
Learning Tetris

Matt Zucker Andrew Maas

February 3, 2009

1 Tetris
The Tetris game has been used as a benchmark for Machine Learning tasks be-
cause its large state space (over 2200 cell configurations are possible) and sizable
branching factor (a typical piece may be placed in over 30 configurations) ne-
cessitate the use of effective heuristic approximations in order to produce viable
policies.

The standard Tetris board consists of a 10 column by 20 row playing field.
Tetrominoes, or connected shapes of four cells each, are dropped into the playing
field from the top and stacked upon the bottom of the field or already-occupied
cells. There are seven different tetrominoes; after every move, the next piece to
be dropped is selected among them with uniform probability. The game state x
therefore consists of the occupancy of each of the 200 cells, along with the next
tetromino to be dropped. A player can rotate (but not flip) the current piece befre
dropping it. Dropping the piece in any column is allowed, as long as it stays within
the 10× 20 field. Hence, the action u = (p, r) consists of the desired position and
rotation of the current piece. The set U(x) is the set of all valid actions given the
state x.

When a full 10-column line of cells is occupied, the line is removed and all
cells above it are moved down by one cell. Multiple lines may be removed at
a time. Each line removed adds one to the player’s score. The game is over
when any cell in the top row becomes occupied. The goal of the game is to
maximize the score. Denote the successor of the state x after applying action u
by x′. To generate the successor, the piece is dropped, any full lines are removed
to generate the one-step reward r(x, u), and a new piece to drop is selected at

1



random. Therefore we draw x′ from the distribution

x′ ∼ p(x′|x, u)

2 Quality Estimation Function
Many heuristic approaches are possible; we chose to optimize a parameterized
function which approximates the quality of a state based on a low-dimensional
set of features extracted from the state. Let f(x) ∈ Rn denote the feature vector
extracted from the state x. Note that we do not include any information about the
current piece in the feature vector. Therefore we can write a deterministic function
f(x, u), which is shorthand for the features extracted from the successor state x′,
because the only non-deterministic aspect of x′ is the current piece to be dropped.

The 22 features initially used to do learning consist of the following:

• The height of the topmost occupied cell hi in each column i (10 features)

• The absolute difference |hi+1−hi| between adjacent columns (nine features)

• The maximum height of any column (one feature)

• The number of holes on the board – unfilled cells with one or more filled
cells above them (one feature)

• The previous one-step reward r(x, u) indicating the number of lines just
removed (one feature)

Let the function Q(θ, f(x)) denote the estimated quality of state x based on a
parameter vector θ ∈ Rm. Such a quality function can implicity impose a policy:
for a given state x, we can choose which action u ∈ U(x) to apply by maximizing
Q over the set of possible successor states:

π(x) = arg max
u∈U(x)

Q
(
θ, f(x, u)

)
The simplest such estimation function is the linear function

Q
(
θ, f(x, u)

)
= θT f(x, u)

More complicated functions might entail artificial neural networks or other non-
linear components.

2



3 Stochastic Policy Gradient Descent
Instead of this deterministic policy, we may also use a stochastic policy which
selects the next action from a multinomial distribution q(θ, x, u):

u ∼ q(θ, x, u)

By turning the hard max above into a soft max, we get the familiar Boltzmann
distribution:

`(θ, x, u) = exp
(
Q(θ, f(x, u))

)
Z(θ, x) =

∑
ui∈U(x)

`(θ, x, ui)

q(θ, x, u) =
`(θ, x, u)

Z(θ, x)

The REINFORCE algorithm [2] allows us to optimize the parameters of a stochastic
policy by taking the gradient of expected reward. In order to do REINFORCE, we
need to be able to compute the score ratio

∇q(θ, x, u)

q(θ, x, u)

We observe:

∇`(θ, x, u) = ∇Q
(
θ, f(x, u)

)
`(θ, x, u)

∇Z(θ, x) =
∑

ui∈U(x)

∇`(θ, x, ui)

Now we use the product rule to get the derivative of q(θ, x, u):

∇q(θ, x, u) =
−1

Z(θ, x)2
∇Z(θ, x) `(θ, x, u) +

∇`(θ, x, u)

Z(θ, x)

3



And we can divide through by q(θ, x, u) to get the score ratio

∇q(θ, x, u)

q(θ, x, u)
=
−∇Z(θ, x)

Z(θ, x)
+
∇`(θ, x, u)

Z(θ, x)

Z(θ, x)

`(θ, x, u)

=
−∇Z(θ, x)

Z(θ, x)
+
∇`(θ, x, u)

`(θ, x, u)

=
−∇Z(θ, x)

Z(θ, x)
+∇Q

(
θ, f(x, u)

)
= ∇Q

(
θ, f(x, u)

)
− 1

Z(θ, x)

∑
ui∈U(x)

∇`(θ, x, ui)

= ∇Q
(
θ, f(x, u)

)
− 1

Z(θ, x)

∑
ui∈U(x)

∇Q
(
θ, f(x, ui)

)
`(θ, x, ui)

= ∇Q
(
θ, f(x, u)

)
−

∑
ui∈U(x)

∇Q
(
θ, f(x, ui)

)
q(θ, x, ui)

= ∇Q
(
θ, f(x, u)

)
− Eq[∇Q(θ, f)]

When Q is linear in f :

Q
(
θ, f(x, u)

)
= θT f(x, u)

we get the very simple derivation

∇q(θ, x, u)

q(θ, x, u)
= f(x, u)− Eq[f ]

4 REINFORCE Update Rule
To update the weights θ, we run the policy and compute a step ∆ which can be
added to the weights. This is the “Markov Chain Gradient” algorithm from [2]:

zt+1 = β zt +
∇q(θ, xt+1, ut+1)

q(θ, xt+1, ut+1)

∆t+1 = ∆t +
t

t + 1

(
r(xt+1, ut+1) zt+1 −∆t

)

4



We initialize with z0, ∆0 ∈ Rm = 0. Weights are updated by

θ ← θ + α∆

for some small scalar α. We can get faster convergence by using a covariant gradi-
ent method [1], which tracks the covariance G of the state transition distribution:

Gt+1 = Gt +
t

t + 1

(
zt+1 zT

t+1 −Gt

)
where G0 is initialized a matrix with small positive values on the main diagonal
in order to ensure numerical stability. The update rule is changed to

θ ← θ + αG−1∆

This chooses a modification of weights which is small with respect to the current
distribution.

4.1 Practical Issues
Two questions remain: when should we reset ∆ and G, and how often should we
take steps to update θ? Empirically, we found that taking a gradient step after the
end of every Tetris game was sufficient. Instead of setting ∆ and t to zero after
every update, we found that decaying both by a factor of two added “momentum”
which sped learning. In practice, we update G by keeping a moving average over
the last 10, 000 or so steps. G is never reset.

5 Initial Results
Initially, we used the 22-element feature vector described in section 2, with the lin-
ear function Q(θ, f) = θT f . After running REINFORCE over about 5,000 games
of Tetris, the policy was evaluated on 100 games with learning turned off. The
mean score over the 100 games was 4,331 lines, and the maximum score was
31,705 lines.

6 Additional Lookahead
We can increase performance of our Q function by using an “expected-max”
lookahead function QL which we will define recursively. Let the base function

5



Q0 be defined as Q0(θ, x, u) = Q(θ, f(x, u)). Then define

QL(θ, x, u) =
∑
x′

p(x′|x, u)

(
max

u′∈U(x′)
QL−1(θ, x′, u′)

)
Since computation of QL calls QL−1 once for every possible action in every pos-
sible successor state, computing it is order O((SB)L) where S is the number of
successor states (always 7 in Tetris), and B is the expected branching factor, or
mean number of moves available in a given state. What is the expected branching
factor of Tetris?

• The square is symmetric under rotation, and it can be placed in 9 positions.

• The line has two distinct rotations (horizontal and vertical). In the horizontal
position, it can be placed in 7 positions, and in the vertical it can be placed
in 10 positions.

• The S, Z, L, and J pieces all have two distinct rotations. In their horizontal
rotation, they can be placed in 8 positions, and in their vertical rotation, they
can be placed in 9 positions.

• The T piece has four distinct rotations. In either horizontal rotation, it can
be placed in 8 positions. In either vertical rotation, it can be placed in 9
positions.

So, the mean branching factor is

1

7

(
9 + (7 + 10) + 4 ∗ (8 + 9) + (8 + 8 + 9 + 9)

)
= 18

Hence, we expect that computing Q1 incurs an additional factor of 7 · 18 = 126
board evaluations over computing Q0. Computing more lookahead is exponen-
tially more expensive: to compute Q3, we increase computation by a factor of
1263 = 2, 000, 376!

By simply using Q1 instead of Q0, we saw much better average performance.
Averaging over 10 games with the weights learned in section 5, we observed a
mean score of 83,222 lines with a maximum of 161,223. Unfortunately, since
evaluating the lookahead policy takes a very long time, we decided not to run
more trials.

6



7 Max-Margin Learning from Demonstration
If we observe a game being played by an expert, we can learn a policy based on
the expert’s actions. Let u+ be the action that an expert chose for state x. We wish
that the expert’s action appears to be the best in a maximum-margin sense under
our estimator Q. That is, for all actions u ∈ U(x)/{u+}, we want the expert’s
action to be the best by a margin c:

Q(θ, x, u+) > Q(θ, x, u) + c

This constraint is obviously still met if we beat the maximizer u−:

u− = arg max
u∈U(x)/{u+}

Q(θ, x, u)

And so the constraint is

Q(θ, x, u+) > Q(θ, x, u−) + c

Learning θ can be accomplished via a stochastic online subgradient update. On
every step of a game observed, we can verify if the constraint above is met. If not,
we compute the margin loss ε for the current step:

ε = Q(θ, x, u−)−Q(θ, x, u+) + c

Then we update the weights as follows:

∆ = ε

(
∇Q

(
θ, x, u+

)
−∇Q

(
θ, x, u−

))
θ ← θ + γ∆

Where γ ∈ (0, 1] is a step size.

8 Max-Margin Lookahead Policy Optimization
By combining the max-margin learning from demonstration along with a looka-
head policy we can learn better policies.

• Conjecture 1: given a reasonable estimator Q0, the policy imposed by Q1 is
better than the original Q0 policy.

7



• Conjecture 2: learning a new Q0′ by treating Q1 as an expert gives better
performance than the original Q0 policy.

If these conjectures are true, then the following algorithm should work: Start with
a reasonable policy Q0. Play one game (or even a fraction of a game - we use
a maximum of 10,000 moves) under Q1. Train a new policy Q0′ with the max-
margin learning from demonstration algorithm by treating Q1 as an expert. Repeat
until performance is good.

Starting with the policy learned in section 5, we did this for four iterations.
The resulting policy significantly outperforms the original policy: on 100 games,
the maximum score observed was 92,248 lines with an average score of 16,208
lines.

This method seems to confer some promising advantages. Unlike REIN-
FORCE, the policy need not be stochastic. Using a deterministic policy can be
faster because the stochastic policy slows convergence – learning only occurs
when the policy is rewarded for relatively low-probability actions. This method is
also better than running a pure two-step lookahead policy because the lookahead
policy only needs to be run for a finite number of moves in each iteration, and the
final policy runs much faster than a two-step lookahead.

9 Learning Features
Choosing good features to represent a problem is a central issue in machine learn-
ing. To solve this problem, there are several techniques for automatically discov-
ering useful features from data. We hoped to improve the performance of our
linear Q-function value estimator by training it with more informative features
than those described above. Our approach uses unsupervised learning where only
data is given, without any sort of label. This learning paradigm excels in areas
such as document classification where abundant data is available, but generating
labels for data is costly in some way [4]. By recording game states as our basic
learner plays, we can quickly generate millions of unlabeled Tetris states. Assign-
ing a label to these states would be difficult, because the true value function over
states is not known. By observing our basic Tetris learner, we sample a distribu-
tion over states which is typical for a player acheiving thousands of completed
lines per game on average.

Given the unlabeled Tetris data, we treat the board as a vector of binary pixels,
and seek to discover useful real-valued features. We use a fully connected neural

8



Figure 1: Weights learned by two of the hidden nodes during RBM unsupervised
feature learning. The features appear to capture information about holes/wells, as
well as overall board height.

network with a single visible hidden layer. Each node in the network is binary
and stochastic, where the probability of activation is defined by the Boltzmann
distribution:

p(si = 1) =
1

1 + exp(−bi − Σjsjwij)

Where w is the symetric weight between node si and sj , and bi is the bias for
si. This class of neural network is known as the restricted Boltzmann machine
(RBM). The contrastive divergence algorithm (CD) was introduced by Geoff Hin-
ton [3] as a way to learn features in the hidden layer of an RBM with unlabeled
data. We applied the CD algorithm to Tetris board states.

Figure 1 shows weights for 2 of the 50 learned features. The features correctly
capture information about the overall height of the stack, and holds. However, the
50 learned features do not store additional information beyond what is available
by using the features described previously (e.g. row height). After trying several
variants of this procedure, we concluded that although the number of possible
Tetris states is large, the structure of the game causes states to be represented well
by the hand-designed features commonly used.

9



10 Conclusion
Overall, we tried a number of strategies to learn Tetris policies. Our favorite
policy is the one learned in section 8 – the combination of max-margin learning
from demonstration with a Q1 lookahead policy.

Strategy Max Average
Covariant REINFORCE 31,705 4,331
Q1 Lookahead 161,223 83,222
Max-margin + lookahead 94,248 16,208
Learned features 18 4

We would like to further investigate the properties of the algorithm outlined in
section 8, and to see if we can prove the conjectures outlined there.

References
[1] J. Andrew (Drew) Bagnell. Learning Decisions: Robustness, Uncertainty,

and Approximation. PhD thesis, Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, August 2004.

[2] J. Baxter and PL Bartlett. Direct gradient-based reinforcement learning. In
Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000
IEEE International Symposium on, volume 3, 2000.

[3] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural Computation, 18(7):1527–1554, July
2006.

[4] Kamal Nigam, Andrew Mccallum, Sebastian Thrun, and Tom Mitchell. Text
classification from labeled and unlabeled documents using em. In Machine
Learning, pages 103–134, 2000.

10


	Tetris
	Quality Estimation Function
	Stochastic Policy Gradient Descent
	Reinforce Update Rule
	Practical Issues

	Initial Results
	Additional Lookahead
	Max-Margin Learning from Demonstration
	Max-Margin Lookahead Policy Optimization
	Learning Features
	Conclusion

