
Inverse Optimal Control II: !
Battle of the Senior Graduate Students

Drew Bagnell

16-899 Adaptive Control and Reinforcement Learning

Recovering the True Reward Function is ill-
posed…

Recovering the True Reward Function is ill-
posed…

Instead we design a loss function to measure
performance of our ability to imitate using a cost
function

Measuring performance and !
Margin/Loss-augmentation

• Before planning through
the learned cost maps
we lower the cost of
cells proportionally to
their loss

•  It becomes more likely
that we plan through
bad areas

• We train on slightly
harder problems so that
we do better in practice

  Forces the final solution to be
correct by a margin.

  Formally, this step places the
algorithm under the margin-

maximization framework

Formulate as Convex
Optimization Problem: MMP

cost of

expert

plan

cost of

arbitrary

plan

margin

min Complexity(cost)

Subgradient optimization

where

  All terms of our cost function are differentiable except
that with the min

  Find a subgradient by evaluating the gradient at the
minimizer

  Resulting sub-gradient:

Maximum margin planning algorithm

•  Incremental subgradient method:

• Until convergence do

• For each example

•  Create loss-augmented cost map

•  Run planner to find minimum cost path between endpoints of this example

•  Compare the resulting (loss-augmented) cost to that of the desired path to
compute gradient

•  Update w (optional: project w onto constraints)
S
ub

ite
ra

tio
n

cy
cl

e

features

loss-augmented

cost map

Loss function

specialized

planner

wn

w1

subgradient

computation
features

loss-augmented

cost map

Loss function

specialized

planner

wn

w1

subgradient

computation
features

loss-augmented

cost map

Loss function

specialized

planner

wn

w1

subgradient

computation
features

loss-augmented

cost map

Loss function

specialized

planner

wn

w1

subgradient

computation
features

loss-augmented

cost map

Loss function

specialized

planner

wn

w1

subgradient

computation
features

loss-augmented

cost map

Loss function

specialized

planner

wn

w1

subgradient

computation
features

loss-augmented

cost map

Loss function

specialized

planner

wn

w1

subgradient

computation
features

loss-augmented

cost map

Loss function

specialized

planner

wn

w1

subgradient

computation
features

loss-augmented

cost map

Loss function

specialized

planner

wn

w1

subgradient

computation

Mimicking footsteps

Where should we place the foot next?

c1
 c2

c3
c4

c5
c6
c7

LittleDog’s Thoughts at Runtime

LittleDog Training Time : Enforcing Optimality

Learned Cost Function Examples

This picture is a lie.
See (Zucker09) for
what made these

pretty pictures

Learned Cost Function Examples

Learned Cost Function Examples

Learned Cost Function Examples

Update the Good!

How/Why can people behave sub-optimally?

• What’s the consequence?

• What if two paths are “about equal?”

• Unique optimality assumption violated!

Maximum Margin Planning

START

FINISH

51%

49%

18

Update the Bad. 

An Alternate approach: !
Feature Matching

(Abbeel and Ng 2004)
Demonstrated Behavior

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplights:
10

Model Behavior (ExpectaIon)

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplig
hts:
10

Equal
Performan
ce in MDP

20

An Alternate approach: !
Feature Matching (Can we prove it?)

(Abbeel and Ng 2004)
Demonstrated Behavior

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplights:
10

Model Behavior (ExpectaIon)

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplig
hts:
10

Equal
Performan
ce in MDP

21

Hmmmm….. Ambiguity again

• There is no reward function and no optimal policy that matches that
matches almost all behavior

• There are infinitely many stochastic behaviors (policies or mixtures of
policies) that can match feature counts….

• How can we possibly pick a good one?

• Abbeel and Ng match features using a mixture of reward functions/policies:

90% Route B
(θ > 0)

10% Route A

(θ < 0)

Zero probability for demonstrated route!?

Feature Matching

Route A: 2.0
miles

Route B: 1.0
miles

Route C: 1.1 miles

Route C demonstrated
by driver.

23

Maximum Entropy Inverse Optimal Control

Maximizing the entropy over paths:

max H(Pζ)

While matching feature counts (and being a probability distribution):

∑ζ P(ζ) fζ = fdem

∑ζ P(ζ) = 1

24

Maximum Entropy Inverse Optimal Control

Maximizing the entropy over paths:

max H(Pζ)

While matching feature counts (and being a probability distribution):

∑ζ P(ζ) fζ = fdem

∑ζ P(ζ) = 1

25

Maximum Entropy Inverse Optimal Control

Maximizing the entropy over paths:

max H(Pζ)

While matching feature counts (and being a probability distribution):

∑ζ P(ζ) fζ = fdem

∑ζ P(ζ) = 1

26

Maximum Entropy Inverse Optimal Control

ΘT
f1

ΘT
f5 ΘT

f3 ΘT
f2

ΘT
f4

ΘT
f7

ΘT
f10
ΘT
f11

ΘT
f9

ΘT
f8

ΘT
f12

ΘT
f13

ΘT
f17 ΘT
f18

ΘT
f19 ΘT

f14

ΘT f20
Start

Go
al

ΘT
f6

ΘT
f16

ΘT
f15

Roads have unknown costs (linear in features)

27

Maximum Entropy Inverse Optimal Control

ΘT
f1

ΘT
f5 ΘT

f3 ΘT
f2

ΘT
f4

ΘT
f7

ΘT
f10
ΘT
f11

ΘT
f9

ΘT
f8

ΘT
f12

ΘT
f13

ΘT
f17 ΘT
f18

ΘT
f19 ΘT

f14

ΘT f20
Start

Go
al

ΘT
f6

ΘT
f16

ΘT
f15

Roads have unknown costs (linear in features)
Paths have unknown costs (sum of road costs)

Path probability based on unknown cost
28

P(path|θ) = e-cost(path|θ)

 ∑path’ e-cost(path’|θ)

Strong Preference for Low Cost Paths
Equal Cost Paths Equally Probable

What Probability Distribution?

The Dual:

29

Decision Making Data:

Model:
 P(path|θ) = e‐cost(path|θ)

 ∑path’ e‐cost(path’|θ)

GPS Traces Paths

Choose cost parameters (θ) that best
explain demonstrated paths

30

Learning from DemonstraGon
Demonstrated Behavior

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplights:
10

Model Behavior (ExpectaIon)

Bridges
crossed: ?

Cost
Weight:
5.0

Miles of
interstate:

?

Cost
Weight:
3.0

Stoplights
:
? 31

Learning from DemonstraGon
Demonstrated Behavior

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplights:
10

Model Behavior (ExpectaIon)

Bridges
crossed: ?

Cost
Weight:
5.0

Miles of
interstate:

?

Cost
Weight:
3.0

Stoplights
:
?

Inference

P(path ζ) = e‐cost(ζ|θ)
∑path ζ e‐cost(ζ|θ)

∑path ζ P(path ζ) fζ

 Dynamic Programming
O(elength)  O(length)

32

Learning from DemonstraGon
Demonstrated Behavior

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplights:
10

Model Behavior (ExpectaIon)

Inference

P(path ζ) = e‐cost(ζ|θ)
∑path ζ e‐cost(ζ|θ)

∑path ζ P(path ζ) fζ

Bridges
crossed: 4.7

Cost Weight:
5.0

Miles of
interstate:

16.2

Cost
Weight:
3.0

Stoplights
:
7.4

 Dynamic Programming
O(elength)  O(length)

33

Learning from DemonstraGon
Demonstrated Behavior

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplights:
10

Model Behavior (ExpectaIon)

Bridges
crossed: 4.7
 +1.7

Cost Weight:
5.0

Miles of
interstate:

16.2
 ‐4.5

Cost
Weight:
3.0

Stoplights
:
7.4

 ‐2.6
34

Learning from DemonstraGon
Demonstrated Behavior

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplights:
10

Model Behavior (ExpectaIon)

Bridges
crossed: 4.7

7.2
Cost Weight:

5.0

Miles of
interstate:

16.2

1.1
Cost

Weight:
3.0

Stoplights
:
7.4 35

Learning from DemonstraGon
Demonstrated Behavior

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplights:
10

Inference

P(path ζ) = e‐cost(ζ|θ)
∑path ζ e‐cost(ζ|θ)

∑path ζ P(path ζ) fζ

Model Behavior (ExpectaIon)

Bridges
crossed: 4.7

7.2
Cost Weight:

5.0

Miles of
interstate:

16.2

1.1
Cost

Weight:
3.0

Stoplights
:
7.4

 Dynamic Programming
O(elength)  O(length)

36

Learning from DemonstraGon
Demonstrated Behavior

Bridges
crossed: 3

Miles of
interstate:

20.7

Stoplights:
10

Model Behavior (ExpectaIon)

Bridges
crossed: 4.7

7.2
Cost Weight:

5.0

Miles of
interstate:

16.2

1.1
Cost

Weight:
3.0

Stoplights
:
7.4

OpImal
SoluIon!
(Convexity)

37

How does the dynamic program
work?

•  “SoQ” value iteraGon

38

DesInaIon and Route
PredicIon

39

Unknown DesGnaGon

Bayes Rule:

 P(path|dest) P(dest)

 ∑dest’ P(path|dest’) P(dest’)

Prior DistribuIon: P(dest)

P(dest|path) =

MaxEnt Model: P(path|dest)

40

41

Pedestrian Modeling
(Brian Ziebart, Kevin Peterson, MarGal Hebert)

42

43

