ACRL (16-899C, S09) Lecture #20 (March 31, 2009)

Improvements to Policy Gradient Method and Policy Iteration
Lecturer: Drew Bagnell Scribe: Bryan Wagenknecht

1 Recap REINFORCE
Vi = ZPW Z (als) - Viog m(as|st) - Q" (st, ar) (1)

2 Problems with REINFORCE

S

~~

"T f = , N
®\ . O—»@

Figure 1: Diagram of cliff-walking with 2 possible actions and a parameter that determines the
action at each state

Goal

e Need lots of samples to get reward (maybe exponentially many with length of process)

e With random policy, gradient is really small w.r.t. parameters (w,) affecting states near end
of sequence because P(s;,) is really small

e Gradient is scaled wrong!

3 Improvement: Natural REINFORCE

How do gradient updates work again?

e Within a small ball of parameter space, the gradient is the best direction to move to improve
the reward

e Normally gradient seeks to make biggest increases to reward while making the smallest change
to parameters as possible

e That makes less sense here where some parameters affect future states much more than others
— It’s actually ok to make big changes to parameters at the end of a sequence

What we really want is to make big increases to reward while making only small changes to
distribution of states P™(s), we measure this change using KL-divergence.

max J(w + Aw) s.t. KL(P¥(s)|P*T2%) <€ (2)

(Aw)TG(Aw) < € is a quadratic approximation to the KL-divergence condition where G is the
Fisher Information Matrix (defined below).

Then set up Lagrange formulation of the optimization using linear expansion of J(w + dw)

L(Aw) = VJT 6w — MAw! GAw — €) (3)
S, = 0= Y/ - 204076 (4)

So then direction of improvement (up to a scalar) is
Aw=—-G'VJ (5)

which is also known as “Riemannian”, “Covariant”, or “Natural” gradient ascent. If Aw was the
update from REINFORCE, Natural REINFORCE has the update Aw = G~'A®w

Key: — Make small changes to P(s)

— The less you change P(s), the more you can trust), and the more accurate is the
linearization of J(w + Aw) used in the optimization

So what is G (Fisher Information Matrix)?
G = Ep(ayn(als) |V log w(als) [V log m(als)]"] (6)
Steps for computing G:

1. G=1
2. Loop T times:

(a) Run policy m,
(b) z = Vlogm,, (vector)
(c) G+ = 22T

3. G=G/T

4 Actor - Critic Methods

Instead of using sum of actual rewards, we can estimate Q7 with our favorite methods

e TD(0) update

e Least squares fit: min (3 wif(s,a) — [r1 + 72 + ...])?

This used to cause problems because there were big errors in your learned () at states you haven’t
visited. Now we use Qst in the REINFORCE equation and as long as we have a good estimate of
Q over the current P(s), we have a good estimate of the gradient.

VJ = EP(S),ﬂ(a\s) [vzogﬂ-<a’8) : Qgst(saa)] (7)

We don’t care that Q..+ is bad in unvisited states because the VJ equation takes the expectation
over P(s), which places very small weight on the bad sections of Qest.

Natural Actor - Critic:

e Fusion of Actor-Critic and Natural Gradient
e Use estimates of () rather than actual sum of future rewards

e Compute gradient direction using G matrix as before

5 Key Lessons from REINFORCE:

e State distribution matters a lot

— API/AVI problems stem from arbitrarily large changes in P(s)
— REINFORCE changes P(s) slowly, acts only in “trust region” around current P(s)

e Downsides of REINFORCE

Requires stochastic policies
Can be slower than API, but more stable (regular REINFORCE can be painfully slow)

— Not a batch algorithm, must continuously interact with the simulation

Can still get stuck in local minima

6 Improvement to Policy Iteration

Recap of old PI:

1. Start with 7°

2. Learn Q“O by:

(a) Run 7, accumulate sample data

(b) Perform regression on sample data:
i (s,a) — Zrt
t
ii. (s,a) = 7+ Erw|s) [Q”O(s’, a’)}

3. Update: ™! = argmax Q”i(s,a)
a
New “Conservative Policy Iteration”:

1. Start with baseline distribution Py(s)
2. Learn Q”O by:

(a) Starting from state sampled from Fy(s)
(b) Run 7° but sample a’s at random, accumulate sample data

(¢) Perform regression
3. Update: 7'l = o [arg max Q’ri(s, a)} + (1 — a)7
a

This means the updated policy is to stochastically select the new optimized policy with probability
alpha and otherwise use the previous policy (probability 1-a).

e This effectively limits the change in P(s) when « is small
e In fact, for very small a (a« — 0) we are guaranteed to be heading uphill

e Does add complexity of O(IN) because you ideally have to remember every previous policy

