, to implement a bridge program (one

that passes messages from one subnetwork to

another), one could use this fragment of code:
static IPC_CONTEXT_PTR central1;

static IPC_CONTEXT_PTR central2

int main (void)

{

 ...

 IPC_connectModule(“foo”, HOST1);

 central1 = IPC_getContext();

 IPC_subscribe(MSG1, msg1Handler, NULL)

 IPC_connectModule(“foo”, HOST2);

 central2 = IPC_getContext();

 IPC_defineMsg(MSG1,

 IPC_VARIABLE_LENGTH,

 MSG1_FMT);

 ...

}

void msg1Handler (...)

{

 ...

 if (IPC_getContext() != central1)

 printf(“Something screwy going on”);

 IPC_unmarshall(..., &data);

 IPC_setContext(central2);

 IPC_publishData(MSG1, data);

 IPC_freeData(..., data);

 ...

}

Note that this example illustrates that when a mes-

sage handler is invoked, IPC automatically sets the

current context to be that of the subnetwork that

sent the message.

7.1 Get the Current Context
IPC_CONTEXT_PTR IPC_getContext (void)

Get the current IPC context, where context is a

connection to a given central server. Returns NULL

if there is no current IPC connection (i.e., either

IPC_connectModule or IPC_connect have

not been called, or IPC_disconnect has been

called).

7.2 Set the Current Context
IPC_RETURN_TYPE IPC_setContext

 (IPC_CONTEXT_PTR context)

Set the current IPC context to be context, where

context is a connection to a given central server.

context should be the return value of a previous

IPC_getContext call.

Returns IPC_Error (IPC_Null_Argument) if

context is NULL. Otherwise, returns IPC_OK.

 IPC Reference Manual

 32

8 TIMERS

There are occasions when a module needs to per-

form some action at a particular time. IPC provides

several functions that enable user-specified func-

tions to be invoked at a given point in time, or pe-

riodically over a given interval.

While these functions can be used for time-

dependent operations, note that they are not truly

interrupt driven - they will be invoked only when

the module is within some IPC function that is lis-

tening for messages (IPC_dispatch,

IPC_listen, IPC_listenClear,

IPC_queryResponse,

IPC_queryResponseVC,

IPC_queryResponseData). If the specified

time passes while the module is doing some other

computation (or is swapped out), the timer function

will be invoked at the next available opportunity.

Thus, you should not rely on these functions to pro-

vide guaranteed real-time response. This also im-

plies that the timer functions are in effect only while

the task/process is connected to the IPC network

(i.e., all timer functions are “disabled” before call-

ing IPC_connect and after calling

IPC_disconnect).

These functions are not currently available for LISP

(please contact us if you need this functionality).

8.1 Timer Callback Type
typedef void (*TIMER_HANDLER_TYPE)

 (void *clientData,

 unsigned long currentTime,

 unsigned long scheduledTime);

The type of timer callback handlers. clientData

is a pointer to any user-defined data, and is asso-

ciated with the timer in the “add” call (Sections 8.2,

 8.3, and 8.4). Note that Java version currently does

not support client data. currentTime is the time

at which the handler function is invoked; schedu-

ledTime is the time when it was supposed to be

invoked (as indicated by the “add” call). schedu-

ledTime may be later than currentTime be-

cause timers are invoked only from within IPC

functions that are listening for messages (see

above).

8.2 Add a Timer
IPC_RETURN_TYPE IPC_addTimer

 (unsigned long tdelay,

 long count,

 TIMER_HANDLER_TYPE handler,

 void *clientData)

Add a timer, which will periodically invoke the

handler function while IPC is running.

clientData is passed to the handler routine

when it is invoked (Section 8.1). Java version cur-

rently does not support client data.

tdelay is the number of milliseconds to wait for,

or between, the timer events. The first invocation of

the handler is tdelay milliseconds after the

timer is “added”. Each additional invocation occurs

tdelay milliseconds after the previous invocation

was begun.

count is the number of invocations before the ti-

mer is automatically removed. If count is

TRIGGER_FOREVER, then the timer continues in-

definitely, or until explicitly removed by the user

(Section 8.5).

If a timer already exists that invokes handler,

then the new definition replaces the old one (even if

the old definition had been running for a while).

Returns IPC_OK if the timer was successfully add-

ed. Returns IPC_Error (and sets IPC_errno

appropriately) if the handler is NULL

(IPC_Null_Argument), if tdelay is zero

(IPC_Argument_Out_Of_Range), or if

count is negative

(IPC_Argument_Out_Of_Range).

8.3 Add Timer Invoked Once
IPC_RETURN_TYPE IPC_addOneShotTimer

 (unsigned long tdelay,

 TIMER_HANDLER_TYPE handler,

 void *clientData)

Shorthand for setting up a timer that triggers just

once. Equivalent to:
IPC_addTimer(tdelay, 1,

 handler, clientData)

Java version currently does not support client data.

 IPC Reference Manual

 33

8.4 Add Timer Invoked Periodically
IPC_RETURN_TYPE IPC_addPeriodicTimer

 (unsigned long tdelay,

 TIMER_HANDLER_TYPE handler,

 void *clientData)

Shorthand for setting up a timer that triggers forev-

er. Equivalent to:
IPC_addTimer(tdelay, TRIGGER_FOREVER,

 handler, clientData)

Java version currently does not support client data.

8.5 Remove a Timer
IPC_RETURN_TYPE IPC_removeTimer

 (TIMER_HANDLER_TYPE handler)

Remove a timer whose handler function matches

handler (there will be at most one such timer ex-

isting at any given time).

Returns IPC_Error if the handler is NULL

(setting IPC_errno to IPC_Null_Argument).

Otherwise, returns IPC_OK (if a timer with the giv-

en handler does not currently exist, a warning is is-

sued, but the function still returns IPC_OK).

8.6 Add a Timer by Reference
IPC_RETURN_TYPE IPC_addTimerGetRef

 (unsigned long tdelay,

 long count,

 TIMER_HANDLER_TYPE handler,

 void *clientData,

 TIMER_REF *timerRef)

Same functionality as IPC_addTimer (Section

 8.2), except that this function never replaces any

current timer, even if it has the same handler and

clientData. Instead, the timerRef pointer is

set to a reference to the instance of the timer (so that

it can be used to remove the timer, see Section 8.7).

Note that TIMER_REF is an internal IPC data type,

and its elements cannot be accessed by user applica-

tion code. Java version currently does not support

client data.

If timerRef is NULL, then this function works

exactly the same as IPC_addTimer (Section 8.2).

Returns the same values as IPC_addTimer, un-

der the same error conditions.

8.7 Remove a Timer by Reference
IPC_RETURN_TYPE IPC_removeTimerByRef

 (TIMER_REF timerRef)

Remove a timer whose reference matches time-

rRef. timerRef is a reference to a timer gotten

from a call to IPC_addTimerByRef (Section

 8.6).

Returns the same values as IPC_removeTimer

(Section 8.5), under the same error conditions.

 IPC Reference Manual

 34

Appendix A Example Programs

File “module.h” is a header file that defines various data structures and format strings for message passing

between modules.

typedef enum { WaitVal, SendVal, ReceiveVal, ListenVal } STATUS_ENUM;

typedef struct { int i1;

STATUS_ENUM status;

double matrix[2][3];

double d1;

} T1_TYPE, *T1_PTR;

#define T1_NAME “T1”

/* First form of “enum”. 3 is the maximum value–i.e., the value of WaitVal */

#define T1_FORMAT “{int, {enum : 3}, [double:2,3], double}”

typedef struct { char *str1;

int count;

T1_TYPE *t1; /* Variable length array of type T1_TYPE */

STATUS_ENUM status;

} T2_TYPE, *T2_PTR;

#define T2_NAME “T2”

/* Alternate form of “enum”. */

#define T2_FORMAT

“{string, int, <T1:2>, {enum WaitVal, SendVal, ReceiveVal, ListenVal}}”

typedef int MSG1_TYPE, *MSG1_PTR;

#define MSG1 “message1”

#define MSG1_FORMAT “int”

typedef char *MSG2_TYPE, **MSG2_PTR;

#define MSG2 “message2”

#define MSG2_FORMAT “string”

typedef T1_TYPE QUERY1_TYPE, *QUERY1_PTR;

#define QUERY1 “query1”

#define QUERY1_FORMAT T1_NAME

typedef T2_TYPE RESPONSE1_TYPE, *RESPONSE1_PTR;

#define RESPONSE1 “response1”

#define RESPONSE1_FORMAT T2_NAME

#define MODULE1_NAME “module1”

#define MODULE2_NAME “module2”

#define MODULE3_NAME “module3”

==

File “module1.c” defines a single message handler to print out its data, and a single terminal interface to

send out messages and quit the program. It is a test program for IPC that publishes MSG1 and QUERY1,

and subscribes to MSG2. It sends MSG1 whenever an “m” is typed at the terminal; sends a QUERY1

whenever an “r” is typed, and quits the program when a “q” is typed. It should be run in conjunction with

module2.

 IPC Reference Manual

 35

**

#include <stdio.h>

#include <math.h>

#ifndef M_PI

#define M_PI 3.14159

#endif

#include “ipc/ipc.h”

#include “module.h”

static void msg2Handler (MSG_INSTANCE msgRef, BYTE_ARRAY callData,

 void *clientData)

{

 MSG2_TYPE str1;

 IPC_unmarshallData(IPC_msgInstanceFormatter(msgRef), callData,

 &str1, sizeof(str1));

 printf(“msg2Handler: Receiving %s (%s) [%s]\n”,

 IPC_msgInstanceName(msgRef), str1, (char *)clientData);

 IPC_freeByteArray(callData);

}

#ifndef VXWORKS

static void stdinHnd (int fd, void *clientData)

{

 char inputLine[81];

 fgets(inputLine, 80, stdin);

 switch (inputLine[0]) {

 case 'q': case 'Q':

 IPC_disconnect();

 exit(0);

 case 'm': case 'M':

 { MSG1_TYPE i1 = 42;

 printf(“\n IPC_publishData(%s, &i1) [%d]\n”, MSG1, i1);

 IPC_publishData(MSG1, &i1);

 break;

 }

 case 'r': case 'R':

 { QUERY1_TYPE t1 = {666, SendVal,

 {{0.0, 1.0, 2.0}, {1.0, 2.0, 3.0}}, M_PI};

 RESPONSE1_PTR r1Ptr;

 printf(“\n IPC_queryResponseData(%s, &t1, &r1Ptr, IPC_WAIT_FOREVER)\n”,

 QUERY1);

 IPC_queryResponseData(QUERY1, &t1, (void **)&r1Ptr, IPC_WAIT_FOREVER);

 printf(“\n Received response:\n”);

 IPC_printData(IPC_msgFormatter(RESPONSE1), stdout, r1Ptr);

 IPC_freeData(IPC_msgFormatter(RESPONSE1), r1Ptr);

 break;

 }

 default:

 printf(“stdinHnd [%s]: Received %s”, (char *)clientData, inputLine);

 fflush(stdout);

 }

}

#endif

 IPC Reference Manual

 36

#if defined(VXWORKS)

#include <sys/times.h>

void module1(void)

#else

void main (void)

#endif

{

 /* Connect to the central server */

 printf(“\nIPC_connect(%s)\n”, MODULE1_NAME);

 IPC_connect(MODULE1_NAME);

 /* Define the named formats that the modules need */

 printf(“\nIPC_defineFormat(%s, %s)\n”, T1_NAME, T1_FORMAT);

 IPC_defineFormat(T1_NAME, T1_FORMAT);

 printf(“\nIPC_defineFormat(%s, %s)\n”, T2_NAME, T2_FORMAT);

 IPC_defineFormat(T2_NAME, T2_FORMAT);

 /* Define the messages that this module publishes */

 printf(“\nIPC_defineMsg(%s, IPC_VARIABLE_LENGTH, %s)\n”, MSG1, MSG1_FORMAT);

 IPC_defineMsg(MSG1, IPC_VARIABLE_LENGTH, MSG1_FORMAT);

 printf(“\nIPC_defineMsg(%s, IPC_VARIABLE_LENGTH, %s)\n”,

 QUERY1, QUERY1_FORMAT);

 IPC_defineMsg(QUERY1, IPC_VARIABLE_LENGTH, QUERY1_FORMAT);

 /* Subscribe to the messages that this module listens to.

 * NOTE: No need to subscribe to the RESPONSE1 message, since it is a

 * response to a query, not a regular subscription! */

 printf(“\nIPC_subscribe(%s, msg2Handler, %s)\n”, MSG2, MODULE1_NAME);

 IPC_subscribe(MSG2, msg2Handler, MODULE1_NAME);

 #ifndef VXWORKS /* Since vxworks does not handle stdin from the terminal,

 this does not make sense. Instead, send off messages

periodically */

 /* Subscribe a handler for tty input.

 Typing “q” will quit the program; Typing “m” will send MSG1;

 Typing “r” will send QUERY1 (“r” for response) */

 printf(“\nIPC_subscribeFD(%d, stdinHnd, %s)\n”, fileno(stdin),

 MODULE1_NAME);

 IPC_subscribeFD(fileno(stdin), stdinHnd, MODULE1_NAME);

 printf(“\nType 'm' to send %s; Type 'r' to send %s; Type 'q' to quit\n”,

 MSG1, QUERY1);

 IPC_dispatch();

#else

#define NUM_MSGS (10)

#define INTERVAL (5)

 {

 int i;

 printf(“\nWill send a message every %d seconds for %d seconds\n”,

INTERVAL, NUM_MSGS);

 for (i=1; i<NUM_MSGS; i++) {

 /* Alternate */

 if (i & 1) {

 IPC Reference Manual

 37

 MSG1_TYPE i1 = 42;

 printf(“\n IPC_publishData(%s, &i1) [%d]\n”, MSG1, i1);

 IPC_publishData(MSG1, &i1);

 } else {

 QUERY1_TYPE t1 = {666, SendVal,

 {{0.0, 1.0, 2.0}, {1.0, 2.0, 3.0}}, M_PI};

 RESPONSE1_PTR r1Ptr;

 printf(“\n IPC_queryResponseData(%s, &t1, &r1Ptr, IPC_WAIT_FOREVER)\n”,

 QUERY1);

 IPC_queryResponseData(QUERY1, &t1, (void **)&r1Ptr, IPC_WAIT_FOREVER);

 printf(“\n Received response:\n”);

 IPC_printData(IPC_msgFormatter(RESPONSE1), stdout, r1Ptr);

 IPC_freeData(IPC_msgFormatter(RESPONSE1), r1Ptr);

 }

 /* This works instead of sleep */

 { struct timeval sleep = {INTERVAL, 0};

 select(FD_SETSIZE, NULL, NULL, NULL, &sleep);

 }

 }

 }

#endif

 IPC_disconnect();

}

==

File “module2.c” provides examples of both a publish/subscribe message handler and a query/response

message handler. It receives the messages sent by module1 and responds when appropriate.

This test program for IPC publishes MSG2 and subscribes to MSG1 and QUERY1. It listens for MSG1 and

prints out message data. When QUERY1 is received, it publishes MSG2 and responds to the query with

RESPONSE1. It exits when “q” is typed at the terminal, and should be run in conjunction with module1.

**

#include <stdio.h>

#include “ipc/ipc.h”

#include “module.h”

static void msg1Handler (MSG_INSTANCE msgRef, BYTE_ARRAY callData,

 void *clientData)

{

 MSG1_TYPE i1;

 IPC_unmarshallData(IPC_msgInstanceFormatter(msgRef), callData,

 &i1, sizeof(i1));

 printf(“msg1Handler: Receiving %s (%d) [%s]\n”,

 IPC_msgInstanceName(msgRef), i1, (char *)clientData);

 IPC_freeByteArray(callData);

}

static void queryHandler (MSG_INSTANCE msgRef,

 BYTE_ARRAY callData, void *clientData)

{

 IPC Reference Manual

 38

 QUERY1_TYPE t1;

 MSG2_TYPE str1 = “Hello, world”;

 RESPONSE1_TYPE t2;

 printf(“queryHandler: Receiving %s [%s]\n”,

 IPC_msgInstanceName(msgRef), (char *)clientData);

 /* NOTE: Have to pass a pointer to t1Ptr! */

 IPC_unmarshallData(IPC_msgInstanceFormatter(msgRef), callData,

 &t1, sizeof(t1));

 IPC_printData(IPC_msgInstanceFormatter(msgRef), stdout, &t1);

 /* Publish this message -- all subscribers get it */

 /* NOTE: You need to pass a *pointer* to the string,

 not just the string itself! */

 printf(“\n IPC_publishData(%s, &str1) [%s]\n”, MSG2, str1);

 IPC_publishData(MSG2, &str1);

 t2.str1 = str1;

 /* Variable length array of one element */

 t2.t1 = &t1;

 t2.count = 1;

 t2.status = ReceiveVal;

 /* Respond with this message -- only the query handler gets it */

 printf(“\n IPC_respondData(%#X, %s, &t2)\n”, (int)msgRef, RESPONSE1);

 IPC_respondData(msgRef, RESPONSE1, &t2);

 IPC_freeByteArray(callData);

}

static void stdinHnd (int fd, void *clientData)

{

 char inputLine[81];

 fgets(inputLine, 80, stdin);

 switch (inputLine[0]) {

 case 'q': case 'Q':

 IPC_disconnect();

exit(0);

 default:

printf(“stdinHnd [%s]: Received %s”, (char *)clientData, inputLine);

fflush(stdout);

 }

}

#if defined(VXWORKS)

void module2(void)

#else

void main (void)

#endif

{

 /* Connect to the central server */

 IPC Reference Manual

 39

 printf(“\nIPC_connect(%s)\n”, MODULE2_NAME);

 IPC_connect(MODULE2_NAME);

 /* Define the messages that this module publishes */

 printf(“\nIPC_defineMsg(%s, IPC_VARIABLE_LENGTH, %s)\n”, MSG2, MSG2_FORMAT);

 IPC_defineMsg(MSG2, IPC_VARIABLE_LENGTH, MSG2_FORMAT);

 printf(“\nIPC_defineMsg(%s, IPC_VARIABLE_LENGTH, %s)\n”,

 RESPONSE1, RESPONSE1_FORMAT);

 IPC_defineMsg(RESPONSE1, IPC_VARIABLE_LENGTH, RESPONSE1_FORMAT);

 /* Subscribe to the messages that this module listens to. */

 printf(“\nIPC_subscribe(%s, msg1Handler, %s)\n”, MSG1, MODULE2_NAME);

 IPC_subscribe(MSG1, msg1Handler, MODULE2_NAME);

 printf(“\nIPC_subscribe(%s, queryHandler, %s)\n”, QUERY1, MODULE2_NAME);

 IPC_subscribe(QUERY1, queryHandler, MODULE2_NAME);

#ifndef VXWORKS /* Since vxworks does not handle stdin from the terminal,

 this does not make sense. */

 /* Subscribe a handler for tty input. Typing “q” will quit the program. */

 printf(“\nIPC_subscribeFD(%d, stdinHnd, %s)\n”, fileno(stdin),

 MODULE2_NAME);

 IPC_subscribeFD(fileno(stdin), stdinHnd, MODULE2_NAME);

 printf(“\nType 'q' to quit\n”);

#endif

 IPC_dispatch();

 IPC_disconnect();

}

==

File “module.lisp” is the LISP equivalent of “module.h”.

**

;;; typedef enum { WaitVal, SendVal, ReceiveVal, ListenVal } STATUS_ENUM;

(defconstant STATUS_ENUM '(:WaitVal :SendVal :ReceiveVal :ListenVal))

(IPC:IPC_defstruct (T1)

 (i1 0 :type integer)

 (status 0 :type (or integer symbol))

 (matrix NIL :type array)

 (d1 0.0 :type double))

(defconstant T1_NAME “T1”)

;;; First form of “enum”. 3 is the maximum value -- i.e., the value of WaitVal

(defconstant T1_FORMAT “{int, {enum : 3}, [double:2,3], double}”)

(IPC:IPC_defstruct (T2)

 (str1 ““ :type string)

 (count 0 :type integer)

 (t1 NIL :type array)

 (status :ReceiveVal :type (or integer symbol)))

 IPC Reference Manual

 40

(defconstant T2_NAME “T2”)

;;; Alternate form of “enum”.

(defconstant T2_FORMAT

“{string, int, <T1:2>, {enum WaitVal, SendVal, ReceiveVal, ListenVal}}”)

;;; typedef int MSG1_TYPE, *MSG1_PTR

(defconstant MSG1 “message1”)

(defconstant MSG1_FORMAT “int”)

;;; typedef char *MSG2_TYPE, **MSG2_PTR;

(defconstant MSG2 “message2”)

(defconstant MSG2_FORMAT “string”)

;;; typedef T1_TYPE QUERY1_TYPE, *QUERY1_PTR;

(defconstant QUERY1 “query1”)

(defconstant QUERY1_FORMAT T1_NAME)

;;; typedef T2_TYPE RESPONSE1_TYPE, *RESPONSE1_PTR;

(defconstant RESPONSE1 “response1”)

(defconstant RESPONSE1_FORMAT T2_NAME)

(defconstant MODULE1_NAME “module1”)

(defconstant MODULE2_NAME “module2”)

(defconstant MODULE3_NAME “module3”)

==

File “module1.lisp” is the LISP equivalent of “module1.c”.

It publishes MSG1 and QUERY1 and subscribes to MSG2. It sends MSG1 whenever a “m” is typed at the

terminal, send a QUERY1 whenever an “r” is typed, and quits the program when a “q” is typed. It should be

run in conjunction with module2.

;;; Load the common file with all the type and name definitions

(load (make-pathname :DIRECTORY (pathname-directory *LOAD-TRUENAME*)

 :NAME “module.lisp”))

(IPC:IPC_defun_handler msg2Handler (msgRef lispData clientData)

 (format T “msg2Handler: Receiving ~s (~s) [~s]~%”

 (IPC:IPC_msgInstanceName msgRef) lispData clientData))

(defun stdinHnd (fd clientData)

 (declare (ignore fd))

 (let ((inputLine (read-line)))

 (case (aref inputLine 0)

((#\q #\Q)

 (IPC:IPC_disconnect)

 #+ALLEGRO (top-level:do-command “reset”) #+LISPWORKS (abort)

)

((#\m #\M)

 (format T “~% (IPC_publishData ~s ~d)~%” MSG1 42)

 (IPC:IPC_publishData MSG1 42))

((#\r #\R)

 (let ((t1 (make-T1 :i1 666

 ;; T1 does not support symbolic enums, so have to

 ;; use the corresponding integer value

 :status (position :SendVal STATUS_ENUM)

 IPC Reference Manual

 41

 :matrix (make-array '(2 3)

 :element-type 'double-float

 :initial-contents

 '((0.0d0 1.0d0 2.0d0)

 (1.0d0 2.0d0 3.0d0)))

 :d1 pi))

 r1)

 (format T “~% (IPC_queryResponseData ~s ~a r1 IPC_WAIT_FOREVER)~%”

 QUERY1 t1)

 (IPC:IPC_queryResponseData QUERY1 t1 r1 IPC:IPC_WAIT_FOREVER)

 (format T “~% Received response ~a~%” r1)

 ;; (IPC:IPC_printData (IPC:IPC_msgFormatter RESPONSE1) T r1Ptr)

))

 (T (format T “stdinHnd [~s]: Received ~s” clientData inputLine)))))

(defun module1 ()

 ;; Connect to the central server

 (format T “~%(IPC_connect ~s)~%” MODULE1_NAME)

 (IPC:IPC_connect MODULE1_NAME)

 ;; Define the named formats that the modules need

 (format T “~%(IPC_defineFormat ~s ~s)~%” T1_NAME T1_FORMAT)

 (IPC:IPC_defineFormat T1_NAME T1_FORMAT)

 (format T “~%(IPC_defineFormat ~s ~s)~%” T2_NAME T2_FORMAT)

 (IPC:IPC_defineFormat T2_NAME T2_FORMAT)

 ;; Define the messages that this module publishes

 (format T “~%(IPC_defineMsg ~s IPC_VARIABLE_LENGTH ~s)~%” MSG1 MSG1_FORMAT)

 (IPC:IPC_defineMsg MSG1 IPC:IPC_VARIABLE_LENGTH MSG1_FORMAT)

 (format T “~%(IPC_defineMsg ~s IPC_VARIABLE_LENGTH ~s)~%”

 QUERY1 QUERY1_FORMAT)

 (IPC:IPC_defineMsg QUERY1 IPC:IPC_VARIABLE_LENGTH QUERY1_FORMAT)

 ;; Subscribe to the messages that this module listens to.

 ;; NOTE: No need to subscribe to the RESPONSE1 message since it is a

 ;; response to a query not a regular subscription!

 (format T “~%(IPC_subscribe ~s 'msg2Handler ~s)~%” MSG2 MODULE1_NAME)

 (IPC:IPC_subscribe MSG2 'msg2Handler MODULE1_NAME)

 ;; Subscribe a handler for tty input.

 ;; Typing “q” will quit the program; Typing “m” will send MSG1;

 ;; Typing “r” will send QUERY1 (“r” for response)

 ;; NOTE: 0 is the file descriptor number of stdin (the terminal)

 (format T “~%(IPC_subscribeFD ~d 'stdinHnd ~s)~%” 0 MODULE1_NAME)

 (IPC:IPC_subscribeFD 0 'stdinHnd MODULE1_NAME)

 (format T “~%Type 'm' to send ~s; Type 'r' to send ~s; Type 'q' to quit~%”

 MSG1 QUERY1)

 (IPC:IPC_dispatch)

)

==

 IPC Reference Manual

 42

The file “module2.lisp” is the LISP equivalent of module2.c.

It is a test program for IPC that publishes MSG2, and subscribes to MSG1 and QUERY. It listens for MSG1

and prints out message data. When QUERY1 is received, it publishes MSG1 and responds to the query with

RESPONSE1. It exits when 'q' is typed at terminal. module2 should be run in conjunction with module1.

**

;;; Load the common file with all the type and name definitions

(load (make-pathname :DIRECTORY (pathname-directory *LOAD-TRUENAME*)

 :NAME “module.lisp”))

(IPC:IPC_defun_handler msg1Handler (msgRef msg1Data clientData)

 (format T “msg1Handler: Receiving ~s (~d) [~s]~%”

 (IPC:IPC_msgInstanceName msgRef) msg1Data clientData))

(IPC:IPC_defun_handler queryHandler (msgRef queryData clientData)

 (declare (ignore clientData))

 (let ((str1 “Hello, world”)

 t2)

 (format T “queryHandler: Receiving ~s [~a]~%”

 (IPC:IPC_msgInstanceName msgRef) queryData)

 ;; Publish this message -- all subscribers get it

 (format T “~% (IPC_publishData ~s, ~s)~%” MSG2 str1)

 (IPC:IPC_publishData MSG2 str1)

 (setq t2 (make-T2 :str1 str1

 ;; Variable length array of one element

:t1 (make-array '(1) :initial-contents (list queryData))

:count 1

 ;; T2 supports symbolic enums, so can use keyword directly

:status :ReceiveVal))

 ;; Respond with this message -- only the query handler gets it

 (format T “~% (IPC_respondData ~d ~s ~a)~%” msgRef RESPONSE1 t2)

 (IPC:IPC_respondData msgRef RESPONSE1 t2)

))

(defun stdinHnd (fd clientData)

 (declare (ignore fd))

 (let ((inputLine (read-line)))

 (case (aref inputLine 0)

((#\q #\Q)

 (IPC:IPC_disconnect)

 #+ALLEGRO (top-level:do-command “reset”) #+LISPWORKS (abort)

)

 (T (format T “stdinHnd [~s]: Received ~s” clientData inputLine)))))

(defun module2 ()

 ;; Connect to the central server

 (format T “~%(IPC_connect ~s)~%” MODULE2_NAME)

 (IPC:IPC_connect MODULE2_NAME)

 IPC Reference Manual

 43

 ;; Define the messages that this module publishes

 (format T “~%(IPC_defineMsg ~s IPC_VARIABLE_LENGTH ~s)~%” MSG2 MSG2_FORMAT)

 (IPC:IPC_defineMsg MSG2 IPC:IPC_VARIABLE_LENGTH MSG2_FORMAT)

 (format T “~%(IPC_defineMsg ~s IPC_VARIABLE_LENGTH ~s)~%”

RESPONSE1 RESPONSE1_FORMAT)

 (IPC:IPC_defineMsg RESPONSE1 IPC:IPC_VARIABLE_LENGTH RESPONSE1_FORMAT)

 ;; Subscribe to the messages that this module listens to.

 (format T “~%(IPC_subscribe ~s 'msg1Handler ~s)~%” MSG1 MODULE2_NAME)

 (IPC:IPC_subscribe MSG1 'msg1Handler MODULE2_NAME)

 (format T “~%(IPC_subscribe ~s 'queryHandler ~s)~%” QUERY1 MODULE2_NAME)

 (IPC:IPC_subscribe QUERY1 'queryHandler MODULE2_NAME)

 ;; Subscribe a handler for tty input. Typing “q” will quit the program

 (format T “~%(IPC_subscribeFD ~d 'stdinHnd ~s)~%” 0 MODULE2_NAME)

 (IPC:IPC_subscribeFD 0 'stdinHnd MODULE2_NAME)

 (format T “~%Type 'q' to quit~%”)

 (IPC:IPC_dispatch)

)

 IPC Reference Manual

 44

File “module.java” is the Java equivalent of “module.h”.

**

public class module {

 /* STATUS_ENUM */

 protected static final int WaitVal = 0;

 protected static final int SendVal = 1;

 protected static final int ReceiveVal = 2;

 protected static final int ListenVal = 3;

 protected static class T1 {

 public int i1;

 public int status; /* STATUS_ENUM */

 public double matrix[/*2*/][/*3*/];

 public double d1;

 public String toString () {

 String str = "{" + i1 +", "+ Integer.toString(status) +", [";

 for (int i=0; i<matrix.length; i++) {

 str += "[";

 for (int j=0; j<matrix[i].length; j++) {

 str += matrix[i][j];

 if (j != matrix[i].length-1) str += ", ";

 }

 str += "]";

 if (i != matrix.length-1) str += ", ";

 }

 str += "]";

 return str +", "+ d1 +"}";

 }

 }

 protected static final String T1_NAME = "T1";

 // First form of "enum". 3 is the maximum value - i.e., the value of WaitVal

 protected static final String T1_FORMAT =

 "{int, {enum : 3}, [double:2,3], double}";

 protected static class T2 {

 public String str1;

 public int count;

 public T1 t1[]; /* Variable length array of type T1_TYPE */

 public int status; /* STATUS_ENUM */

 public String toString () {

 String str = "{\"" + str1 +"\", "+ count +", ";

 str += "<";

 for (int i = 0; i<count; i++) str += t1[i].toString();

 str += ">, ";

 str += (status == WaitVal ? "WaitVal"

 : status == SendVal ? "SendVal"

 : status == ReceiveVal ? "ReceiveVal"

 : status == ListenVal ? "ListenVal" : Integer.toString(status));

 return str +"]";

 }

 IPC Reference Manual

 45

 }

 protected static final String T2_NAME = "T2";

 // Alternate form of "enum".

 protected static final String T2_FORMAT =

 "{string, int, <T1:2>, {enum WaitVal, SendVal, ReceiveVal, ListenVal}}";

 protected static final String MSG1 = "message1";

 protected static final String MSG1_FORMAT = "int";

 protected static final String MSG2 = "message2";

 protected static final String MSG2_FORMAT = "string";

 protected static final String QUERY1 = "query1";

 protected static final String QUERY1_FORMAT = T1_NAME;

 protected static final String RESPONSE1 = "response1";

 protected static final String RESPONSE1_FORMAT = T2_NAME;

 protected static final String MODULE1_NAME = "module1";

 protected static final String MODULE2_NAME = "module2";

 protected static final String MODULE3_NAME = "module3";

}

==

File “module1.java” is the Java equivalent of “module1.c”.

It publishes MSG1 and QUERY1 and subscribes to MSG2. It sends MSG1 whenever a “m” is typed at the

terminal, send a QUERY1 whenever an “r” is typed, and quits the program when a “q” is typed. It should be

run in conjunction with module2.

**

import ipc.java.*;

public class module1 extends module {

 private static class msg2Handler implements IPC.HANDLER_TYPE {

 msg2Handler(String theClientData) { clientData = theClientData; }

 public void handle (IPC.MSG_INSTANCE msgRef, Object callData) {

 System.out.println("msg2Handler: Receiving "+

 IPC.msgInstanceName(msgRef) +" (\""+ callData

 +"\") ["+ clientData +"]");

 }

 String clientData;

 }

 private static class stdinHnd implements IPC.FD_HANDLER_TYPE {

 stdinHnd(String theClientData) { clientData = theClientData; }

 public void handle (int fd) {

 try {

 int in = System.in.read();

 if (in == 'q' || in == 'Q') {

 IPC.disconnect();

 System.exit(-1);

 } else if (in == 'm' || in == 'M') {

 IPC Reference Manual

 46

 int i1 = 42;

 System.out.println("\n IPC.publishData(\""+ MSG1 +"\", "+ i1 +")");

 IPC.publishData(MSG1, i1);

 } else if (in == 'r' || in == 'R') {

 T1 t1 = new T1();

 t1.i1 = 666;

 t1.status = SendVal;

 t1.matrix = new double[][] {{0.0, 1.0, 2.0}, {1.0, 2.0, 3.0}};

 t1.d1 = java.lang.Math.PI;

 System.out.println("\n r1 = IPC.queryResponseData(\""+ QUERY1

 +"\", "+ t1 +", T2.class, IPC.IPC_WAIT_FOREVER)");

 T2 r1 = (T2)IPC.queryResponseData(QUERY1, t1, T2.class,

 IPC.IPC_WAIT_FOREVER);

 System.out.println("\n Received response: "+ r1.toString());

 } else {

 System.out.println("stdinHnd ["+ clientData +"]: Received "+(char)in);

 }

 // Read in any extra bytes

 while (System.in.available() > 0) System.in.read();

 } catch (Exception e) { e.printStackTrace(); }

 }

 String clientData;

 }

 private static class handlerChangeHnd implements IPC.CHANGE_HANDLE_TYPE {

 public void handle (String msgName, int num) {

 System.err.println("HANDLER CHANGE: "+ msgName +": "+ num);

 }

 }

 private static class handlerChangeHnd2 implements IPC.CHANGE_HANDLE_TYPE {

 public void handle (String msgName, int num) {

 System.err.println("HANDLER CHANGE2: "+ msgName +": "+ num);

 }

 }

 private static class connect1Hnd implements IPC.CONNECT_HANDLE_TYPE {

 public void handle (String moduleName) {

 System.err.println("CONNECT1: Connection from "+ moduleName);

 System.err.println(" Confirming connection ("+

 IPC.isModuleConnected(moduleName) +")");

 }

 }

 private static class connect2Hnd implements IPC.CONNECT_HANDLE_TYPE {

 public void handle (String moduleName) {

 System.err.println("CONNECT2: Connection from "+ moduleName);

 System.err.println(" Number of handlers: "+

 IPC.numHandlers(MSG1));

 }

 }

 private static class disconnect1Hnd implements IPC.CONNECT_HANDLE_TYPE {

 static boolean first = true;

 public void handle (String moduleName) {

 System.err.println("DISCONNECT: "+ moduleName);

 IPC Reference Manual

 47

 if (first) IPC.unsubscribeConnect(connect1Hnd.class);

 else IPC.unsubscribeConnect(connect2Hnd.class);

 if (first) IPC.unsubscribeHandlerChange(MSG1, handlerChangeHnd2.class);

 else IPC.unsubscribeHandlerChange(MSG1, handlerChangeHnd.class);

 first = false;

 }

 }

 public static void main (String args[]) throws Exception {

 // Connect to the central server

 System.out.println("\nIPC.connect(\""+ MODULE1_NAME +"\")");

 IPC.connect(MODULE1_NAME);

 IPC.subscribeConnect(new connect1Hnd());

 IPC.subscribeConnect(new connect2Hnd());

 IPC.subscribeDisconnect(new disconnect1Hnd());

 // Define the named formats that the modules need

 System.out.println("\nIPC.defineFormat(\""+ T1_NAME +"\", \""+

 T1_FORMAT +"\")");

 IPC.defineFormat(T1_NAME, T1_FORMAT);

 System.out.println("\nIPC.defineFormat(\""+ T2_NAME +"\", \""+

 T2_FORMAT +"\")");

 IPC.defineFormat(T2_NAME, T2_FORMAT);

 // Define the messages that this module publishes

 System.out.println("\nIPC.defineMsg(\""+ MSG1 +"\", \""+

 MSG1_FORMAT +"\")");

 IPC.defineMsg(MSG1, MSG1_FORMAT);

 IPC.subscribeHandlerChange(MSG1, new handlerChangeHnd());

 IPC.subscribeHandlerChange(MSG1, new handlerChangeHnd2());

 System.out.println("\nIPC.defineMsg(\""+ QUERY1 +"\", \""+

 QUERY1_FORMAT +"\")");

 IPC.defineMsg(QUERY1, QUERY1_FORMAT);

 IPC.subscribeHandlerChange(QUERY1, new handlerChangeHnd());

 // Subscribe to the messages that this module listens to.

 // NOTE: No need to subscribe to the RESPONSE1 message, since it is a

 // response to a query, not a regular subscription!

 System.out.println("\nIPC.subscribeData(\""+ MSG2 +"\", new msg2Handler(\""+

 MODULE1_NAME +"\"), String.class)");

 IPC.subscribeData(MSG2, new msg2Handler(MODULE1_NAME), String.class);

 // Subscribe a handler for tty input.

 // Typing "q" will quit the program; Typing "m" will send MSG1;

 // Typing "r" will send QUERY1 ("r" for response)

 System.out.println("\nIPC_subscribeFD(0, new stdinHnd(\""+

 MODULE1_NAME +"\"))");

 IPC.subscribeFD(0, new stdinHnd(MODULE1_NAME));

 System.out.println("\nType 'm' to send "+ MSG1 +"; Type 'r' to send "+

 QUERY1 +"; Type 'q' to quit");

 IPC.dispatch();

 IPC.disconnect();

 IPC Reference Manual

 48

 }

 IPC Reference Manual

 49

==

The file “module2.java” is the Java equivalent of module2.c.

It is a test program for IPC that publishes MSG2, and subscribes to MSG1 and QUERY. It listens for MSG1

and prints out message data. When QUERY1 is received, it publishes MSG1 and responds to the query with

RESPONSE1. It exits when 'q' is typed at terminal. module2 should be run in conjunction with module1.

**

import ipc.java.*;

public class module2 extends module {

 private static class msg1Handler implements IPC.HANDLER_TYPE {

 msg1Handler(String theClientData) { clientData = theClientData; }

 public void handle (IPC.MSG_INSTANCE msgRef, Object callData) {

 System.out.println("msg1Handler: Receiving "+

 IPC.msgInstanceName(msgRef) +" ("+ callData

 +") ["+ clientData +"]");

 }

 String clientData;

 }

 private static class queryHandler implements IPC.HANDLER_TYPE {

 queryHandler(String theClientData) { clientData = theClientData; }

 public void handle (IPC.MSG_INSTANCE msgRef, Object callData) {

 System.out.println("queryHandler: Receiving "+

 IPC.msgInstanceName(msgRef) +" ["+ clientData +"]");

 System.out.println(callData.toString());

 /* Publish this message -- all subscribers get it */

 String str1 = "Hello, world";

 System.out.println("\n IPC.publishData(\""+ MSG2 +"\", \""+ str1 +"\")");

 IPC.publishData(MSG2, str1);

 T2 t2 = new T2();

 t2.str1 = str1;

 /* Variable length array of one element */

 t2.t1 = new T1[1];

 t2.t1[0] = (T1)callData;

 t2.count = 1;

 t2.status = ReceiveVal;

 /* Respond with this message -- only the query handler gets it */

 System.out.println("\n IPC.respondData("+ msgRef +", \""+

 RESPONSE1 +"\", "+ t2 +")");

 IPC.respondData(msgRef, RESPONSE1, t2);

 }

 String clientData;

 }

 private static class stdinHnd implements IPC.FD_HANDLER_TYPE {

 stdinHnd(String theClientData) { clientData = theClientData; }

 public void handle (int fd) {

 try {

 int in = System.in.read();

 if (in == 'q' || in == 'Q') {

 IPC Reference Manual

 50

 IPC.disconnect();

 System.exit(-1);

 } else {

 System.out.println("stdinHnd ["+ clientData +"]: Received "+

 (char)in);

 }

 // Read in any extra bytes

 while (System.in.available() > 0) System.in.read();

 } catch (Exception e) { e.printStackTrace(); }

 }

 String clientData;

 }

 public static void main (String args[]) throws Exception {

 /* Connect to the central server */

 System.out.println("\nIPC.connect(\""+ MODULE2_NAME +"\")");

 IPC.connect(MODULE2_NAME);

 /* Define the messages that this module publishes */

 System.out.println("\nIPC.defineMsg(\""+ MSG2 +"\", \""+

 MSG2_FORMAT +"\")");

 IPC.defineMsg(MSG2, MSG2_FORMAT);

 System.out.println("\nIPC.defineMsg(\""+ RESPONSE1 +"\", \""+

 RESPONSE1_FORMAT +"\")");

 IPC.defineMsg(RESPONSE1, RESPONSE1_FORMAT);

 /* Subscribe to the messages that this module listens to. */

 System.out.println("\nIPC.subscribeData(\""+ MSG1 +"\", new msg1Handler(\""+

 MODULE2_NAME +"\"), int.class)");

 IPC.subscribeData(MSG1, new msg1Handler(MODULE2_NAME), int.class);

 System.out.println("\nIPC.subscribeData(\""+ QUERY1

 +"\", new queryHandler(\""+

 MODULE2_NAME +"\"), T1.class)");

 IPC.subscribeData(QUERY1, new queryHandler(MODULE2_NAME), T1.class);

 /* Subscribe a handler for tty input. Typing "q" will quit the program. */

 System.out.println("\nIPC_subscribeFD(0, new stdinHnd(\""+

 MODULE1_NAME +"\"))");

 IPC.subscribeFD(0, new stdinHnd(MODULE1_NAME));

 System.out.println("\nType 'q' to quit");

 IPC.dispatch();

 IPC.disconnect();

 }

}

 IPC Reference Manual

 51

File “module.java” is the Java equivalent of “module.h”.

**

import IPC

WaitVal = 0

SendVal = 1

ReceiveVal = 2

ListenVal = 3

class T1(IPC.IPCdata) :

 _fields = ('i1', 'status', 'matrix', 'd1')

class T2(IPC.IPCdata) :

 _fields = ('str1', 'count', ('t1', T1), 'status')

T1_NAME = "T1"

First form of "enum". 3 is the maximum value -- i.e., the value of WaitVal

T1_FORMAT = "{int, {enum : 3}, [double:2,3], double}";

T2_NAME = "T2"

Alternate form of "enum".

T2_FORMAT = \

 "{string, int, <T1:2>, {enum WaitVal, SendVal, ReceiveVal, ListenVal}}"

MSG1 = "message1"

MSG1_FORMAT = "int"

MSG2 = "message2"

MSG2_FORMAT = "string"

QUERY1 = "query1"

QUERY1_FORMAT = T1_NAME

RESPONSE1 = "response1"

RESPONSE1_FORMAT = T2_NAME

MODULE1_NAME = "module1"

MODULE2_NAME = "module2"

MODULE3_NAME = "module3"

==

File “module1.py” is the Python equivalent of “module1.c”.

It publishes MSG1 and QUERY1 and subscribes to MSG2. It sends MSG1 whenever a “m” is typed at the

terminal, send a QUERY1 whenever an “r” is typed, and quits the program when a “q” is typed. It should be

run in conjunction with module2.

**

import sys

import IPC

from module import *

def msg2Handler (msgRef, callData, clientData) :

 print "msg2Handler: Receiving %s (%s) [%s] " % \

 (IPC.IPC_msgInstanceName(msgRef), callData, clientData)

 IPC Reference Manual

 52

done = False

def stdinHnd (fd, clientData) :

 global done

 input = sys.stdin.readline()

 if (input[0] == 'q' or input[0] == 'Q') :

 IPC.IPC_disconnect()

 done = True

 elif (input[0] == 'm' or input[0] == 'M') :

 i1 = 42

 print "\n IPC_publishData(%s, %d)" % (MSG1, i1)

 IPC.IPC_publishData(MSG1, i1)

 elif (input[0] == 'r' or input[0] == 'R') :

 t1 = T1()

 t1.i1 = 666

 t1.status = SendVal

 t1.matrix = ((0.0, 1.0, 2.0), (1.0, 2.0, 3.0))

 t1.d1 = 3.14159

 print "\n IPC_queryResponseData(%s, %s, IPC_WAIT_FOREVER, %s)" % \

 (QUERY1, t1, T1.__name__)

 (r1, ret) = IPC.IPC_queryResponseData(QUERY1, t1, IPC.IPC_WAIT_FOREVER, T1)

 print "\n Received response"

 IPC.IPC_printData(IPC.IPC_msgFormatter(RESPONSE1), sys.stdout, r1)

 else :

 print "stdinHnd [%s]: Received %s" % (clientData, input),

def handlerChangeHnd (msgName, num, clientData) :

 print "HANDLER CHANGE: %s: %d" % (msgName, num)

def handlerChangeHnd2 (msgName, num, clientData) :

 print "HANDLER CHANGE2: %s: %d" % (msgName, num)

def connect1Hnd (moduleName, clientData) :

 print "CONNECT1: Connection from %s" % moduleName

 print " Confirming connection (%d)" % \

 IPC.IPC_isModuleConnected(moduleName)

def connect2Hnd (moduleName, clientData) :

 print "CONNECT2: Connection from %s" % moduleName

 print " Number of handlers: %d" % IPC.IPC_numHandlers(MSG1)

first = True

def disconnect1Hnd (moduleName, clientData) :

 global first

 print "DISCONNECT:", moduleName

 if (first) : IPC.IPC_unsubscribeConnect(connect1Hnd)

 else : IPC.IPC_unsubscribeConnect(connect2Hnd)

 if (first) : IPC.IPC_unsubscribeHandlerChange(MSG1, handlerChangeHnd2)

 else : IPC.IPC_unsubscribeHandlerChange(MSG1, handlerChangeHnd)

 first = False

def main () :

 global done, first

 done = False; first = True

 IPC Reference Manual

 53

 # Connect to the central server

 print "\nIPC.IPC_connect(%s)" % MODULE1_NAME

 print IPC.IPC_connect, sys.stdin, sys.stdin.fileno()

 IPC.IPC_connect(MODULE1_NAME)

 print "HERE1"

 IPC.IPC_subscribeConnect(connect1Hnd, None)

 IPC.IPC_subscribeConnect(connect2Hnd, None)

 IPC.IPC_subscribeDisconnect(disconnect1Hnd, None)

 # Define the named formats that the modules need

 print "\nIPC.IPC_defineFormat(%s, %s)" % (T1_NAME, T1_FORMAT)

 IPC.IPC_defineFormat(T1_NAME, T1_FORMAT)

 print "\nIPC.IPC_defineFormat(%s, %s)" % (T2_NAME, T2_FORMAT)

 IPC.IPC_defineFormat(T2_NAME, T2_FORMAT)

 # Define the messages that this module publishes

 print "\nIPC.IPC_defineMsg(%s, IPC_VARIABLE_LENGTH, %s)" %(MSG1, MSG1_FORMAT)

 IPC.IPC_defineMsg(MSG1, IPC.IPC_VARIABLE_LENGTH, MSG1_FORMAT)

 IPC.IPC_subscribeHandlerChange(MSG1, handlerChangeHnd, None)

 IPC.IPC_subscribeHandlerChange(MSG1, handlerChangeHnd2, None)

 print "\nIPC.IPC_defineMsg(%s, IPC_VARIABLE_LENGTH, %s)" % \

 (QUERY1, QUERY1_FORMAT)

 IPC.IPC_defineMsg(QUERY1, IPC.IPC_VARIABLE_LENGTH, QUERY1_FORMAT)

 IPC.IPC_subscribeHandlerChange(QUERY1, handlerChangeHnd, None)

 # Subscribe to the messages that this module listens to.

 # NOTE: No need to subscribe to the RESPONSE1 message, since it is a

 # response to a query, not a regular subscription!

 print "\nIPC.IPC_subscribeData(%s, msg2Handler, %s)" % (MSG2, MODULE1_NAME)

 IPC.IPC_subscribe(MSG2, msg2Handler, MODULE1_NAME)

 # Subscribe a handler for tty input.

 # Typing "q" will quit the program; Typing "m" will send MSG1;

 # Typing "r" will send QUERY1 ("r" for response)

 print "\nIPC.IPC_subscribeFD(%d, stdinHnd, %s)" % \

 (sys.stdin.fileno(), MODULE1_NAME)

 IPC.IPC_subscribeFD(sys.stdin.fileno(), stdinHnd, MODULE1_NAME)

 print "\nType 'm' to send %s; Type 'r' to send %s; Type 'q' to quit" % \

 (MSG1, QUERY1)

 while (not done) : IPC.IPC_listen(250)

 IPC.IPC_disconnect()

 IPC Reference Manual

 54

==

The file “module2.py” is the Python equivalent of module2.c.

It is a test program for IPC that publishes MSG2, and subscribes to MSG1 and QUERY. It listens for MSG1

and prints out message data. When QUERY1 is received, it publishes MSG1 and responds to the query with

RESPONSE1. It exits when 'q' is typed at terminal. module2 should be run in conjunction with module1.

**

import sys

import IPC

from module import *

def msg1Handler (msgRef, callData, clientData) :

 print "msg1Handler: Receiving %s (%d) [%s] " % \

 (IPC.IPC_msgInstanceName(msgRef), callData, clientData)

def queryHandler (msgRef, t1, clientData) :

 print "queryHandler: Receiving %s [%s]", \

 (IPC.IPC_msgInstanceName(msgRef), clientData)

 IPC.IPC_printData(IPC.IPC_msgInstanceFormatter(msgRef), sys.stdout, t1)

 # Publish this message -- all subscribers get it

 str1 = "Hello, world"

 print '\n IPC.IPC_publishData(%s, "%s")' % (MSG2, str1)

 IPC.IPC_publishData(MSG2, str1)

 t2 = T2()

 t2.str1 = str1

 # Variable length array of one element

 t2.t1 = [T1()]

 t2.t1[0] = t1

 t2.count = 1

 t2.status = ReceiveVal

 # Respond with this message -- only the query handler gets it

 print "\n IPC.IPC_respondData(%s, %s, %s)" % (msgRef, RESPONSE1, t2)

 IPC.IPC_respondData(msgRef, RESPONSE1, t2)

done = False

def stdinHnd (fd, clientData) :

 global done

 input = sys.stdin.readline()

 if (input[0] == 'q' or input[0] == 'Q') :

 IPC.IPC_disconnect()

 done = True

 else :

 print "stdinHnd [%s]: Received %s" % (clientData, input)

def main () :

 global done

 done = False

 # Connect to the central server

 print "\nIPC.IPC_connect(%s)" % MODULE2_NAME

 IPC Reference Manual

 55

 IPC.IPC_connect(MODULE2_NAME)

 # Define the messages that this module publishes

 print "\nIPC.IPC_defineMsg(%s, IPC_VARIABLE_LENGTH, %s)" % \

 (MSG2, MSG2_FORMAT)

 IPC.IPC_defineMsg(MSG2, IPC.IPC_VARIABLE_LENGTH, MSG2_FORMAT)

 print "\nIPC.IPC_defineMsg(%s, IPC_VARIABLE_LENGTH, %s)" % \

 (RESPONSE1, RESPONSE1_FORMAT)

 IPC.IPC_defineMsg(RESPONSE1, IPC.IPC_VARIABLE_LENGTH, RESPONSE1_FORMAT)

 # Subscribe to the messages that this module listens to

 print "\nIPC.IPC_subscribeData(%s,%s, %s)" % \

 (MSG1, msg1Handler.__name__, MODULE2_NAME)

 IPC.IPC_subscribeData(MSG1, msg1Handler, MODULE2_NAME)

 print "\nIPC.IPC_subscribeData(%s, %s, %s, %s)" % \

 (QUERY1 , queryHandler.__name__, MODULE2_NAME, T1.__name__)

 IPC.IPC_subscribeData(QUERY1, queryHandler, MODULE2_NAME, T1)

 # Subscribe a handler for tty input. Typing "q" will quit the program.

 print "\nIPC_subscribeFD(%d, stdinHnd, %s)" % \

 (sys.stdin.fileno(), MODULE2_NAME)

 IPC.IPC_subscribeFD(sys.stdin.fileno(), stdinHnd, MODULE2_NAME)

 print "\nType 'q' to quit"

 while (not done) : IPC.IPC_listen(250)

 IPC.IPC_disconnect()

 IPC Reference Manual

 56

Appendix B xdrgen

Purpose of xdrgen

Defining an IPC message requires a format string,

which corresponds to the data structure of the mes-

sage. Typically, the designer of the message has

defined this format string by hand, as a macro in the

same header file which defines the data structure.

The xdrgen parser automates this process. It

parses an XDR data structure specification (similar

to a list of C type definitions) and generates a C

header, which includes both type definitions and

macros defining the IPC format strings.

Automating this process helps to avoid inconsisten-

cies between the C data structure and the IPC for-

mat string. In our experience, inconsistencies are

often introduced when the data structure is changed,

but the person modifying the code is not aware that

the format string must also be changed. These in-

consistencies can lead to garbled binary messages,

which are sometimes very difficult to track down.

Running xdrgen for the first time

Installing IPC will place an xdrgen binary in the

same location as the central server. To see an ex-

ample run of xdrgen, run the following command

in the xdrgen directory of the IPC distribution:

> xdrgen example.xdr example.xdr.h

This will output example.xdr.h, a C header file

based on the XDR specification in example.xdr.

You can compare the two to get a quick idea of the

relationship between XDR and C.

xdrgen command-line options

usage: xdrgen OPTIONS <xdrFile>

 [outputHeaderFile]

-h or --help Print this help

--lang=[c,c++] Change language for

 header output(default: C++)

When xdrgen is run, it will parse xdrFile and

output the resulting C header to outputHeader-

File (or to stdout if outputHeaderFile

isn’t specified). Specifying C++ for the header out-

put language (the default) will cause the header to

use some C++ language features that are not sup-

ported by C. The differences will be discussed be-

low.

Basic xdrgen type declarations

We now move on to the types of declarations that

xdrgen can parse. There are two basic kinds of

declarations. The first is a typedef. The declara-

tion:
typedef int foo;

generates a typedef and a macro in the output

header file:
typedef int foo;

#define foo_IPC_FORMAT "int"

The second kind of declaration is a struct. The

declaration:
struct Zoo {

 int foo;

 int goo;

};

generates a struct and a macro in the output

header file:
typedef struct _Zoo {

 int foo;

 int goo;

} Zoo;

#define Zoo_IPC_FORMAT "{int, int}"

If the header language is C++, the generated code is

slightly different:
struct Zoo {

 int foo;

 int goo;

 #define Zoo_IPC_FORMAT "{int, int}"

 static const char *getIPCFormat(void)

 { return Zoo_IPC_FORMAT; }

};

If you are using a C++ compiler, the C++ output

has the following advantages:

 As discussed below, xdrgen allows arbi-

trary code to be inserted at the end of a

 IPC Reference Manual

 57

struct definition. In C++, this can be used to

define member functions. Defining the

struct starting with "struct Zoo" in-

stead of "typedef struct _Zoo " al-

lows one to define constructors for Zoo in

the arbitrary code section.

 Code, which requires the IPC format, can

access either the macro Zoo_IPC_FORMAT

or the member function

Zoo::getIPCFormat(), which may en-

able you to write cleaner code.

 You may nest struct declarations to arbi-

trary depths, and use previously defined

types in declarations of new types, as in the

following:
 struct MyIncludableStruct {

 int foo;

 struct { int a; } goo;

 };

 struct MyNestedStruct {

 MyIncludableStruct b;

 struct {

 char a;

 MyIncludableStruct b2;

 } roo;

 };

You may not declare multiple fields of the same

type in one line, so the C construction “int a,

b;” must be replaced with “int a; int b;”.

Primitive types

The following struct definition has fields with

all of the supported primitive types:
struct PrimitiveTypes {

 string a<>;

 unsigned char b;

 char c;

 unsigned int d;

 int e;

 bool f;

 float g;

 double h;

};

Some notes about how these types are used:

 The string field is followed by <> be-

cause strings are always variable-length ar-

rays in XDR. This will be discussed more

later.

 The bool type is not defined by default in

C. Therefore, whenever xdrgen creates C -

language output, it includes a definition for

bool as an enumerated type compatible

with the built-in C++ definition. In C++, a

bool is a 4-byte data structure that takes on

the values false=0 or true=1. In the

IPC format string, the bool field is

represented as “int”.

 For the other types, there is a straightfor-

ward mapping both to C data types and to

IPC format strings (see Section 3).

Fixed-length arrays

Fixed length arrays in the XDR file are mapped di-

rectly to fixed-length arrays in C. For the XDR dec-

larations:
typedef unsigned char ImagePixel[3];

struct Transform {

 double mat[4][4];

};

we get the following header output (abbreviated for

clarity):
typedef unsigned char ImagePixel[3];

#define ImagePixel_IPC_FORMAT

 "[uchar:3]"

struct Transform {

 double mat[4][4];

};

#define Transform_IPC_FORMAT

 "{[double:4,4]}"

Variable-length arrays

Variable-length arrays are specified in XDR using

angle brackets <>. For the XDR declaration:

struct Image {

int rows;

int cols;

unsigned char data<><>;

};

we get the following header output (abbreviated for

clarity):

ipc.html#Message data formats
ipc.html#Message data formats

 IPC Reference Manual

 58

struct Image {

 int rows;

 int cols;

 unsigned char *data;

};

#define Image_IPC_FORMAT

 "{int, int,<uchar:1,2>}"

Variable-length array fields in IPC must be inside a

struct, and the length in each dimension of the

array must correspond to an int or unsigned

int field of the struct. In IPC, which fields of

the struct are used for each dimension is con-

trolled by the format string. xdrgen has the fol-

lowing stricter requirements:

 If the variable-length array has n dimen-

sions, the struct must have exactly n+1

fields.

 The first n fields of the struct must have

type int or unsigned int.

 The int fields of the struct correspond

to dimensions of the array in order from left

to right (most significant dimension to least

significant).

xdrgen is designed this way to make it clear

where the size of each dimension of the array is

coming from, and to remove the need for extra lan-

guage features to specify how int fields corres-

pond to array dimensions. This simplicity comes at

the cost of discarding some of IPC’s flexibility.

Fixed and variable-length array dimensions cannot

be mixed (except for strings – see below), so the

following declaration is illegal:
struct Alpha {

 int size;

 char beta[5]<>;

}

However, a similar effect could be achieved with

the following declaration:
struct Alpha {

 int size;

 struct { char data[5]; } beta<>;

};

For consistency with XDR, xdrgen allows a max-

imum possible length to be declared for a variable-

length array, as in the following definition:

struct Gamma {

 int delta;

 float epsilon<20>;

};

However, there is no notion of a maximum length

for a variable-length array in IPC, so the length

does not currently appear in the header output.

Enumerated types

Enumerated types in XDR are mapped directly to

enumerated types in C. From the declaration

enum Color {

 RED, ORANGE, YELLOW

};

we get the following header output:
enum Color {

 RED,

 ORANGE,

 YELLOW

};

#define Color_IPC_FORMAT

 "{enum RED,ORANGE,YELLOW}"

Values for the named options of an enumerated type

can also be specified, but IPC is only flexible

enough to handle a consecutive set of options, so if

any values are specified, xdrgen represents the

field as “int” to IPC (with the disadvantage that

IPC cannot expand values to option names during

data logging). For the declaration:
enum Mixed {

 TWO = 2, FOUR, SIX = 6

};

we get the following header output:
enum Mixed {

 TWO = 2,

 FOUR,

 SIX = 6

};

#define Mixed_IPC_FORMAT "int"

 IPC Reference Manual

 59

More about the string type

Strings are a special case. A string is a null-

terminated array of char. IPC does not need to

have an integer dimension for the size of the array

because it can detect the size from the null termina-

tion. Therefore the last variable-length dimension of

a string:

 is required to be present (as specified in

RFC 1014),

 is ignored in the IPC format generated by

xdrgen,

 does not need to appear in a struct with a

corresponding int field.

Also, fixed- and variable-length arrays of strings are

allowed, as in the following definition:
struct ExecCall {

 struct {

 int argc;

 string argv<>;

 } args;

 string envVars[20]<>;

};

which produces the header output (abbreviated for

clarity):
struct ExecCall {

 struct {

 int argc;

 char **argv;

 } args;

 char *envVars[20];

};

#define ExecCall_IPC_FORMAT

 "{{int,<string:1},[string:20]}"

Arbitrary code sections

Your XDR file can include arbitrary code sections

wrapped in the delimiters %{ and %}. Arbitrary

code can be placed at the beginning or end of the

file, between declarations, or at the end of a struct

declaration, just before the closing } character. The

arbitrary code will be copied into the generated

header at the corresponding point in the C code.

For example, the XDR file text:
%{

#include "my_arbitrary_code.h"

#define N 3

extern int foo;

%}

typedef double Meters;

%{

extern Meters length;

%}

struct Roo {

 int a;

 char b;

%{

 Roo(int _a, char _b) { a=_a; b=_b; }

%}

};

generates the header output (abbreviated for clari-

ty):
#include "my_arbitrary_code.h"

#define N 3

extern int foo;

typedef double Meters;

#define Meters_IPC_FORMAT "double"

extern Meters length;

struct Roo {

 int a;

 char b;

 Roo(int _a, char _b) { a=_a; b=_b; }

};

#define Roo_IPC_FORMAT "{int, char}"

External format definitions

You can use external format definitions if the

structs you define using XDR contain other data

types that are not defined using XDR. This could

happen if you want to manually define the IPC for-

mat for a data type using an IPC feature not sup-

ported by xdrgen, or if the type definition comes

from a standard system include file. For instance,

the declaration:
ipc_type ExternalStruct1;

tells xdrgen to expect that the type External-

Struct1 has an IPC format defined in the macro

ExternalStruct1_IPC_FORMAT. The macro

definition must appear before the generated code for

any struct that includes ExternalStruct1,

which means that it should appear either in an arbi-

trary code section of the XDR file or it should be

included via an #include directive in an arbitrary

code section.

 IPC Reference Manual

 60

Once ExternalStruct1 is declared using

ipc_type, it can be included in subsequent

struct declarations without causing a warning.

For example, the declaration:
struct IncExternalStruct {

 int a;

 ExternalStruct1 s1;

}

generates the header output (abbreviated for clari-

ty):
struct IncExternalStruct {

 int a;

 ExternalStruct1 s1;

}

#define IncExternalStruct_IPC_FORMAT

 "{int," ExternalStruct1_IPC_FORMAT "}"

You can also manually define the IPC format for a

type using ipc_type. Thus, the declaration:

ipc_type ExternalStruct2 =

 "{char, double}";

tells xdrgen to use the given format string instead

of trying to refer to the macro External-

Struct2_IPC_FORMAT.

Formal XDR language definition

The xdrgen parser aims to parse the XDR lan-

guage (as specified by Sun Microsystems in RFC

1014) wherever this makes sense. However, there

are both unsupported features and extensions in the

xdrgen input language:

 RFC 1014 specifies a mapping between an

XDR data type specification and the binary

format of the corresponding network mes-

sage. Because XDR syntax is so similar to C

syntax, there is also an implicit mapping be-

tween the XDR data type and the corres-

ponding C data type. It is this second map-

ping that xdrgen tries to capture. The IPC

format string for a data type is generated

from the C data type according to the rules

in Section 3. There is no reason to expect

that IPC network messages will follow the

XDR binary packing rules.

 Unsupported feature: union types. There

are no corresponding types in IPC.

 Unsupported feature: hyper (8-byte integ-

er) types. There are no corresponding types

in IPC.

 Unsupported feature: optional data (the

XDR * syntax). Supported in IPC, but not

implemented by xdrgen.

 Extension: opaque replaced with char

and unsigned char. A char type need

not be in an array.

 Extension: arbitrary code sections.

 Extension: multi-dimensional arrays.

Those interested in a full grammar for the xdrgen

input language can look at bison input file

src/XDRGen/XDR.y in the IPC distribution.

xdrgen was developed and documented by Trey

Smith, February 2001.

ipc.html#Message data formats
ipc.html#Message data formats

 IPC Reference Manual

 61

Index

A

Access control .. 4

Architecture of systems using IPC 2

B

BYTE_ARRAY.. 10

C

Central server ... 3

CHANGE_HANDLE_TYPE 11

Compiling IPC .. 3

Connect to IPC network 12

Connect to IPC Network without Listening 12

CONNECT_HANDLE_TYPE.......................... 11

Connecting to multiple servers 31

Contexts ... 31

get .. 31

set ... 31

D

Data formats

arrays .. 8

enumerated ... 8

linked/recursive .. 8

primitives.. 6

structures .. 7

Define byte array .. 10

Detectable errors ... 10

E

Enable replies outside a handler 21

Example programs .. 34

F

FD_HANDLER_TYPE 11

Fixed-length and variable-length arrays 8

Format strings ... 6

check consistency ... 25

define new format ... 24

Free

byte array ... 27

data elements .. 27

data structure .. 27

H

Handle IPC events .. 16

Handle IPC message ... 16

Handler type

connections .. 11

message .. 10

messages with automatic unmarshalling 10

non-message events 11

subscription changes 11

HANDLER_DATA_TYPE 10

HANDLER_TYPE ... 10

I

Initialize data structures 11

Installing IPC ... 3

Integrate non-message & message event handling

 ... 15

Interface functions .. 10

IPC_addOneShotTimer() 32

IPC_addPeriodicTimer() 33

IPC_addTimer() ... 32

IPC_addTimerGetRef() 33

IPC_checkMsgFormats() 25

IPC_connect() .. 12

IPC_connectModule() 12

IPC_connectModuleNoListen() 12

IPC_connectNoListen() 12

IPC_dataLength() ... 17

IPC_defineFormat().. 24

IPC_defineMsg() .. 13

IPC_defstruct ... 29

IPC_defun_handler() .. 29

IPC_delayResponse() 21

IPC_disconnect() .. 12

IPC_dispatch() ... 17

IPC_errno ... 11

IPC_Error ... 10

IPC_ERROR_TYPE .. 10

IPC_freeByteArray() .. 27

 IPC Reference Manual

 62

IPC_freeData() ... 27

IPC_freeDataElements() 27

IPC_getConnections() 16

IPC_getContext() .. 31

IPC_handleMessage() 16

IPC_initialize() ... 11

IPC_isConnected().. 12

IPC_isModuleConnected()................................ 13

IPC_isMsgDefined() ... 13

IPC_listen() .. 16

IPC_listenClear() .. 16

IPC_listenWait() ... 16

IPC_marshall() ... 25

IPC_msgFormatter() ... 25

IPC_msgInstanceFormatter() 25

IPC_msgInstanceName() 14

IPC_numHandlers() .. 18

IPC_OK.. 10

IPC_parseFormat() ... 24

IPC_perror() ... 11

IPC_printData() .. 29

IPC_publish() ... 13

IPC_publishData() .. 28

IPC_publishFixed() .. 14

IPC_publishVC() .. 14

IPC_queryNotify() .. 22

IPC_queryNotifyData() 28

IPC_queryNotifyVC() 23

IPC_queryResponse() 22

IPC_queryResponseData() 29

IPC_queryResponseVC() 23

IPC_removeTimer() .. 33

IPC_removeTimerByRef()................................ 33

IPC_respond() .. 21

IPC_respondData() ... 28

IPC_respondVC() ... 22

IPC_RETURN_TYPE 10

IPC_setCapacity() ... 17

IPC_setContext() .. 31

IPC_setMsgPriority() .. 17

IPC_setMsgQueueLength() 18

IPC_setVerbosity() ... 17

IPC_subscribe() .. 14

IPC_subscribeConnect() 18

IPC_subscribeData() ... 15

IPC_subscribeDisconnect() 18

IPC_subscribeFD() ... 15

IPC_subscribeHandlerChange() 19

IPC_unmarshall() ... 26

IPC_unmarshallData() 26

IPC_unsubscribe() .. 15

IPC_unsubscribeConnect() 18

IPC_unsubscribeDisconnect()........................... 18

IPC_unsubscribeFD() 16

IPC_unsubscribeHandlerChange() 19

IPC_VARCONTENT_PTR 10

IPC_VARCONTENT_TYPE 10

IPC_VERBOSITY_TYPE 11

Is IPC network connected? 12

Is message defined? .. 13

Is named module connected? 13

K

killCentral() .. 19

killModule() ... 19

L

Last detected error .. 11

Listen for given amount of time 16

Listen for subscribed events 16

M

Marshall and publish .. 28

Marshalling data ... 25

Message data formats ... 6

Message queue ... 18

MSG_INSTANCE ... 10

N

Number of subscribers for a message................ 18

O

Open sockets .. 16

P

Pointers, linked lists, recursive data structures 8

Primitive data types .. 6

names and lengths .. 7

Publish

fixed-length message 14

message .. 13

variable length message 14

Q

Query/response... 21

 IPC Reference Manual

 63

R

Register message .. 13

Return message name 14

Return message size .. 17

Return Type .. 10

S

Select verbosity .. 17

Send query / block waiting................................ 22

Starting the central server 3

Structures ... 7

Subscribe

file descriptor .. 15

messages ... 14

new connections ... 18

new disconnections 18

new subscribers to a message 19

with automatic unmarshalling 15

T

TIMER_HANDLER_TYPE 32

Timers

add ... 32

add by reference ... 33

add one shot ... 32

add periodic .. 33

remove ... 33

remove by reference 33

U

Unmarshalling data .. 26

Unsubscribe

file descriptor ... 16

messages .. 15

new connections ... 18

new disconnections 18

new subscribers to a message........................ 19

V

Variable length byte array 10

Verbosity level ... 11

X

xdrgen .. 56

