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1 Introduction

1.1 Problem Statement

The goal of this project is to design a controller to play a simple game of tetris. This
controller needs to decide where to place each piece, aiming to maximize its score—in this
case, the number of lines completed.

Although the statement is succinct, there are a number of challenges that make this an
intruiging problem. For example, each game drops a random series of pieces. Small varia-
tions in this series can lead to a large difference in score, even while using the same strategy.
The reader has likely experienced this during a game of tetris; over time it is common to
develop a deep empty slot that needs to be filled in. There is only one piece (the 1x4 ‘rod’)
that can fit in this slot, and the game can spiral out of control if that piece does not drop
quickly.

Other factors that contribute to the complexity of this challenge include the large number
of possible states of the game board (exponential with respect to board size), and the
fact that in every game even the best strategy will eventually lose with probability 1 (see
Burgiel [2]). In fact, designing an optimal strategy has been shown by Demaine et. al. [3]
to be an NP-complete problem.

1.2 Existing Work

Not surprisingly, Tetris is a popular problem domain for AI research. While some of the
most successful algorithms published rely on human intuition to design and tweak evalu-
ation functions[4], a wealth of machine learning techniques have been applied to playing
Tetris.

Siegel and Chaffee [7] implemented a evolutionary algorithm to generate successful heuris-
tic/weight combinations. It resulted in average scores of 15-30 lines. Bohn et.al. [1] also
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tried an evolutionary approach, with significantly better results. After months of compu-
tation, they achieved scores into the millions of lines. Other approaches previously tried
include randomized constraint sampling, which Farias used to average 4000 lines [5], and
more general reinforcement learning, which Gros et. al.[6] used to improve hand-tuned
weights by a factor of 4, ultimately averaging 8000 lines/game.

While the literature is weak on gradient and simplex machine learning techniques being
successfully applied to Tetris, word of mouth among our classmates suggests that it is a
viable approach, with some impressive results.

2 Our Approach

When first considering the problem, we realized that there was no possibility of learning
to play from the ground up – there were simply too many possibilities: the board has 2200,
or 1.6 × 1060 states, and a strategy is needed for each of 7 possible dropped pieces. Even
by only considering the top few rows, it was not feasible to learn a controller policy over
all possible states. Thus, we needed to simplify the information that the controller used to
make a decision.

For any piece that drops there are approximately 40 possible combinations of position
and rotation. When choosing which move (position/rotation pair) to select, the controller
evaluated the state of the board that would result from each move and chooses to execute
the one corresponding to the lowest cost board. We decided upon a set of heuristics
that would describe the state of the board, such that cost = w1H1 + w2H2 + ... + wnHn,
where Hi is the ith heuristic and wi its associated weight. Effectively, this reduced the
number of possible state variables from 200 (one for each cell) to a single variable for each
heuristic. However, the controller may no longer be able to play optimally, as the diversity
of its actions is bounded by the choice of heuristics. In a loose sense, we are searching
for orthogonal heuristics that span the state space of the board. Practically, we chose
heuristics that encoded human intuition about how to play Tetris.

To change (and hopefully improve) the performance of the controller, it is only necessary
to modify the weights which balance the various heuristics. Therefore, after developing
a set of heuristics, we can find the best weights using standard learning techniques, grid
searches, or even hand-tuning parameters. Unfortunately, due to the random variation
in piece order, each set of weights must be tested on many games to yield meaningful
results.
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2.1 Implementation

After establishing the high-level approach, we still lacked an actual implementation. Prior
to actually coding it ourselves, we searched for an easy to use, well documented, existing
implementation compatible with our approach, but could not find one that matched these
constraints. Therefore, we wrote two versions; the first in MATLAB for ease of development
and testing, and then in C for quickly running longer and more computationally intensive
trials. The same basic structure was used in both implementations.

As discussed above, each set of weights was run over several games (typically around 50),
and the scores averaged to obtain a single score given those weights. This reduced random
variation caused by different piece sequences.

2.1.1 Single Game

A single game can be divided into a series of steps. For each step, the controller is given
the current state of the board, as well as the next piece, and is expected to return a valid
column and rotation of that piece, which defines where to “drop” that piece. The piece is
then dropped at the requested position, and added to the state of the board. For each row
completed as a result of this action, it is removed, each row above it drops down by one
line, and the score is incremented by one.

This process repeats until the highest column is above the 20 piece limit, at which time
the game ends, and the score, or total number of lines eliminated, is returned.

We focus here on the details of the controller choosing a proper column and rotation during
each step. The state s is given by {s1,1, s1,2, . . . , s20,10}, where si,j ∈ {0, 1} represents
whether the grid element at the ith row and jth column is filled. The next piece p is
randomly chosen from {1, 2, . . . , 7}, which map to the seven possible pieces. The output is
expected to be a column c ∈ {1, 2, . . . , 10} and a rotation r ∈ {1, 2, 3, 4}. Note that only
valid combinations of these values are allowed; most pieces cannot be placed in the 10th
column, for example.

A simulator then drops every combination of c and r, and obtains a set of future states
Sf = {sc,r ∀ c, r}, where each sc,r is the state generated by dropping the suggested piece
at column c with rotation r.

Denote the set of heuristics by H, where each heuristic h ∈ H is a map h(s) : S → R from
states to a real-numbered costs. Note that each heuristic does not dictate where to put a
specific piece, but rather gives a cost for any placement of the piece, therefore effectively
ranking all possible placements.

Each sc,r ∈ Sf is then assigned a cost, which is the weighted sum of the cost from each
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heuristic, or more explicitly C(sc,r) =
∑

iwihi(sc,r), where w is the vector of weights for
the current game. The controller then simply chooses c and r to be the values that give
the minimum C(sc,r), out of all valid choices.

2.1.2 Adjusting Weights over Multiple Games

For a given set of weights, we could then generate the average score over hundreds of games.
However, initial guesses of weights only generated a few lines on average. Therefore, we
needed to modify the weights to improve the performance.

The methods we used to find better weights are fairly straightforward. Our first ap-
proach was using a simplex search to learn better weights. This has the benefit of being
a common algorithm for high-dimensional nonlinear optimization, but suffers from several
drawbacks:

• Poor performance when using a cost function that doesn’t always evaluate to the
same value

• Needs tweaking to set initial simplex size

• Requires many iterations, which may be too slow to be useful

• Can converge to very bad weights

Another approach was a grid-based search of the parameter space, which also has intense
computation requirements, but can reveal very good results. Finally, the option of hand-
tuning parameters allowed us to use our own intuition to balance the weights in a way
so as to correct problems we saw occuring during previous trials, which improved per-
formance and computational time at the expense of requiring more human intuition and
guidance.

3 Heuristics

Clearly, the success of our approach is dependent on our choice of heuristics. We followed
the convention of trying to minimize cost with all weights positive, so larger heuristic values
indicate less favorable states. Our final set of heuristics was:

• H1 Difference between maximum and minimum column heights

• H2 Variation of column heights
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• H3 Number of holes, where a hole is defined to be an open square with at least one
filled square above it. Note that it doesn’t need to be fully enclosed, as this version
of tetris does not allow horizontal sliding of pieces mid-drop.

• H4 Inverse of density

• H5 Negative of rows completed on the previous move

• H6 Sum of squares of the depth of holes

• H7 Sum of squares of height differences between neighbouring columns

• H8 Bias towards the side walls. The heuristic averages the height of all columns,
weighted by its distance to the closest wall.

• H9 Maximum height.

• H10 Average height.

• H11 Number of jumps in the height of consecutive columns.

One further refinement that we made was adding a lookahead step. That is, rather than
only minimizing the board cost after the current piece drops, choose the position and
orientation that minimize cost = cost(currentpiece)+αE[cost(nextpiece)]. Since the next
piece is not known and the distribution of pieces is uniform, the expectation of next piece’s
cost is an unweighted average of the lowest possible board costs that result from dropping
each piece.

This lookahead measure was computationally intensive (slowed down state evaluation by a
factor of 280), so we were unable to use it in any of the learning approaches we tried. Sim-
ilarly, the α parameter could be tuned in theory, but we lacked the time and computational
power to do so: we arbitrarily chose to set α = 1.

4 Roadblocks

After we developed our MATLAB simulator and added the initial set of heuristics, we
discovered a problem. Our simulator required several minutes to run the hundreds of
trials needed to obtain a reliable average score over multiple games. This meant that
each iteration of the simplex search was too time-consuming when running many trials per
iteration. If we ran fewer trials and allowed the variance of the average score to increase,
the simplex search didn’t converge.

As a result, we ported the program to C, which increased the speed, but not sufficiently
to allow simulating enough games to use standard learning approaches. At this point, we
brainstormed possible solutions to overcome this speed issue:
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• Supercomputer cluster! While this would probably provide enough computation,
it isn’t exactly realistic or readily available to us.

• Pre-generate games: If we randomly generate about 50 piece sequences, each
several hundred pieces long, then we reduce the major source of variance. This
would allow us to average over fewer trials for each set of weights, while still obtaining
reasonable results. In fact, the cost function would then be deterministic.

Unfortunately, this method has several drawbacks. First, unless infinite-length piece
sequences are generated, the games may end by running out of pieces. Also, there is
no guarantee that the optimal weights generated for this test set will generalize well
to all possible piece sequences. The latter is a common problem in machine learning,
and it could be addressed in this case by running more trials. (Which is exactly what
we’re trying to avoid, due to the poor speed of our simulator)

• Smaller game board: Reducing the game board from 20 lines to 10, as suggested
in Bohn [1], would result in shorter games and improve the speed of evaluation.
However, the exact nature of the relationship between scores in 10 and 20 line games
has not been proven.

• Adjust simplex search parameters: By setting better initial weights and initial
simplex size, the simplex search can perform more effectively. Unfortunately, it is
difficult, if not impossible, to evaluate the effectiveness of a particular parameter set
without running the simplex search with those parameters, as well as several others
to compare. As the simplex search already takes a long time to run, this isn’t a
feasible solution until we solve the speed problem via another method. Therefore, this
becomes an improvement of convergence suggestion, rather than a speed improvement
suggestion.

• Hand-Tune parameters: We can harness the power of human intuition by watch-
ing games and hand-tuning the weights on heuristics because we have knowledge of
what the heuristic is supposed to do. Although this requires hands-on attention, hu-
man intuition can quickly improve the weights to a reasonable level. These can then
be used as the final optimized weights or as a starting value for a learning approach.

• Choose better heuristics: By improving the quality of the heuristic, or how well it
can judge the desirability of a certain state of the board, the controller can drastically
improve. Unfortunately, many times better heuristics require more computation, also
slowing down the speed of the controller.

A smaller game board allowed us to obtain results from the simplex search in more rea-
sonable amounts of time. Unfortunately, we were unable to adequately configure the pa-
rameters in matlab’s built-in simplex search. This led to it searching a too-small area of
the state space, and even converging on severely suboptimal weights. The simplex search
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Figure 1: Score function with variation of weights of heuristics H7 and H8.

was also sensitive to initial conditions. We hypothesize that the difficulties may result in
part from the large variance in the cost function, and the fact that it contains a significant
high frequency component, as shown in Figure 1.

The last two of the proposed solutions proved most useful. We embarked on a literature
search for inspiration, which resulted in heuristics H6 and H7 [6], both of which proved
highly informative. However, this alone was not a sufficient improvement. We used hand-
tuning of weights to find a starting condition for any automated searches: after less than
30 minutes of work, we obtained results significantly better than those resulting from a
simplex search on the same heuristics.

5 Optimization Algorithms

We formulate the optimization problem as selecting weights for the hand-designed heuristics
that will maximize the number of completed rows, when used as described in section 2.1.1.
We have tried various approaches to solve this optimization problem.

5.1 Nelder-Mead/Simplex Search

First, we tried to learn the weights using a gradient-free algorithm with arbitrary ini-
tial conditions. We averaged scores over 100 games, and used this as input to Matlab’s
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fminsearch, a built-in implementation of Nelder-Mead. This learning algorithm explores
the parameter space by repeatedly evaluating the score at each vertex of a simplex, then
reflecting the lowest-scoring vertex through the hyperplane defined by the others. The
method improved the results obtained (by a factor of 5), but didn’t get the improvememnt
that we were expecting. There are several features of the search space that might contribute
to this poor performance:

• The score function we are trying to optimize contains numerous local extrema.

• The variances on the average scores are on the same order of magnitude as the scores
themselves. This will make it almost impossible to distinguish between noise and
true improvement.

Next, we tried using Nelder-Mead again, but this time giving it reasonable weights gener-
ated by manual search as the initial condition. Again, the simplex search returned unsat-
isfactory results; the score after the optimization was almost the same as before.

5.2 Human Intuition

Given our failure to produce significant performances using machine learning alone, we
opted to experiment with tuning the weights by human intuition. This worked surprisingly
well, averaging 2000 lines/game after about half an hour of work. We suspect that this
is due to the human ability to reason about why a particular combination of weights is
working well or poorly, and thus allows weights to be changed logically based on the flaws
in the previous game.

5.3 Local Search

In order to improve our human-generated weights, we decided to run a local grid-based
search overnight. This would have been infeasible over the whole space, but it worked to
find a local maximum resulting in an average of 17000 lines/game.

6 Results

In the final implementation of the tetris player, we decided to use only heuristics H3, H5,
H7 and H8 from section 3. Note that the behaviour based on each of these heuristics
independently is shown in the movie submissions. After several trials we concluded that
the introduction of more heuristics requires finely tuning all the weights to avoid harming
the performance. Therefore, we opted to focus on a small subset of the proposed heuristics.
We believe that the heuristics we chose are in some sense independent. This means that
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they do not interfere destructively, which would explain why a restricted set makes it easier
to find a reasonable initial guess for the weights.

The final weights obtained from the optimization process are:

H3 92.5 Number of holes.

H5 40.0 Negated number of deleted lines.

H7 5.0 Sum of squares of height differences between neighboring columns

H8 5.0 Bias towards the side walls.
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Figure 2: Using optimized weights, a single lookahead trial (indicated by the red bar)
performs several standard distributions above the mean of trials without lookahead (dis-
tribution given by the blue bars).

These weights were obtained from the following process:

• First, we optimizated using a simplex search from trivial initial weights [1.0 1.0 1.0
1.0]. This resulted in no significant improvement from the initial results, and an
average a score of 30 lines.

• In a second stage we hand tuned the weights of the entire set of heuristics. We reached
the weights [10.0 5.0 40.0 5.0 30.0 10.0 10.0 10.0] and averaged approximately 200
lines. This low score is caused by the difficulty of hand tuning a large set of weights.

• In order to address the high dimensionality of the search space, we restricted the
heuristics to those listed above and, through a hand-tuning process, obtained the
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weights [100.0 50.0 5.0 10.0]. This boosted the average number of lines per game to
1800.

• Using a grid-based searches in a local neighborhood of the hand selected weights, we
found the local optimum, of [92.5 40.0 5.0 5.0], as listed above. This increased the
average score per game to 17000 lines.

• Finally, we decided to test the lookahead strategy using the same weights that per-
formed well in the greedy solution. This algorithm was much more time consuming,
and we were not able to run more than a couple of simulations. However, given that
this algorithm scored over 229000 lines (16.5 standard deviations about the aver-
age score without lookahead), we can conclude that lookahead provides a significant
improvement (see Figure 2).

The attached movies demonstrate the performance of the hand-tuned set of weights, as
well as the set that was then further optimized by a local search.

It is also interesting to note that it is not enough to implement lookahead, without a good
set of weights and heuristics. To drive this point home, we ran several games using a non-
optimal set of weights, specifically [40.0 85.0 1.0 2.5], both using the lookahead technique
and without it. Although the average score improved significantly from 314 to 598 when
lookahead was added, the score is still much worse than using better weights without
lookahead.

The results obtained from the local search corroborated what we suspected about the high
frequency noise in the score function. Figure 1 shows an example of the evolution of the
score function in a neighborhood of the optimal weights, for two of the weight dimensions
searched.

We also provide a comparison of a random game played using human tuned weights as well
as the optimal weights according to the local search. As seen in figure 3, the maximum
height of the board is slightly higher, on average, when using the human tuned weights
rather than the further optimized weights; however, the results are still quantitatively
similar; both controllers are still solid after 1000 dropped pieces.

Overall, these results demonstrate that although this is a difficult problem, we were able to
make significant progress. Furthermore, due to the performance limitations of our code, we
were not able to achieve successful results using standard learning techniques, as the cost
function proved to noisy and uninformative. Finally, the importance of human intuition
in determining heuristics and tuning weights cannot be overstated: although straitforward
techniques such as look-ahead can vastly improve performance, without a solid set of
weights and heuristics, the performance will be very poor under any circumstances.
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Figure 3: The height of the board after each piece is dropped for human tuned weights
and optimum weights from the local search.
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