

# Inverse Optimal Control II: *Battle of the Senior Graduate Students*

---

Drew Bagnell  
16-899 Adaptive Control and Reinforcement Learning



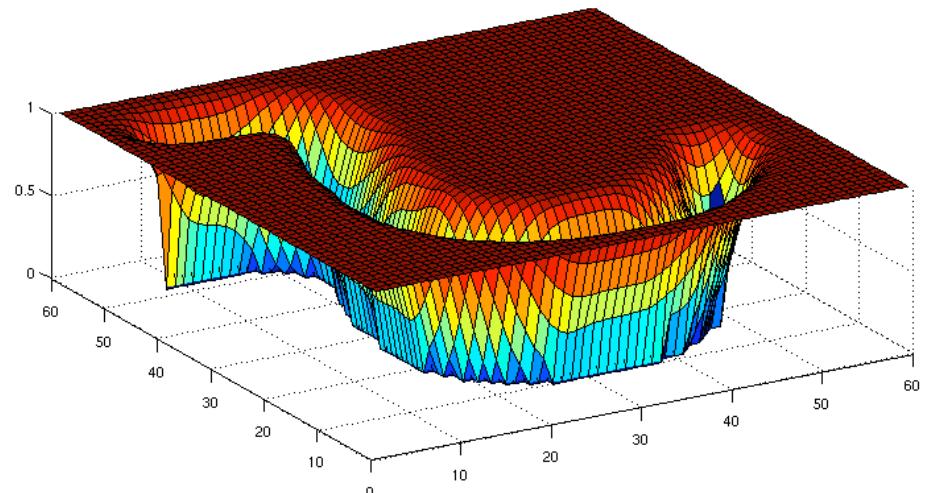
Recovering the True Reward Function is ill-posed...

Recovering the True Reward Function is ill-posed...

Instead we design a loss function to measure performance of our ability to imitate **using a cost function**

# Measuring performance and Margin/Loss-augmentation

- Before planning through the learned cost maps we lower the cost of cells proportionally to their loss
- It becomes more likely that we plan through bad areas
- We train on slightly harder problems so that we do better in practice



- Forces the final solution to be correct by a margin.
- Formally, this step places the algorithm under the margin-maximization framework

# Formulate as Convex Optimization Problem: MMP

$\min \text{Complexity}(\text{cost})$

$$\forall i \quad \begin{array}{c} \text{cost of} \\ \text{expert} \\ \text{plan} \end{array} \leq \begin{array}{c} \text{cost of} \\ \text{arbitrary} \\ \text{plan} \end{array} - \begin{array}{c} \text{margin} \end{array}$$

$i \quad i \quad i$

# Subgradient optimization

$$c(w) = \sum_{i=1}^N \left( w^T f_i(\xi_i) - \min_{\xi \in C_i} (w^T f_i(\xi) - l_i(\xi)) \right) + \frac{\lambda}{2} \|w\|^2$$

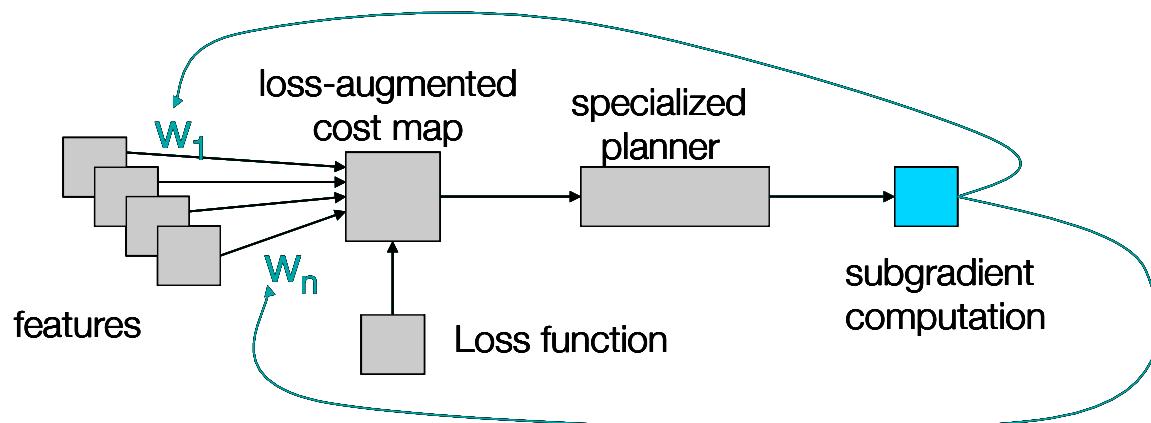
- All terms of our cost function are differentiable except that with the min
- Find a subgradient by evaluating the gradient at the minimizer

$$\frac{\partial}{\partial w_j} (w^T f_i(\xi^*) - l_i(\xi^*))$$

where  $\xi^* = \arg \min_{\xi \in C_i} (w^T f_i(\xi) - l_i(\xi))$

- Resulting sub-gradient:  $\sum_{i=1}^N (f_j(\xi_j) - f_j(\xi^*)) + \lambda w_j$

# Maximum margin planning algorithm



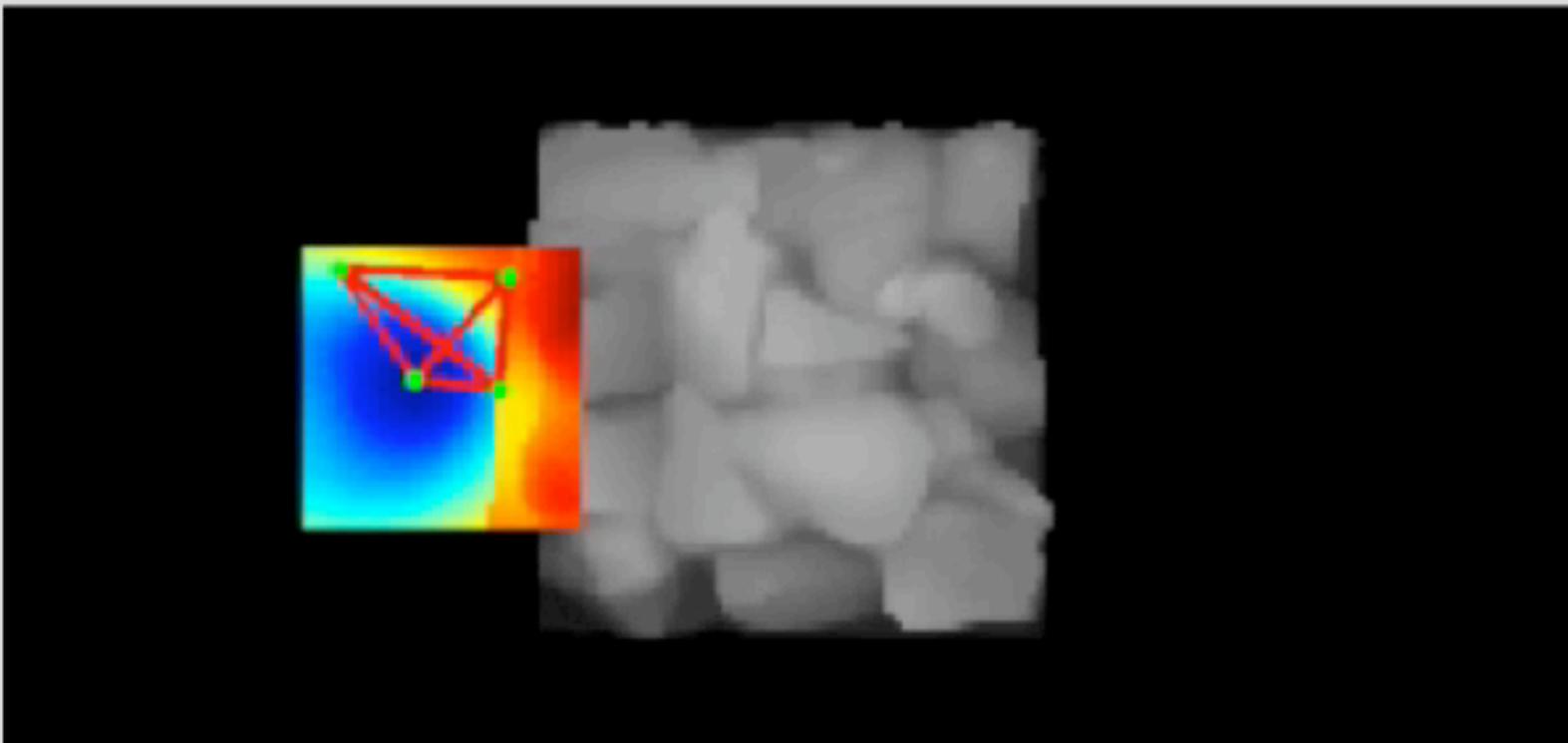
- Incremental subgradient method: 
$$R(w) = \frac{1}{N} \sum_{i=1}^N \left( w^T F_i \mu_i - \min_{\mu \in \mathcal{G}_i} (w^T F_i - l_i^T) \mu \right) + \frac{\lambda}{2} \|w\|^2$$
- Until convergence do
- For each example
  - Create loss-augmented cost map
  - Run planner to find minimum cost path between endpoints of this example
  - Compare the resulting (loss-augmented) cost to that of the desired path to compute gradient
  - Update  $w$  (optional: project  $w$  onto constraints)

Subiteration cycle

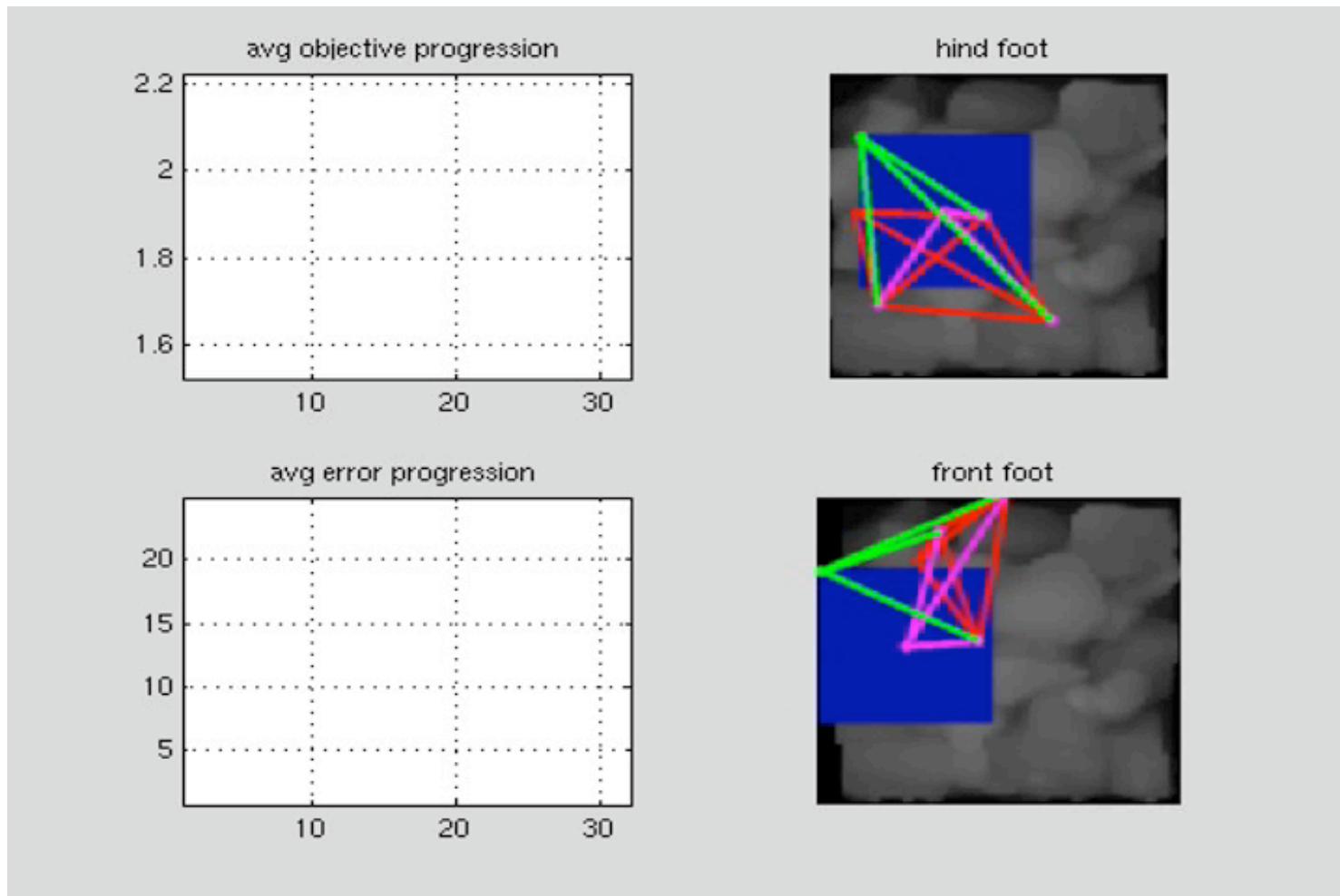
# Mimicking footsteps

Where should we place the foot next?

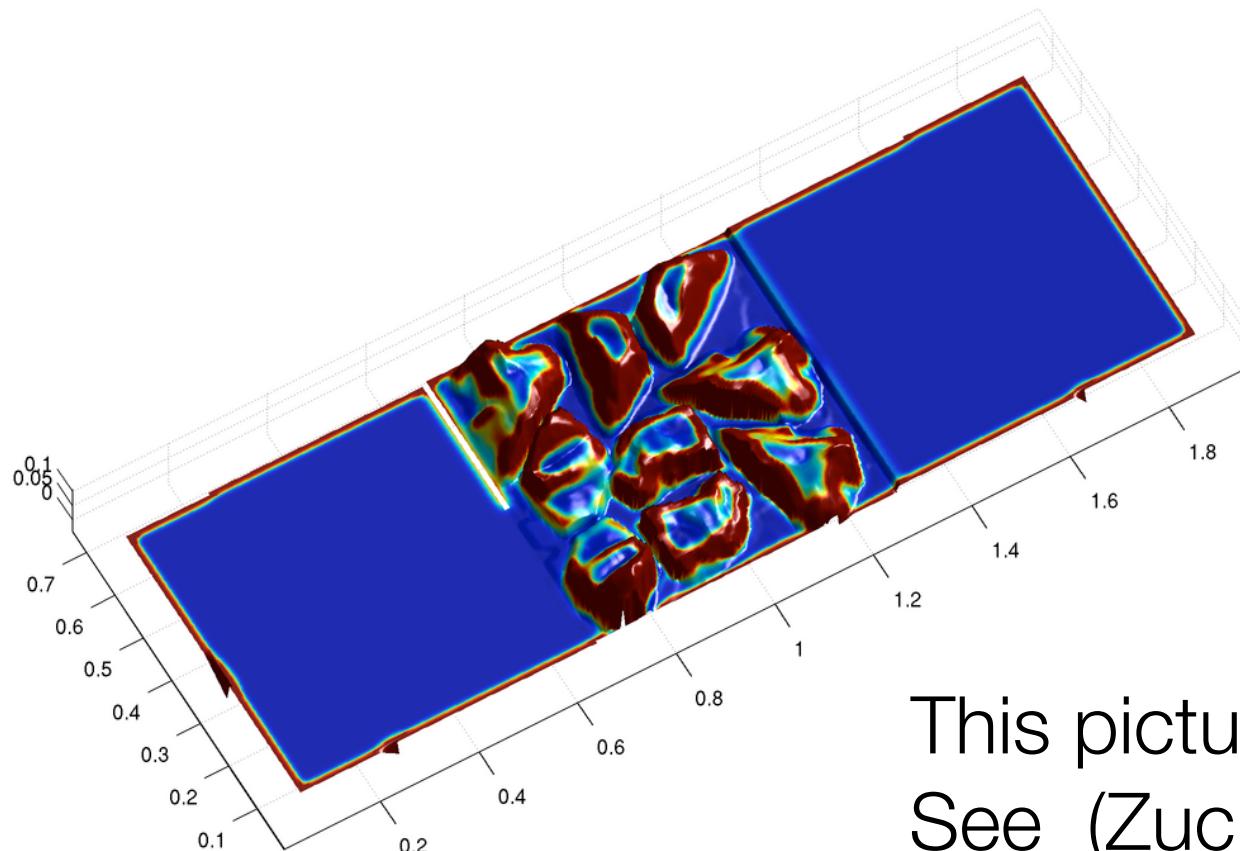




# LittleDog Training Time : Enforcing Optimality

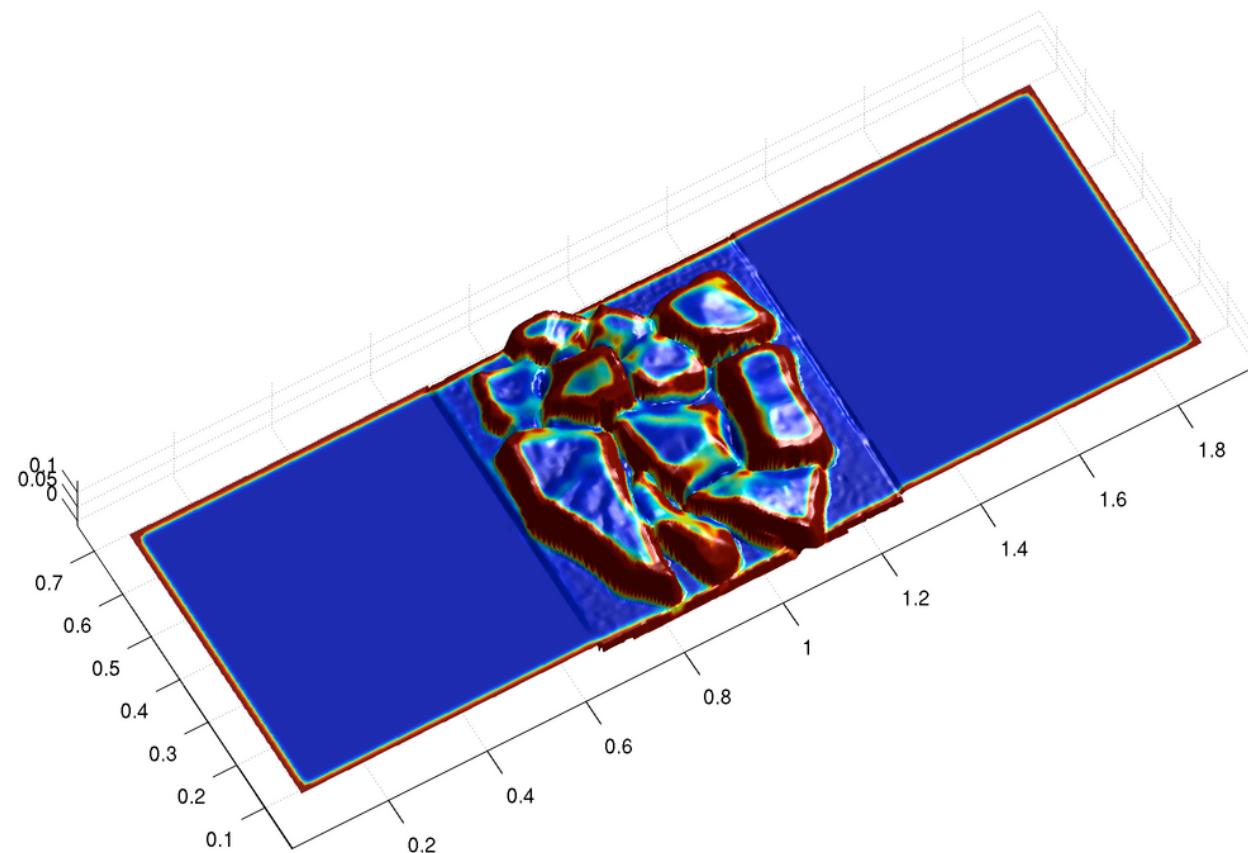


# Learned Cost Function Examples

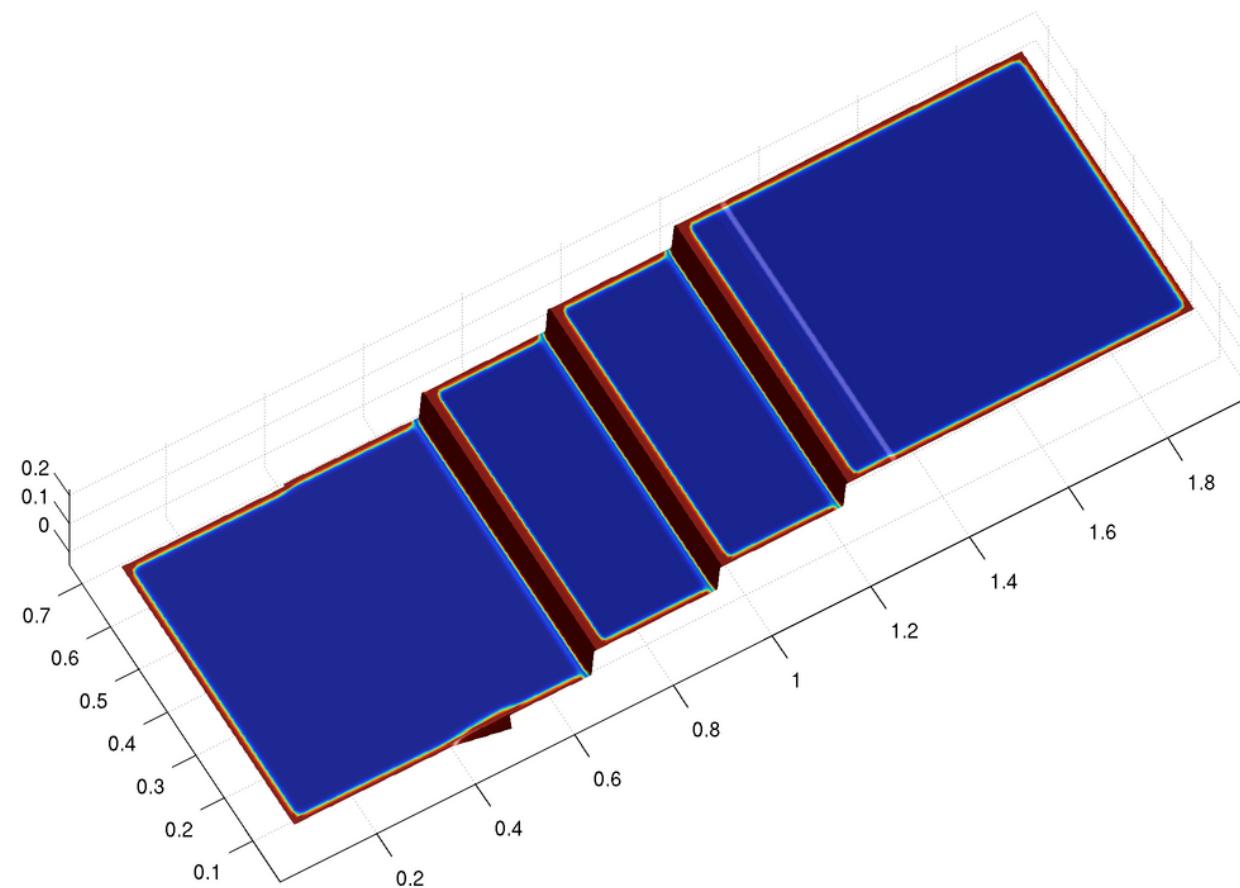


This picture is a lie.  
See (Zucker09) for  
what made these  
pretty pictures

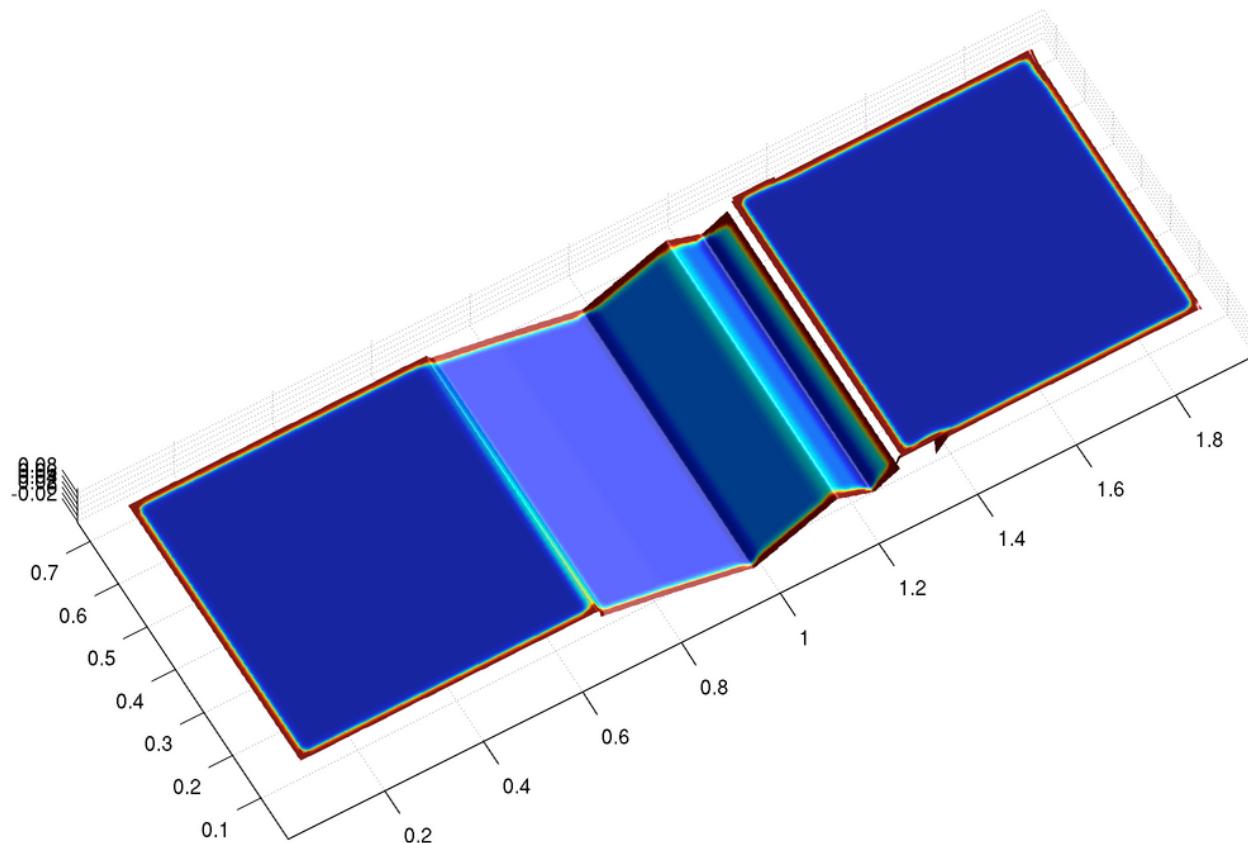
# Learned Cost Function Examples



# Learned Cost Function Examples



# Learned Cost Function Examples



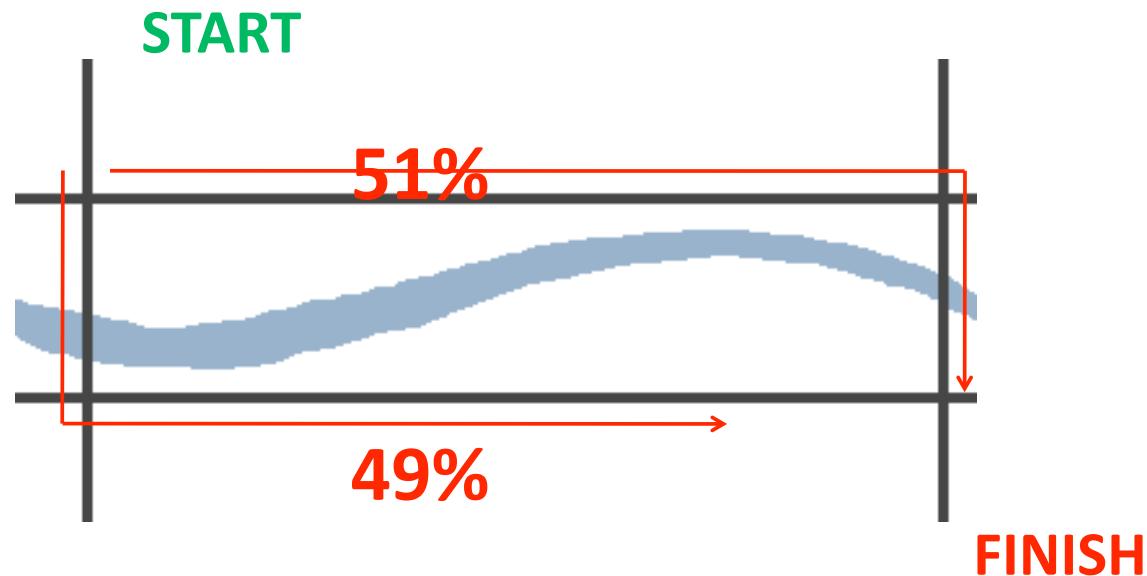
Update the Good!

# How/Why can people behave sub-optimally?

- What's the consequence?

# Maximum Margin Planning

- What if two paths are “about equal?”



- Unique optimality assumption **violated!**

Update the Bad. ☹

# An Alternate approach: Feature Matching

(Abbeel and Ng 2004)

Demonstrated Behavior

Model Behavior (Expectation)



Bridges crossed: 3



Bridges crossed: 3

Miles of interstate: 20.7



Equal Performance in MDP



Stoplights: 10



Stoplights: 10

# An Alternate approach: Feature Matching (Can we prove it?)

(Abbeel and Ng 2004)

Demonstrated Behavior

Model Behavior (Expectation)



Bridges crossed: 3



Bridges crossed: 3

Miles of interstate: 20.7



Equal Performance in MDP



Stoplights: 10



Stoplights: 10

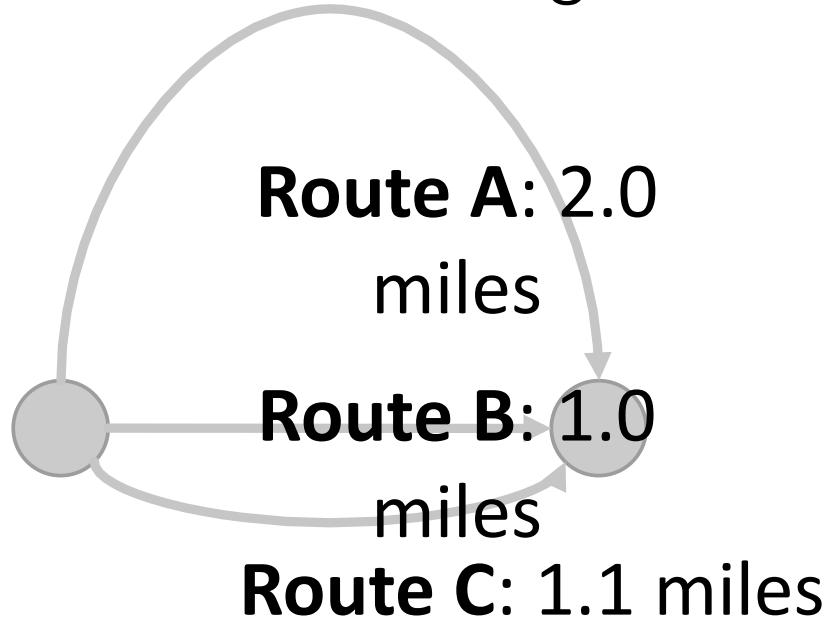
21

10

# Hmmmm..... Ambiguity again

- There is **no reward function and no optimal policy** that matches that matches almost all behavior
- There are **infinitely many** stochastic behaviors (policies or mixtures of policies) that can match feature counts....
- **How can we possibly pick a good one?**

## Feature Matching



**Route C demonstrated  
by driver.**

- Abbeel and Ng match features using a mixture of reward functions/policies:

90% Route B  $(\theta > 0)$

10% Route A  $(\theta < 0)$

**Zero probability for demonstrated route!?**

# Maximum Entropy Inverse Optimal Control

Maximizing the **entropy** over paths:

$$\max H(P_\zeta)$$

While matching feature counts (and being a probability distribution):

$$\sum_\zeta P(\zeta) f_\zeta = f_{\text{dem}}$$

$$\sum_\zeta P(\zeta) = 1$$

# Maximum Entropy Inverse Optimal Control

Maximizing the **entropy** over paths:

$$\max H(P_\zeta)$$

As uniform  
as possible

While matching feature counts (and being a probability distribution):

$$\sum_\zeta P(\zeta) f_\zeta = f_{\text{dem}}$$

$$\sum_\zeta P(\zeta) = 1$$

# Maximum Entropy Inverse Optimal Control

Maximizing the **entropy** over paths:

$$\max H(P_\zeta)$$

As uniform  
as possible

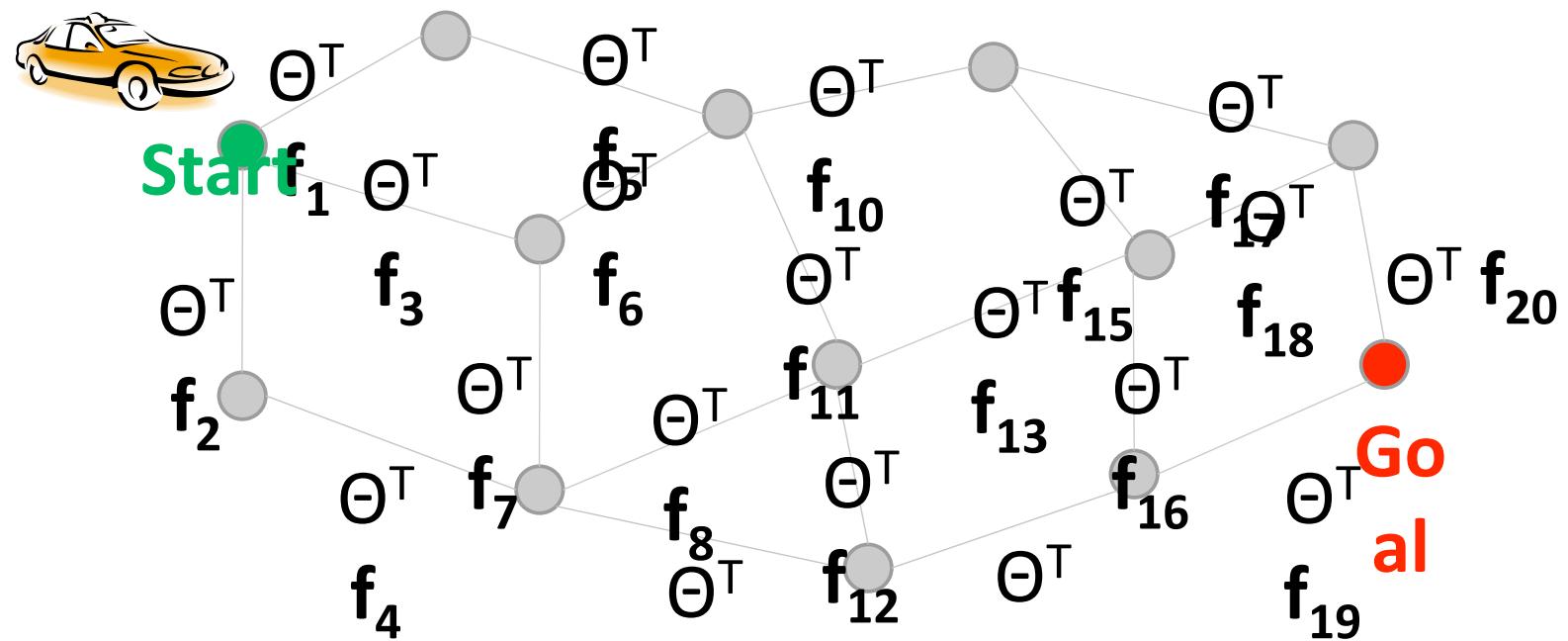
While matching feature counts (and being a probability distribution):

$$\sum_\zeta P(\zeta) f_\zeta = f_{\text{dem}}$$

$$\sum_\zeta P(\zeta) = 1$$

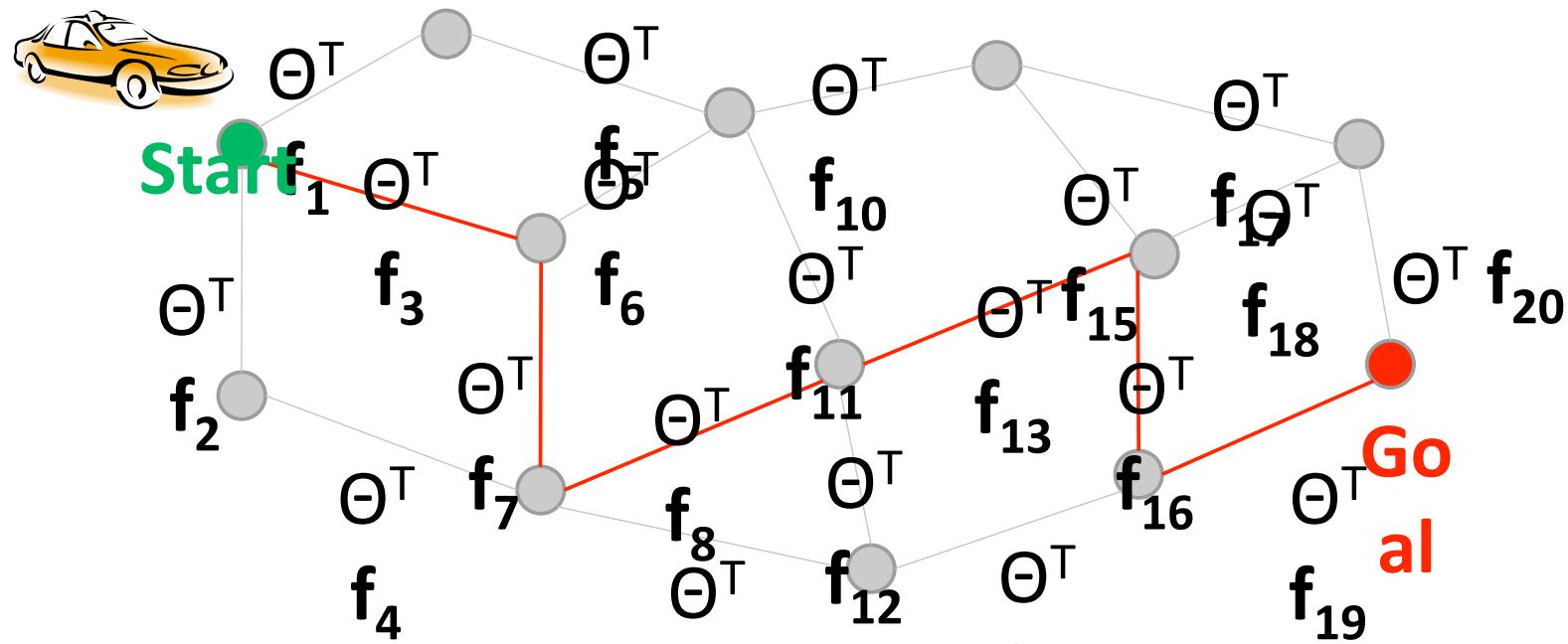
Performance  
guarantee

# Maximum Entropy Inverse Optimal Control



**Roads have unknown costs (linear in features)**

# Maximum Entropy Inverse Optimal Control



**Roads** have **unknown costs** ( $f_i$  linear in features)

**Paths** have **unknown costs** (sum of road costs)

**Path probability** based on **unknown cost**

What Probability Distribution?

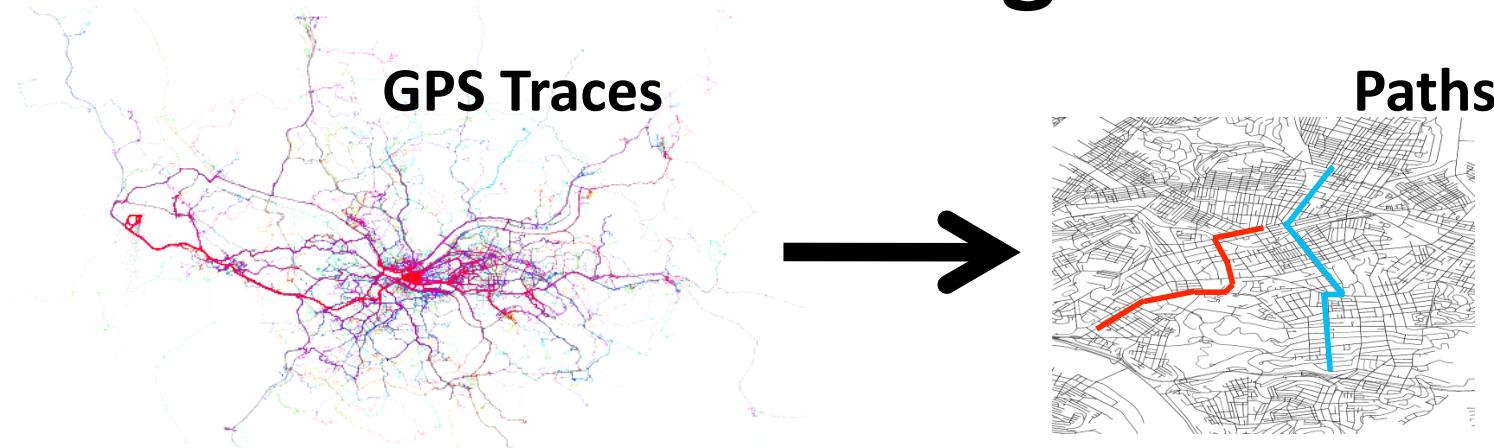
**The Dual:**

$$P(\text{path} | \theta) = \frac{e^{-\text{cost(path} | \theta)}}{\sum_{\text{path}'} e^{-\text{cost(path}' | \theta)}}$$

**Strong Preference for Low Cost Paths**

**Equal Cost Paths Equally Probable**

# Decision Making Data:



Model:

$$\frac{P(\text{path} | \theta) = e^{-\text{cost(path} | \theta)}}{\sum_{\text{path}'} e^{-\text{cost(path}' | \theta)}}$$

Choose cost parameters ( $\theta$ ) that best explain demonstrated paths

# Learning from Demonstration

## Demonstrated Behavior



Bridges crossed: 3

Miles of interstate: 20.7



Stoplights: 10



## Model Behavior (Expectation)



Bridges crossed: ?

Miles of interstate: ?



Stoplights : ?



# Learning from Demonstration

Demonstrated Behavior

## Inference

$$P(\text{path } \zeta) = \frac{e^{-\text{cost}(\zeta | \theta)}}{\sum_{\text{path } \zeta} e^{-\text{cost}(\zeta | \theta)}}$$

$$\sum_{\text{path } \zeta} P(\text{path } \zeta) f_{\zeta}$$

in

Dynamic Programming  
 $O(e^{\text{length}}) \rightarrow O(\text{length})$

Model Behavior (Expectation)



Bridges crossed: ?

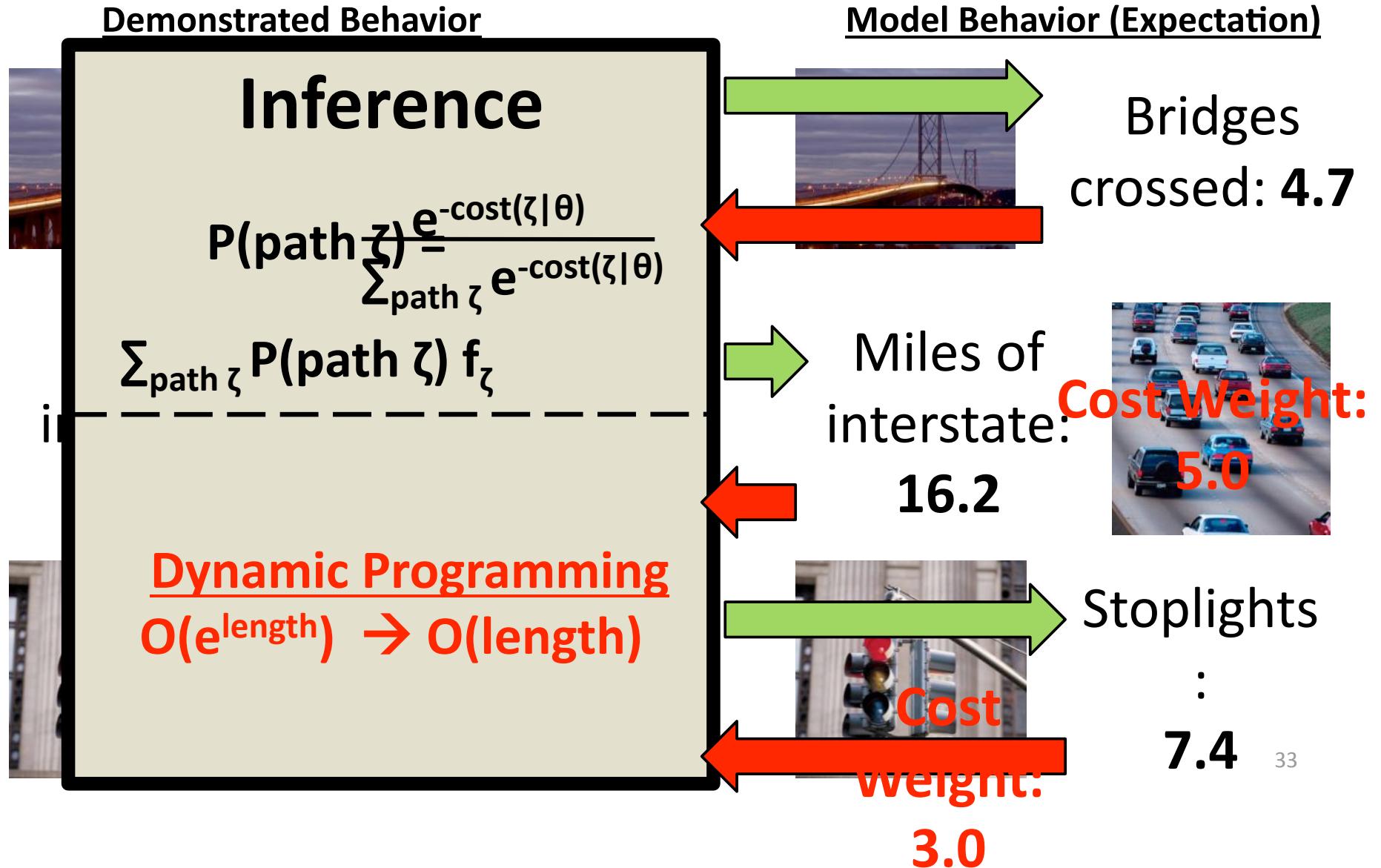
Miles of interstate: ?



Stoplights :



# Learning from Demonstration



# Learning from Demonstration

## Demonstrated Behavior



Bridges crossed: 3

Miles of interstate: 20.7



Stoplights: 10



## Model Behavior (Expectation)



Bridges crossed: 4.7  
+1.7

Miles of interstate: 16.2



Cost Weight: 5.0



Cost Weight: 3.0

Stoplights : 7.4

34 -2.6



# Learning from Demonstration

## Demonstrated Behavior



Bridges crossed: 3

Miles of interstate: 20.7



Stoplights: 10



## Model Behavior (Expectation)



Bridges crossed: 4.7

Miles of interstate: 16.2



Cost Weight: 5.0

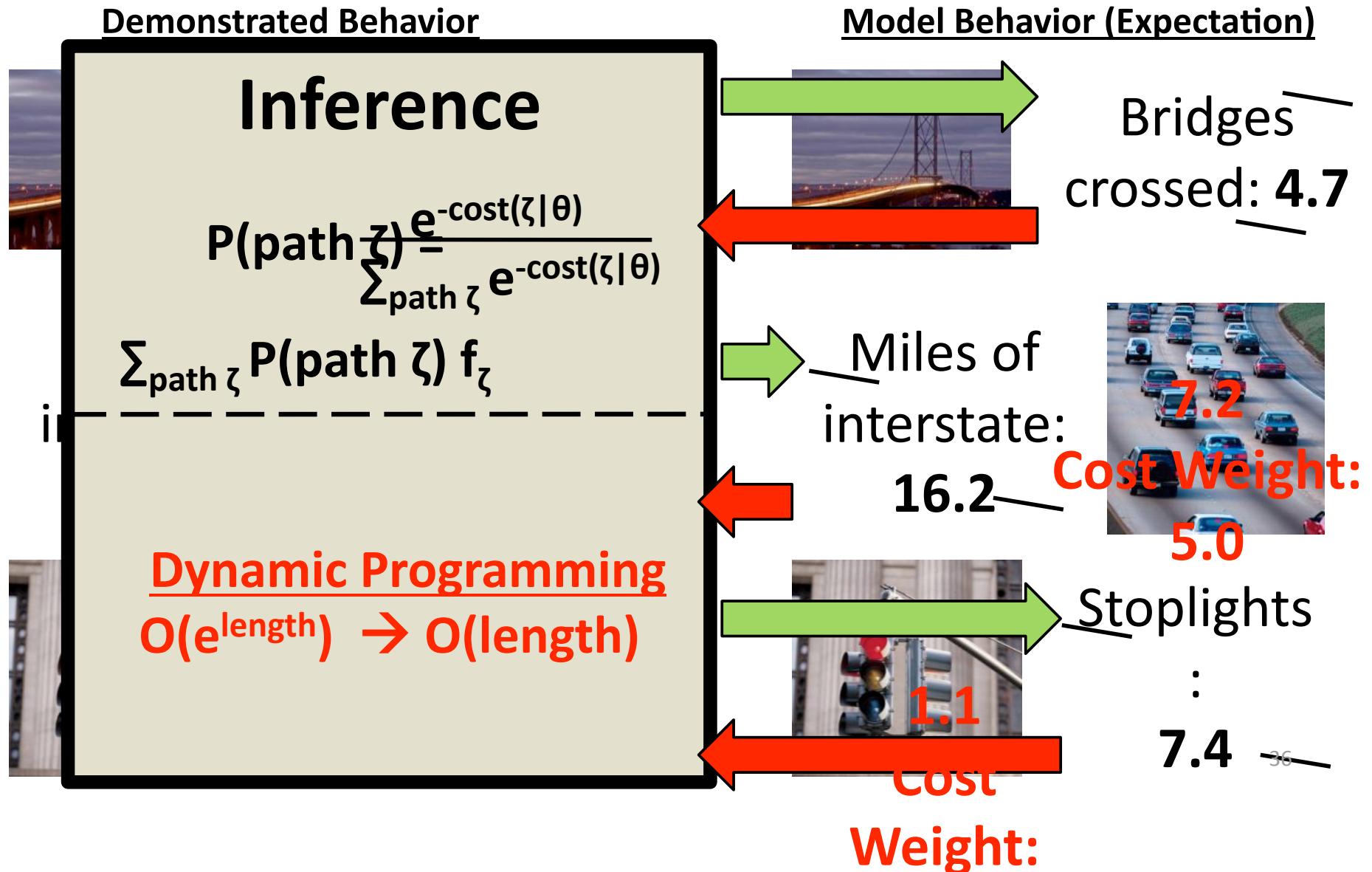
Stoplights: 7.4



Cost Weight:

35

# Learning from Demonstration



# Learning from Demonstration

## Demonstrated Behavior



Bridges crossed: 3

Miles of interstate: 20.7



Stoplights 10

## Model Behavior (Expectation)



Bridges crossed: 4.7

Miles of interstate: 16.2



Cost weight: 5.0



1.1  
Cost  
Weight:

Stoplights : 7.4

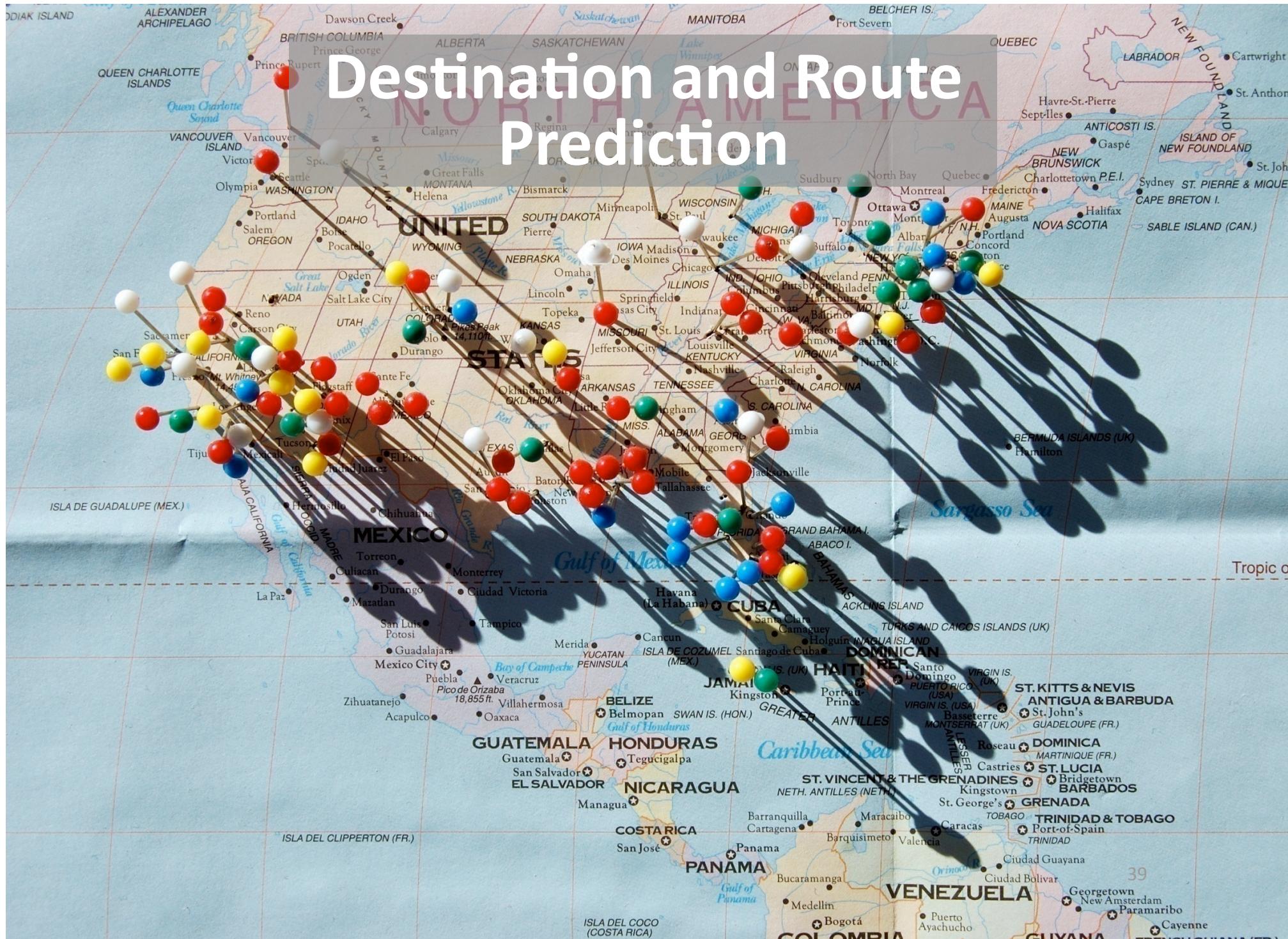
37

# Optimal Solution! (Convexity)

# How does the dynamic program work?

- “Soft” value iteration

# Destination and Route Prediction



# Unknown Destination

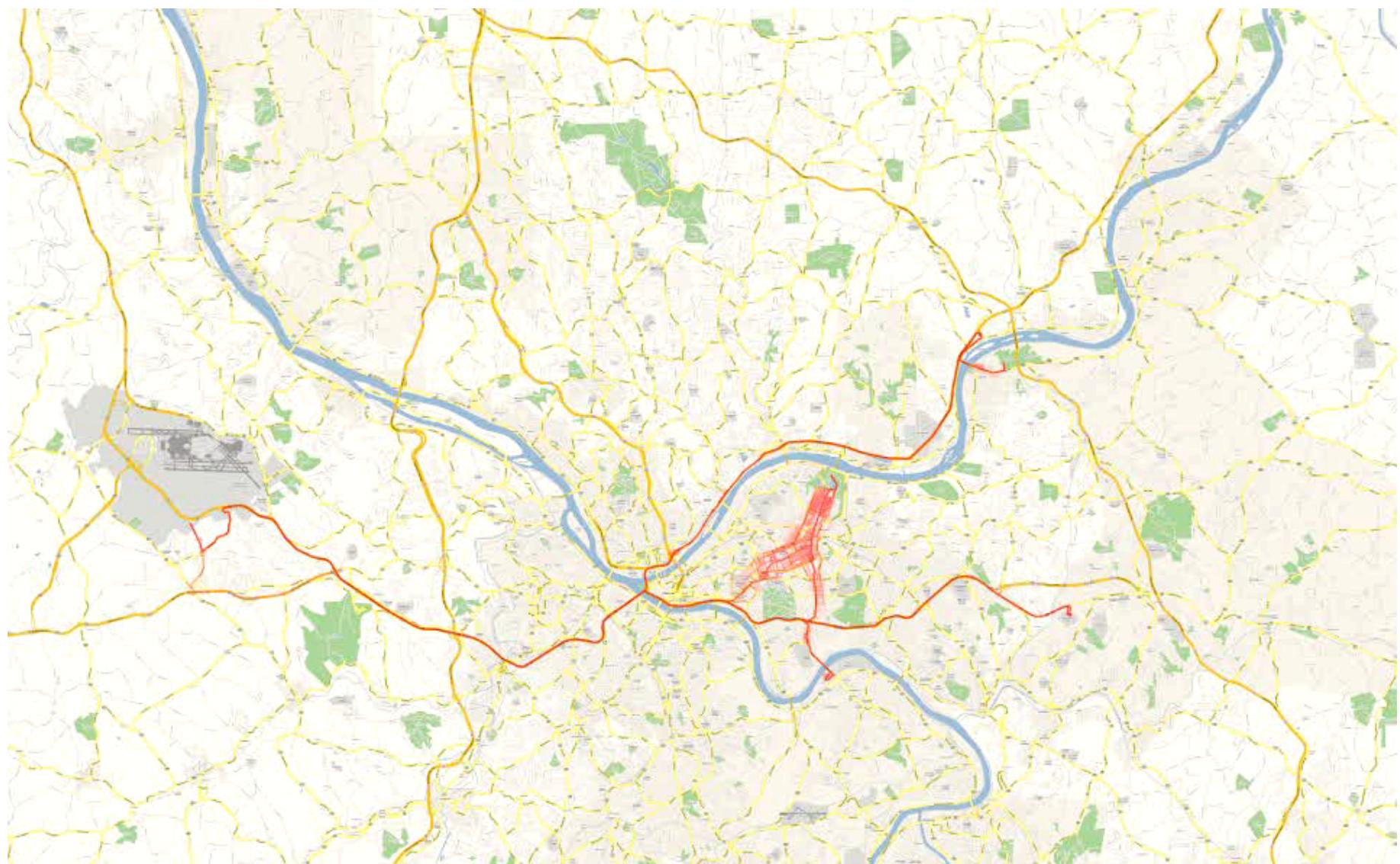


**MaxEnt Model:**  $P(\text{path} | \text{dest})$

**Bayes Rule:**

$$P(\text{dest} | \text{path}) = \frac{P(\text{path} | \text{dest}) P(\text{dest})}{\sum_{\text{dest}'} P(\text{path} | \text{dest}') P(\text{dest}')}}$$

**Prior Distribution:**  $P(\text{dest})$



# Pedestrian Modeling

(Brian Ziebart, Kevin Peterson, Martial Hebert)



