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Recovering the True Reward Function is ill-
posed...



Recovering the True Reward Function is ill-
posed...



Instead we design a loss function to measure
performance of our ability to imitate using a cost
function



Measuring performance and
Margin/Loss-augmentation

e Before planning through
the learned cost maps
we lower the cost of
cells proportionally to
their loss

* |t becomes more likely
that we plan through
bad areas

e \We train on slightly
harder problems so that
we do better in practice

Forces the final solution to be
correct by a margin.

Formally, this step places the
algorithm under the margin-
maximization framework



Formulate as Convex

Optimization Problem: MMP
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Subgradient optimization
N .
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All terms of our cost function are differentiable except
that with the min

Find a subgradient by evaluating the gradient at the
minimizer
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Maximum margin planning algorithm

loss-augmented

h specialized
EFW cost map planner
W, ‘ subgradient

features Qﬂ ction computation

N
® |Incremental subgradient method: R(w)= %Z (wTFiui — min(w! F; — M)
e Until convergence do =

Subiteration cycle

Leg;

For each example
e Create loss-augmented cost map
¢ Run planner to find minimum cost path between endpoints of this example
e Compare the resulting (loss-augmented) cost to that of the desired path to
compute gradient
e Update w (optional: project w onto constraints)
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Mimicking footsteps

Where should we place the foot next”?







LittleDog Training Time : Enforcing Optimality

avg objective progression hind foot
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Learned Cost Function Examples
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| This picture is a lie.

o See (ZuckerQ9) for

what made these
pretty pictures



L earned Cost Function Examples




L earned Cost Function Examples




L earned Cost Function Examples




Update the Good!



How/Why can people behave sub-optimally?

e \What’s the consequence?



Maximum Margin Planning

e \What if two paths are “about equal?”

START

¢ Unique optimality assumption violated!

FINISH
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Update the Bad. ®



An Alternate approach:
Feature Matching
Abbeel and Ng 204,2,

Demonstrated Behavior

Britgges Bridges
e crossed crossed: 3

el Behavior (Expectation)

‘ Equal
Vg%  Performan
interstate: | wce in MDP

20.7 [

Stoplights:
10




An Alternate approach:
Feature Matching (Can we prove it?)
Abbeel and Ng 204,2,

Demonstrated Behavior

Britges Bridges
g crossed crossed: 3

el Behavior (Expectation)

‘ Equal
Vg%  Performan
interstate: | wce in MDP

207 &S

Stoplights:
10




Hmmmm..... Ambiguity again

e There is no reward function and no optimal policy that matches that
matches almost all behavior

e There are infinitely many stochastic behaviors (policies or mixtures of
policies) that can match feature counts....

e How can we possibly pick a good one?



Feature Matching

Route A: 2.0
miles
. Route C demonstrated
Routg B:1.0 by driver.
miles

Route C: 1.1 miles

e Abbeel and Ng match features using a mixture of reward functions/policies:
90% Route B (6 >0)

10% Route A (6 <0)

Zero probability for demonstrated route!?
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Maximum Entropy Inverse Optimal Control

Maximizing the entropy over paths:
max H(P )
While matching feature counts (and being a probability distribution):
Zc P(C) fc = fgem

2 P(C)=1
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Maximizing the entropy over paths:

< max H(P )

While matching feature counts (and being a probability ofStribution):

ZC P(Z) fC - 1:dem

2 P(C)=1
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Maximizing the entropy over paths:

< max H(P )
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Maximum Entropy Inverse Optimal Control

f, or f; ©F f19aI
Roads have unknow costs (ﬁnear in features)
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Maximum Entropy Inverse Optimal Control
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Roads have unknofyn costs Uitnear in features)
Paths have unknown costs (sum of road costs)

Path probability based on unknown cost
28



What Probability Distribution?
The Dual:

P(path| 9) — e-COSt(path| 0)

Zpath’ e-cost(path’l 0)

Strong Preference for Low Cost Paths
Equal Cost Paths Equally Probable
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Decision Making Data:
| GPSTrace§:

Paths

Model:
P(path I 9) — e-cost(pathIB)

zpath’ e-cost(path’ |©)

Choose cost parameters (0) that best
explain demonstrated paths
30



Learning from Demonstration

Demonstrated Behavior Model Behavior (Expectation)
Bridges Bridges
crossed: 3 crossed: ?

Miles of
interstate:

Miles of
interstate:
20.7
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Learning from Demonstration

Demonstrated Behavior Model Behavior (Expectation)

Inference

Bridges

cost(Z]6) crossed: ?

P(path oo

2 ath P(Path Q) f;

Miles of Fa
interstate: | %=

Dynamic Programming
O(e'e"eth) - O(length)




Learning from Demonstration

Demonstrated Behavior

Inference

-cost(Z| 0)

P(path oo

2 ath P(Path Q) f;

Dynamic Programming

O(e'eneth) > O(length)

Model Behavior (Expectation)

—

Bridges
crossed: 4.7

Mil f f»- - ‘{ A"

interstate:

16.2
- i' Stoplights
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Learning from Demonstration

Demonstrated Behavior Model Behavior (Expectation)

Bridges
crossed:

Bridges
crossed: 3

Miles of
interstate:
20.7

Stoplights

7.4 .. 1
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Learning from Demonstration

Demonstrated Behavior

Bridges
crossed: 3

Miles of
interstate:

20.7 .

10

Stoplights:

Model Behavior (Expectation)

Bridges
crossed: 4.7

_Miles of
interstate:



Learning from Demonstration

Demonstrated Behavior Model Behavior (Expectation)

—

Inference Bridges
-cost(Z|6) crossed:\4,7

P(path =TT o
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Dynamic Programming
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Learning from Demonstration

smonstrated Behavior Behavior (Expectation)
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How does the dynamic program
work?

e “Soft” value iteration
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Unknown Destination

MaxEnt Model:

Bayes Rule:

P(dest)
D doct’ P(dest’)

P(dest|path) =

Prior Distribution: P(dest)
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Pedestrian Modeling

(Brian Ziebart, Kevin Peterson, Martial Hebert)







