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Recovering the True Reward Function is ill-
posed…




Recovering the True Reward Function is ill-
posed…




Instead we design a loss function to measure 
performance of our ability to imitate using a cost 
function 




Measuring performance and !
Margin/Loss-augmentation


• Before planning through 
the learned cost maps 
we lower the cost of 
cells proportionally to 
their loss


•  It becomes more likely 
that we plan through 
bad areas


• We train on slightly 
harder problems so that 
we do better in practice


  Forces the final solution to be 
correct by a margin.


  Formally, this step places the 
algorithm under the margin-

maximization framework




Formulate as Convex 
Optimization Problem: MMP
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Subgradient optimization


where 


  All terms of our cost function are differentiable except 
that with the min


  Find a subgradient by evaluating the gradient at the 
minimizer


  Resulting sub-gradient:




Maximum margin planning algorithm 


•  Incremental subgradient method:

• Until convergence do


• For each example

•  Create loss-augmented cost map


•  Run planner to find minimum cost path between endpoints of this example


•  Compare the resulting (loss-augmented) cost to that of the desired path to 
compute gradient


•  Update w (optional: project w onto constraints)
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Mimicking footsteps


Where should we place the foot next?
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LittleDog’s Thoughts at Runtime




LittleDog Training Time : Enforcing Optimality 




Learned Cost Function Examples


This picture is a lie. 
See  (Zucker09) for 
what made these 

pretty pictures




Learned Cost Function Examples




Learned Cost Function Examples




Learned Cost Function Examples




Update the Good!




How/Why can people behave sub-optimally?


• What’s the consequence?




• What if two paths are “about equal?”


• Unique optimality assumption violated!


Maximum Margin Planning


START 

FINISH 

51% 

49% 
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Update the Bad. 




An Alternate approach: !
Feature Matching


(Abbeel and Ng 2004) 
Demonstrated Behavior 

Bridges 
crossed: 3 

Miles of 
interstate: 

20.7 

Stoplights: 
10 

Model Behavior (ExpectaIon) 

Bridges 
crossed: 3 

Miles of 
interstate: 

20.7 

Stoplig
hts: 
10 

Equal 
Performan
ce in MDP 
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An Alternate approach: !
Feature Matching (Can we prove it?)


(Abbeel and Ng 2004) 
Demonstrated Behavior 

Bridges 
crossed: 3 

Miles of 
interstate: 

20.7 

Stoplights: 
10 

Model Behavior (ExpectaIon) 

Bridges 
crossed: 3 

Miles of 
interstate: 

20.7 

Stoplig
hts: 
10 

Equal 
Performan
ce in MDP 
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Hmmmm….. Ambiguity again


• There is no reward function and no optimal policy that matches that 
matches almost all behavior


• There are infinitely many stochastic behaviors (policies or mixtures of 
policies) that can match feature counts….


• How can we possibly pick a good one?




• Abbeel and Ng match features using a mixture of reward functions/policies:


90% Route B              
(θ > 0)


10% Route A 
        
(θ < 0)


Zero probability for demonstrated route!?


Feature Matching


Route A: 2.0 
miles 

Route B: 1.0 
miles 

Route C: 1.1 miles 

Route C demonstrated 
by driver. 
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Maximum Entropy Inverse Optimal Control


Maximizing the entropy over paths:  


max H(Pζ)


While matching feature counts (and being a probability distribution):


∑ζ P(ζ) fζ = fdem


∑ζ P(ζ) = 1


24




Maximum Entropy Inverse Optimal Control


Maximizing the entropy over paths:  


max H(Pζ)


While matching feature counts (and being a probability distribution):


∑ζ P(ζ) fζ = fdem


∑ζ P(ζ) = 1
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Maximum Entropy Inverse Optimal Control


Maximizing the entropy over paths:  


max H(Pζ)


While matching feature counts (and being a probability distribution):


∑ζ P(ζ) fζ = fdem


∑ζ P(ζ) = 1
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Maximum Entropy Inverse Optimal Control
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Roads have unknown costs (linear in features) 

27




Maximum Entropy Inverse Optimal Control
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Start 

Go
al 

ΘT 
f6 

ΘT 
f16 

ΘT 
f15 

Roads have unknown costs (linear in features) 
Paths have unknown costs (sum of road costs) 

Path probability based on unknown cost 
28




   
P(path|θ) = e-cost(path|θ)   


                       
 ∑path’ e-cost(path’|θ)


Strong Preference for Low Cost Paths 
Equal Cost Paths Equally Probable 

What Probability Distribution?


The Dual: 
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Decision Making Data: 

Model: 
       P(path|θ) = e‐cost(path|θ)    

                               ∑path’ e‐cost(path’|θ) 

GPS Traces  Paths 

Choose cost parameters (θ) that best 
explain demonstrated paths 
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Learning from DemonstraGon 
Demonstrated Behavior 

Bridges 
crossed: 3 

Miles of 
interstate: 

20.7 

Stoplights: 
10 

Model Behavior (ExpectaIon) 

Bridges 
crossed: ? 

Cost 
Weight: 
5.0 

Miles of 
interstate: 

? 

Cost 
Weight: 
3.0 

Stoplights
: 
?  31 



Learning from DemonstraGon 
Demonstrated Behavior 

Bridges 
crossed: 3 

Miles of 
interstate: 

20.7 

Stoplights: 
10 

Model Behavior (ExpectaIon) 

Bridges 
crossed: ? 

Cost 
Weight: 
5.0 

Miles of 
interstate: 

? 

Cost 
Weight: 
3.0 

Stoplights
: 
? 

Inference 

P(path ζ) =  e‐cost(ζ|θ)  
∑path ζ e‐cost(ζ|θ) 

∑path ζ P(path ζ) fζ 

   Dynamic Programming 
O(elength)   O(length) 
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Learning from DemonstraGon 
Demonstrated Behavior 

Bridges 
crossed: 3 

Miles of 
interstate: 

20.7 

Stoplights: 
10 

Model Behavior (ExpectaIon) 

Inference 

P(path ζ) =  e‐cost(ζ|θ)  
∑path ζ e‐cost(ζ|θ) 

∑path ζ P(path ζ) fζ 

Bridges 
crossed: 4.7 

Cost Weight: 
5.0 

Miles of 
interstate: 

16.2 

Cost 
Weight: 
3.0 

Stoplights
: 
7.4 

   Dynamic Programming 
O(elength)   O(length) 
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Learning from DemonstraGon 
Demonstrated Behavior 

Bridges 
crossed: 3 

Miles of 
interstate: 

20.7 

Stoplights: 
10 

Model Behavior (ExpectaIon) 

Bridges 
crossed: 4.7 
          +1.7 

Cost Weight: 
5.0 

Miles of 
interstate: 

16.2 
           ‐4.5 

Cost 
Weight: 
3.0 

Stoplights
: 
7.4 

         ‐2.6 
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Learning from DemonstraGon 
Demonstrated Behavior 

Bridges 
crossed: 3 

Miles of 
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10 
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crossed: 4.7 

7.2 
Cost Weight: 

5.0 
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Cost 
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: 
7.4  35 



Learning from DemonstraGon 
Demonstrated Behavior 

Bridges 
crossed: 3 

Miles of 
interstate: 

20.7 

Stoplights: 
10 

Inference 

P(path ζ) =  e‐cost(ζ|θ)  
∑path ζ e‐cost(ζ|θ) 
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Learning from DemonstraGon 
Demonstrated Behavior 

Bridges 
crossed: 3 

Miles of 
interstate: 

20.7 

Stoplights: 
10 

Model Behavior (ExpectaIon) 

Bridges 
crossed: 4.7 

7.2 
Cost Weight: 

5.0 

Miles of 
interstate: 

16.2 

1.1 
Cost 

Weight: 
3.0 

Stoplights
: 
7.4 

OpImal 
SoluIon! 
(Convexity) 
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How does the dynamic program 
work? 

•  “SoQ” value iteraGon 
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DesInaIon and Route 
PredicIon 
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Unknown DesGnaGon 

Bayes Rule: 

                      P(path|dest) P(dest) 

                  ∑dest’ P(path|dest’) P(dest’) 

Prior DistribuIon:  P(dest)   

P(dest|path) =  

MaxEnt Model:  P(path|dest) 
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Pedestrian Modeling 
(Brian Ziebart, Kevin Peterson, MarGal Hebert) 
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