Adaptive Control and Reinforcement Learning (16-899C, S09) Lecture #3 (1,/20/09)

Dynamic programming, MDP, generalization of LQR
Lecturer: Drew Bagnell Scribe: Slava Arabagi

1 Controls Problems with State

Finite time (horizon), deterministic, Markov decision process

1.1 Problem parameters

(s,x) - state (continuous/discrete)
ex. z € {1,2,...,n}

(a,u) - actions (continuous/discrete)
ex. u € {steer left, steer right, forward ...}

System dynamics, state transition equation
f(@ey) — 2

Reward/Cost function C'(zy, ut)

e 1 - initial start state

Generally want to minimize expression ZtT:O C(¢, ut)

1.2 General Approaches
1. Enumerate all action sequences, pick the best
2. Optimize over a particular policy class

3. Search in graphs of actions (A* D*), used commonly in motion planning

1.3 Overall Procedure

Some Definitions

e Policy 7(z) - function that maps states into controls action, for observable states, or maps
past data into controls, for stochastic modeling. That is:
T Z1:4—1,U14—1 — u; for the general case (stochastic/observable)
. x; — uy for completely observable case

e Value function V(z,u) - measures the expected value of following a policy.

In general, the algorithms of optimizing a control policy propagate their updates in reverse tem-
poral order through the value function, through a process known as a “backup step”. Hence, the
algorithms start their optimal policy search in the last time-step t=T-1:

o t=T-1 (last time step)
mr_q = argmin C(xp_1,a)
a
Vi =C(zr-1,mp_4)
Note: the * denotes optimal policy/value fen.

o t=T-2
T g = argmz'n(C(acT_g, a) + Vi_ (f(zr—2, a)))

e t=T-3
Repeat recursive steps to obtain 7* at each time step.

Note that the order of this algorithm is not exponential, because we initially specified a policy in
the last time step t=T-1. Instead this algorithm is O(T'|s||a|) (product of times, # of states and
actions).

1.4 Generalization to stochastic, finite horizon Markov decision processes (MDP)

In the stochastic generalization, the Markov property needs to be applied:
P(xyy1|xe, a, ve—1, a4—1, ..., anythingelse) = P(xy41|z, at)

Furthermore, we still have the components of the deterministic model state (x), actions (a), initial
state (zg) and reward/cost function (R). However, now the transition dynamics are described by:
Tip1 = D(xiq1|e, ar)

and the reward function R, called now the “expected cumulative payoff”, takes the form:

Ry =FE [22:1 W’Trtﬂ}
Similarly the expected cumulative payoff of a policy is defined:
Ri(z) = E [22:1 VTt |Uthr = 21t —1, Uit —1

The optimal policy is defined:
™ = argmax R (x)]

General Procedure
Want to maximize the expected reward or minimize the expected cost:

T—1 T—1 -1
> C(azt,ut)] =Y ElC(nu)] =Y ple)Clz)
=0

t=0 t=0

E

1.4.1 Policies and Value Functions

The value of T in the expressions for R7. determines the number of time steps a policy is optimized
with regards to, effectively a look-ahead value. If T=1 the policy is a greedy one, optimizing only
the next step. For T' > 1, the algorithm has finite horizon specified by T. T' = oo denotes the
infinite horizon case.

e 1-step policies

— 1-step optimal policy
7} (z) = argmazx(r(z,u)]
U

— 1-step optimal value function
Vil(z) =y mazr(z, u)]
u

e 2-step policies

— 2-step optimal policy
T} (x) = argmax [r(z,u) + [Vi(a)p(a'|u, x)d2’]
u

— 2-step optimal value function
Vif(z) =~y max [r(a},u) + fVl(aJ/)p(x’|u,x)dx’]

e T-step policies

— T-step optimal policy
m(z) = argmaz [r(z,u) + [Vr_1(2')p(a'|u, z)da’]

— T-step value function
Vi(x) =~ max [r(z,u) + [Vi1 (a")p(2'|u, z)d2’]

This algorithm has been used successfully in the stochastic algorithm of value iteration for motion
planning, as portrayed in Figs. 1, 2.

2 Continuous MDP’s, Linear Quadratic Regulator (LQR)

Suppose, we require to design an optimal controller for a fully deterministic system whose state
transition function is:

Tiy1 = Axy + By

reR”, wuweR™

Define the cost function to optimize with respect to:

C(wy,up) = 2] Qg + ul Ruy

Where the matrix Q is positive semi-definite, symmetric and R is positive definite, symmetric.
Q=QT, Q>0, R>0.

These constraints ensure that C is convex and C > 0.

Stochastic, Fully Observable Value Iteration for Motion Planning

P R e e et
e e

o et

Figure 2: Value iteration in action without
Figure 1: Motion plan map (S.Thrun, Probabilis- stochasticity (S.Thrun, Probabilistic Robotics,
tic Robotics, MIT Press, 2005, pp. 491). MIT Press, 2005, pp. 504).

2.1 Dynamic Programming

Apply dynamic programming to solve the problem. Define the value function J(z¢,u;) = zf Viay.
e Initial Step t=T-1

Jr—1(r_1,ur—1) = 291 Q1 + wp_ Rup_4
Because the iteration occurs at the last step of the algorithm, the function Jp_; is already

optimal and hence no input wp_1 can improve it, hence we have up_1 = 0, then:
T T
Ji_(xr_1) = xp_Qrr—1 = xp_Vr_1271

e Recursive Step t=T-2

Jr_o(xr_0,ur_9) = Th_oQur_o + Uk oRup_ o+ (Azr_o + Bup_2) Vi1 (Azp_9 + Bur_o)

We want to obtain the minimum cost over the last 2 steps, and since we know that the cost
function C, thus Jp must also be convex and have a global minimum. Hence, we set the
derivative to 0 and solve for the input that achieves that.

o.J
0= = 2ub o R+ 2(Azr)V 1B +2ut_ BTV B

wp_o [R+B"Vp_1B] = —a7_,A"Vp_\B
Up_o = —tp_oKro
Kr_o=A"Vy B[R+ B"Vy_,B]™
The last line is the Kalman gain (named after its inventor). Note that the controller is linear

with the state vector x, and is an optimal controller in a linear quadratic sense. The plant
to be controlled in LQR has to have a linear form, however in case of nonlinearity the usual

procedure of linearization about the desired operating point can be utilized, although several
iterations of gradient descent might be required to achieve the optimum controller, as opposed
to a one shot mechanism presented above.

