
ACRL (16-899C, S09) Lecture #20 (March 31, 2009)

Improvements to Policy Gradient Method and Policy Iteration

Lecturer: Drew Bagnell Scribe: Bryan Wagenknecht

1 Recap REINFORCE

∇Jπ =
∑
s

P π(s)
∑
a

π(a|s) · ∇ log π(at|st) ·Qπ(st, at) (1)

2 Problems with REINFORCE

Figure 1: Diagram of cliff-walking with 2 possible actions and a parameter that determines the
action at each state

• Need lots of samples to get reward (maybe exponentially many with length of process)

• With random policy, gradient is really small w.r.t. parameters (ωn) affecting states near end
of sequence because P (sn) is really small

• Gradient is scaled wrong!

3 Improvement: Natural REINFORCE

How do gradient updates work again?

• Within a small ball of parameter space, the gradient is the best direction to move to improve
the reward

1

• Normally gradient seeks to make biggest increases to reward while making the smallest change
to parameters as possible

• That makes less sense here where some parameters affect future states much more than others

– It’s actually ok to make big changes to parameters at the end of a sequence

What we really want is to make big increases to reward while making only small changes to
distribution of states P π(s), we measure this change using KL-divergence.

max J(ω + ∆ω) s.t. KL(Pω(s)|Pω+∆ω) ≤ ε (2)

(∆ω)TG(∆ω) ≤ ε is a quadratic approximation to the KL-divergence condition where G is the
Fisher Information Matrix (defined below).

Then set up Lagrange formulation of the optimization using linear expansion of J(w + dw)

L(∆ω) = ∇JT δω − λ(∆ωTG∆ω − ε) (3)
∂L

∂∆ω
= 0 = ∇JT − 2λ∆ωTG (4)

So then direction of improvement (up to a scalar) is

∆ω = −G−1∇J (5)

which is also known as “Riemannian”, “Covariant”, or “Natural” gradient ascent. If ∆w̃ was the
update from REINFORCE, Natural REINFORCE has the update ∆w = G−1∆w̃

Key: – Make small changes to P (s)

– The less you change P (s), the more you can trust Q, and the more accurate is the
linearization of J(w + ∆w) used in the optimization

So what is G (Fisher Information Matrix)?

G = EP (s)π(a|s)

[
∇ log π(a|s) [∇ log π(a|s)]T

]
(6)

Steps for computing G:

1. G = I

2. Loop T times:

(a) Run policy πw
(b) z = ∇logπw (vector)

(c) G+ = zzT

3. G = G/T

2

4 Actor - Critic Methods

Instead of using sum of actual rewards, we can estimate Qπ with our favorite methods

• TD(0) update

• Least squares fit: min (
∑
ωif(s, a)− [r1 + r2 + ...])2

This used to cause problems because there were big errors in your learned Q at states you haven’t
visited. Now we use Qest in the REINFORCE equation and as long as we have a good estimate of
Q over the current P (s), we have a good estimate of the gradient.

∇J = EP (s),π(a|s) [∇logπ(a|s) ·Qπest(s, a)] (7)

We don’t care that Qest is bad in unvisited states because the ∇J equation takes the expectation
over P (s), which places very small weight on the bad sections of Qest.

Natural Actor - Critic:

• Fusion of Actor-Critic and Natural Gradient

• Use estimates of Q rather than actual sum of future rewards

• Compute gradient direction using G matrix as before

5 Key Lessons from REINFORCE:

• State distribution matters a lot

– API/AVI problems stem from arbitrarily large changes in P (s)

– REINFORCE changes P (s) slowly, acts only in “trust region” around current P (s)

• Downsides of REINFORCE

– Requires stochastic policies

– Can be slower than API, but more stable (regular REINFORCE can be painfully slow)

– Not a batch algorithm, must continuously interact with the simulation

– Can still get stuck in local minima

6 Improvement to Policy Iteration

Recap of old PI:

1. Start with π0

2. Learn Qπ
0

by:

3

(a) Run π0, accumulate sample data

(b) Perform regression on sample data:

i. (s, a)→
∑
t

rt

ii. (s, a)→ r + Eπ(a′|s′)

[
Qπ

0
(s′, a′)

]
3. Update: πi+1 = arg max

a
Qπ

i
(s, a)

New “Conservative Policy Iteration”:

1. Start with baseline distribution P0(s)

2. Learn Qπ
0

by:

(a) Starting from state sampled from P0(s)

(b) Run π0 but sample a’s at random, accumulate sample data

(c) Perform regression

3. Update: πi+1 = α
[
arg max

a
Qπ

i
(s, a)

]
+ (1− α)πi

This means the updated policy is to stochastically select the new optimized policy with probability
alpha and otherwise use the previous policy (probability 1-α).

• This effectively limits the change in P (s) when α is small

• In fact, for very small α (α→ 0) we are guaranteed to be heading uphill

• Does add complexity of O(N) because you ideally have to remember every previous policy

4

