
16-899C ACRL

Tetris Reinforcement Learner

Alex Grubb Stephane Ross Felix Duvallet

February 3, 2009

1 Introduction

Tetris is a game in which blocks (tetraminos) are placed one at a time. Com-
pleted lines are removed, allowing the game to continue. This report outlines
our approach to using reinforcement learning on this problem.

2 Approach

Our approach to this problem was to use reinforcement learning with a function
approximator to approximate the state value function [RSS98]. In our case, a
+1 reward was given for every completed line, so that the value function would
encode the long-term number of lines that is going to be completed by the
algorithm. In order to achieve this, we extract features from the game state,
and use gradient descent to update the parameters of our function approximator.

Hence our approach is similar to Q-learning with a function approximator
[RSS98], however contrary to Q-learning we learn only the state value function
rather than the state-action value function. This is possible in our case since we
can easily compute the exact immediate rewards and the exact next state of the
game given the current state and the action executed by the agent. Learning
the state value function is more practical since it can be represented with fewer
parameters than the state-action value function, allowing our approach to learn
faster.

2.1 Value Function Update

For our tetris agent, we used a simple policy based on the estimated value for
each state and a gradient descent rule for updating this estimate. We seek to
estimate the value function V : S → R mapping states to an expected time-
discounted reward, and use this to determine the policy for our agent.

Given an estimate on the value function V , our optimal policy is simply the
action maximizing expected value:

1



π(s) = argmax
a

[R(s, a) + γV (T (s, a))] (1)

where γ is the discount factor and T is the deterministic transition function
that gives us the next state.

Since tetris is deterministic and we try to learn the value function of the
optimal policy, we must have that, for each state s, the value function satisfies:

V ∗(s) = max
a

[R(s, a) + γV ∗(T (s, a))]. (2)

Thus if we have an estimate V , we can compute the Bellman error δs of this
estimate at state s as:

δs = V (s) − max
a

[R(s, a) + γV (T (s, a))] (3)

If V is represented by a set of parameters {wi}
n
i=1

, we can update wi using
gradient descent [RSS98]:

w′

i = wi − αδs

∂V

∂wi

; (4)

for some small constant α, where α represents the learning rate. Our approach
consists in updating the weights whenever the agent acts in state s. The action
executed by the agent in that state is determined by the agent’s exploration
strategy. We describe the different exploration policies we have considered later.
We now present the different features we used to describe a state and the several
function approximators we have tried to represent V .

2.2 Features

The state in the game of tetris is described as a 20×10 matrix of binary variables
indicating whether or not a block is present at each of these positions on the
board. Since these binary features are not very informative by themselves,
it would be very hard to learn a value function straight from these features.
Instead we transform these state features into more informative features that
are better at representing the value function.

The features we used are listed below, most of these features were found in
the litterature. Features with a * are vectors.

• Column Heights*: The heights of all the columns. [DPB96]

• Max Height: The tallest column. [DPB96,NB05]

• Min Height: The shortest column (or empty).

• Max-Min: Difference of max and min. [NB05]

• Holes: Number of holes (empty space with at least a block above it).
[DPB96,NB05]

2



• Blocks: Total number of blocks on the board. [NB05]

• Column Differences*: Absolute value of difference between neighboring
columns. [DPB96]

• Maximum Well Depth: Deepest “well”. A well is a column of blocks
which is between two higher columns of blocks. The depth of the well is
measured as the height of the smallest of these two columns minus the
height of the short column. [NB05]

• Sum of Wells: Sum of all well depths. [NB05]

• Row transitions: All transitions (empty to full or full to empty) across
the rows. The outer region is considered full. [NB05]

• Column transitions: Same as above, across all columns. [NB05]

• Constant bias: A constant feature always equal to 1.

All of these features were normalized so they would all take real values
in the interval [0, 1]. Once these features were extracted from the state. We
represented the value function as a function of these features using a function
approximator.

2.3 Function Approximator

Since it is hard to know in advance the shape of the value function as a function
of the features, we have tried several function approximators: a polynomial
approximator, a RBF approximator, a neural net approximator and a linear-
exponent-displacement approximator. These are described in detail below.

2.4 Polynomial Approximator

Given the vector of features f representing a state s, the polynomial approxi-
mator approximates the value function as a polynomial of those features. Here
we do not consider cross-terms, so that if we decide to use a polynomial of order
k then the value function is approximated as:

V (f) =

n
∑

i=1

k
∑

j=1

wi,j (fi)
j

(5)

where wi,j are the weights that we need to learn and fi represents the ith feature
in vector f .

For this particular function approximator, the gradient descent update rule
specifies that we should update the weights as:

w′

i,j = wi,j − αδf (fi)
j
. (6)

Initially the weights wi,j were all initialized to 0.

3



2.5 RBF Approximator

The RBF approximator [RSS98] instead tries to approximate the value function
by a set of radial basis function (RBF) in feature space. Let c be a feature vector
and Q be a symmetric and positive definite matrix, then a RBF parametrized by
c and Q is defined as exp(−1

2
(f − c)T Q−1(f − c)), where f is the feature vector

at which we evaluate the RBF. Hence a RBF can be thought of as a gaussian
centered at c with covariance matrix Q. Thus if we use k RBF to represent the
value function, the value function is approximated as:

V (f) =
k

∑

i=1

wi exp(
−1

2
(f − ci)

T Q−1

i (f − ci)). (7)

For this approximator, we only tried to learn the weights wi. ci and Qi

were initialized randomly at the beginning, such that they would be within our
feature space. We also restricted Qi to be a diagonal matrix so that it would
be easy to invert.

Hence, for this particular function approximator, the gradient descent up-
date rule specifies that we should update the weights as:

w′

i = wi − αδf exp(
−1

2
(f − ci)

T Q−1

i (f − ci)). (8)

2.6 Neural Net Approximator

The Neural Net approximator tries to learn a neural net [TM97] which takes the
features as input, and outputs the value function. Here we have used sigmoid
neurons and train a single hidden layer. If we use k neurons in the hidden layer,
this is equivalent to learning a value function of the form:

V (f) =

k
∑

i=1

viσ(

n
∑

i=1

wifi). (9)

where σ is the sigmoid function and wi and vi are weights that must be learned.
The backpropagation algorithm is used to train those weights using the observed
errors δs [TM97].

2.7 Linear-Exponent-Displacement Approximator

The Linear-Exponent-Displacement (LED) approximator is the combination of
the three function approximators used in [NB05]. It tries to learn a value func-
tion of the form:

V (f) =

n
∑

i=1

uifi + vi (fi)
ai + wi|fi − di|

bi , (10)

where fi are the features, ui, vi, wi are linear weights, ai and bi are exponents,
and di are displacement factors.

4



Contrary to [NB05], we use gradient descent to update these parameters,
rather than a genetic algorithm. Hence in order to update the parameters, we
need to compute various partial derivatives of (10):

∂V

∂u
= fi

∂V

∂v
= (fi)

ai

∂V

∂w
= |fi − di|

bi

∂V

∂a
= vi (fi)

ai ln [fi]

∂V

∂b
= wi|fi − di|

bi ln (|fi − di|)

∂V

∂d
= wiei|fi − di|

ei−1sign (di − fi)

where

sign (di − fi) =







1 if di > fi

−1 if di < f1

0 if di = fi

(11)

Combining these partial derivatives with the general gradient descent up-
date rule (Equation 4) specifies how these parameters were updated. Initially,
ui, vi, wi and di were initialized to 0, while the exponents ai and bi were initial-
ized to 1.

2.8 Exploration

Our exploration strategy was a modified ǫ-greedy strategy [RSS98]. The best
action according to our current estimate V (as computed in Equation 1) is
picked with probability 1− ǫ, and a random action is picked with probability ǫ.
Our ǫ was a function of time:

ǫ (t) = ǫ0β
t (12)

where ǫ0 is the initial exploration rate in (0, 1) and β was a decay rate in (0, 1).
This allowed for more exploration early in the learning, and more exploitation
in later epochs.

We also considered Boltzmann exploration [RSS98], but tuning the temper-
ature and decay parameters correctly was a problem, and it did not do the right
action when required.

3 Results

Initial trials yielded the best results using the full feature vector (Section 2.2),
the LED approximator (Section 2.7), and epsilon-greedy exploration (Sect-

5



0 2000 4000 6000 8000 10000
10

−4

10
−2

10
0

10
2

10
4

10
6

Epoch

C
le

a
r 

A
v
e

ra
g

e
 (

lo
g

 s
c
a

le
)

RL Tetris − Reinforcement learning

(a) Clear Average

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Epoch

M
a
x
im

u
m

 l
in

e
s
 c

le
a
re

d
 (

lo
g
 s

c
a
le

)

RL Tetris  − Reinforcement learning

(b) Clear Max

Figure 1: Learning Performance for 4 trials

Table 1: RL Performance during learning.

Epoch Average Score
1000 7.6
3000 60.4
4000 306.4
5000 1947.4
6000 20094.4
7000 61794.7
8000 71821.3

ion 2.8). We have used this configuration to generate the results presented
here.

Each epoch plays a game until the agent loses. To evaluate the performance
of each algorithm, we looked at both the maximum number of lines cleared
(Clear Max) in a single game by each algorithm and a discounted average num-
ber of lines cleared by each algorithm (Clear Average) over all games played
during learning. The discounted average discounts more performance in the
past so that the discounted average at Epoch t reflects more the actual aver-
age performance of the current policy at time t. The discounted average was
computed as follows:

At = 0.99At−1 + 0.01ct (13)

where At is the discounted average at Epoch t and ct is the number of lines
cleared at Epoch t. This is equivalent to At = 0.01

∑t

i=1
0.99t−ici.

The Clear Average and Clear Max for the LED approximator over 4 different
simulations of 8000 epoch are shown respectively in Figures 1a and 1b. For
these results, we used a learning rate α = 0.01, an initial exploration rate
ǫ0 = 0.05, a decay rate β = 0.9997 and a discount factor γ = 0.9, to encourage

6



the algorithm to clear lines now rather then later. The algorithm reaches a peak
Clear Average performance of 88316 lines per game with an overall maximum
675389 lines cleared. The performance of the algorithm, both in terms of average
and maximum lines cleared, improves exponentially as a function of the number
of epochs and the performance was still improving after 8000 epochs. Hence we
believe that given more training time the algorithm could have achieved even
better performance. However training becomes very time consuming after so
many epochs as the algorithms clears over 80000 lines on average per game.
Table 1 shows the average number of lines cleared during learning.

Every 500 epochs, we evaluate the current policy by using it for 50 trials
with no learning. Table 2 shows the maximum number of lines cleared by the
best current strategy during this evaluation phase. The performance during the
evaluation is similar to that of the learning phase. The evaluation performed
poorly at epoch 8000, this could be due to a relatively smaller number of games
played during evaluation (50 games only).

Videos of the learned policy performing after 1000, 4000, and 8000 games
can be found online at http://www.cs.cmu.edu/~agrubb1/acrl/hw1/.

Table 2: Maximum lines cleared during evaluation

Epoch Maximum Score
1000 35
3000 274
4000 4855
5000 21100
6000 58189
7000 79497
8000 37802

4 Conclusion

In this report we have presented a reinforcement learning approach to solv-
ing Tetris using function approximators and gradient descent to optimize their
parameters. Much more experimentation could be done with other types of
function approximators to find a better parametrization of the value function.
However the LED approximator seemed to give very decent results. An obvious
extension to this approximator would be to add more exponents terms so that
it could potentially learn a better fit to the value function. Furthermore, new
features could also help the LED approximator to learn a better representation
of the value function. However, most features that we found in the litterature
were used here, so that new ideas would need to be proposed in this area.

7



References

DPB96 Neuro-dynamic Programming. D. P. Bertsekas and J. N. Tsitsiklis.
Athena Scientific. 1996.

RSS98 Reinforcement Learning: An Introduction. R. S. Sutton and A. G. Barto.
The MIT Press. 1998.

NB05 An evolutionary Approach to Tetris. N. Bohm, G. Kokai and S. Mandl.
The 6th Metaheuristics International Conference (MIC). 2005.

TM97 Machine Learning. T. Mitchell. McGraw-Hill Education. 1997.

8


