
Adaptive Control and Reinforcement Learning (16-899C, S09) Lecture #3 (1/20/09)

Dynamic programming, MDP, generalization of LQR

Lecturer: Drew Bagnell Scribe: Slava Arabagi

1 Controls Problems with State

Finite time (horizon), deterministic, Markov decision process

1.1 Problem parameters

• (s,x) - state (continuous/discrete)
ex. x ∈ {1, 2, . . . , n}

• (a,u) - actions (continuous/discrete)
ex. u ∈ {steer left, steer right, forward ...}

• System dynamics, state transition equation
f(xt, yt)→ xt+1

• Reward/Cost function C(xt, ut)

• x0 - initial start state

Generally want to minimize expression
∑T

t=0C(xt, ut)

1.2 General Approaches

1. Enumerate all action sequences, pick the best

2. Optimize over a particular policy class

3. Search in graphs of actions (A*,D*), used commonly in motion planning

1.3 Overall Procedure

Some Definitions

• Policy π(x) - function that maps states into controls action, for observable states, or maps
past data into controls, for stochastic modeling. That is:
π : z1:t−1, u1:t−1 → ut for the general case (stochastic/observable)
π : xt → ut for completely observable case

• Value function V (x, u) - measures the expected value of following a policy.

1

In general, the algorithms of optimizing a control policy propagate their updates in reverse tem-
poral order through the value function, through a process known as a “backup step”. Hence, the
algorithms start their optimal policy search in the last time-step t=T-1:

• t=T-1 (last time step)

π∗T−1 = argmin
a

C(xT−1, a)

V ∗T−1 = C(xT−1, π
∗
T−1)

Note: the * denotes optimal policy/value fcn.

• t=T-2
π∗T−2 = argmin

a

(
C(xT−2, a) + V ∗T−1(f(xT−2, a))

)
• t=T-3

Repeat recursive steps to obtain π∗ at each time step.

Note that the order of this algorithm is not exponential, because we initially specified a policy in
the last time step t=T-1. Instead this algorithm is O(T |s||a|) (product of times, # of states and
actions).

1.4 Generalization to stochastic, finite horizon Markov decision processes (MDP)

In the stochastic generalization, the Markov property needs to be applied:
P (xt+1|xt, at, xt−1, at−1, ..., anythingelse) = P (xt+1|xt, at)

Furthermore, we still have the components of the deterministic model state (x), actions (a), initial
state (x0) and reward/cost function (R). However, now the transition dynamics are described by:
xt+1 = D(xt+1|xt, at)
and the reward function R, called now the “expected cumulative payoff”, takes the form:
RT = E

[∑T
τ=1 γ

τrt+τ

]
Similarly the expected cumulative payoff of a policy is defined:
RπT (xt) = E

[∑T
τ=1 γ

τrt+τ |ut+τ = z1:t+τ−1, u1:t+τ−1

]
The optimal policy is defined:
π∗ = argmax

π
[RπT (xt)]

General Procedure
Want to maximize the expected reward or minimize the expected cost:

E

[
T−1∑
t=0

C(xt, ut)

]
=

T−1∑
t=0

E [C(xt, ut)] =
T−1∑
t=0

∑
p(xt)C(xt)

2

1.4.1 Policies and Value Functions

The value of T in the expressions for RπT determines the number of time steps a policy is optimized
with regards to, effectively a look-ahead value. If T=1 the policy is a greedy one, optimizing only
the next step. For T > 1, the algorithm has finite horizon specified by T. T = ∞ denotes the
infinite horizon case.

• 1-step policies

– 1-step optimal policy
π∗1(x) = argmax

u
[r(x, u)]

– 1-step optimal value function
V ∗1 (x) = γ max

u
[r(x, u)]

• 2-step policies

– 2-step optimal policy
π∗1(x) = argmax

u

[
r(x, u) +

∫
V1(x′)p(x′|u, x)dx′

]
– 2-step optimal value function
V ∗1 (x) = γ max

u

[
r(x, u) +

∫
V1(x′)p(x′|u, x)dx′

]
• T-step policies

– T-step optimal policy
π∗T (x) = argmax

u

[
r(x, u) +

∫
VT−1(x′)p(x′|u, x)dx′

]
– T-step value function
V ∗T (x) = γ max

u

[
r(x, u) +

∫
VT−1(x′)p(x′|u, x)dx′

]
This algorithm has been used successfully in the stochastic algorithm of value iteration for motion
planning, as portrayed in Figs. 1, 2.

2 Continuous MDP’s, Linear Quadratic Regulator (LQR)

Suppose, we require to design an optimal controller for a fully deterministic system whose state
transition function is:
xt+1 = Axt +But
x ∈ <n, u ∈ <m
Define the cost function to optimize with respect to:
C(xt, ut) = xTt Qxt + uTt Rut
Where the matrix Q is positive semi-definite, symmetric and R is positive definite, symmetric.
Q = QT , Q ≥ 0, R > 0.
These constraints ensure that C is convex and C > 0.

3

Figure 1: Motion plan map (S.Thrun, Probabilis-
tic Robotics, MIT Press, 2005, pp. 491).

Figure 2: Value iteration in action without
stochasticity (S.Thrun, Probabilistic Robotics,
MIT Press, 2005, pp. 504).

2.1 Dynamic Programming

Apply dynamic programming to solve the problem. Define the value function J(xt, ut) ≡ xTt Vtxt.

• Initial Step t=T-1

JT−1(xT−1, uT−1) = xTT−1QxT−1 + uTT−1RuT−1

Because the iteration occurs at the last step of the algorithm, the function JT−1 is already
optimal and hence no input uT−1 can improve it, hence we have uT−1 = 0, then:
J∗T−1(xT−1) = xTT−1QxT−1 = xTT−1VT−1xT−1

• Recursive Step t=T-2

JT−2(xT−2, uT−2) = xTT−2QxT−2 + uTT−2RuT−2 + (AxT−2 +BuT−2)TVT−1(AxT−2 +BuT−2)

We want to obtain the minimum cost over the last 2 steps, and since we know that the cost
function C, thus JT must also be convex and have a global minimum. Hence, we set the
derivative to 0 and solve for the input that achieves that.

0 =
∂J

∂u
= 2uTT−2R+ 2(AxT−2)TVT−1B + 2uTT−2B

TVT−1B

uTT−2

[
R+BTVT−1B

]
= −xTT−2A

TVT−1B

uTT−2 = −xTT−2KT−2

KT−2 = ATVT−1B
[
R+BTVT−1B

]−1

The last line is the Kalman gain (named after its inventor). Note that the controller is linear
with the state vector x, and is an optimal controller in a linear quadratic sense. The plant
to be controlled in LQR has to have a linear form, however in case of nonlinearity the usual

4

procedure of linearization about the desired operating point can be utilized, although several
iterations of gradient descent might be required to achieve the optimum controller, as opposed
to a one shot mechanism presented above.

5

