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DDP Approximation conclusion and intro to POMDP
Lecturer: Atkeson/Bagnell Scribe: Breelyn Kane

1 Approximations for DDP

(continuation from last time) As a summary: DDP under various approximations, the main goal
is: to do as little work as possible.

e value equation for DDP: v(x) = uyss(k) + k(z)(z — z4(z))

e linear equation for LQR: u(x) = Kz
K = constant doesn’t depend on where are, just acts as a gain.
(x — zq(x)) is zero

If the trajectory has a goal, there can be a local policy that is linear, use LQR. If have an LQR
controller, one trajectory, and trajectory library can solve the problem. These things may be found
without needing to completely solve the problem.

Form of adaptive grid algorithm delivers the following: (from before)

random sampling of states with corresponding actions and values

Choose a random new state

interpolate to find the predicted value V,, and action U, (locally weighted regression)

Then use Bellman equations to find V4, and U, ,
store the point (z,up, vp) and find if |v, — vp| < €

Us a local optimizer for global optimization, propagate the local models and policies along the
trajectory.

One link swing-up example: (DDP with trajectories instead of Bellman updates)

e Start goal — > LQR

pick random state

pick nearest local model and use its policy

Instead of Bellman update, follow the trajectory all the way to the goal

e Use DDP to optimize

If it matches what already know by interpolation chuck it, otherwise store it as new info.
Viimit gradually increases things



This is globally optimal from start to the goal, and involves only retaining the starting points of
the trajectory. The trajectory optimizers are dependent on what is given initially. Does not work
well near discontinuities.

2 Introduction to POMDP

Knowing state may be a lie, when in general you usually have access to observations.
For example no access to:

e velocity, position( IMU expensive, GPU, RFId), speech - with not knowing word said, com-
puter vision is a noisy estimate

Figure 1: Graph model (With states, observation only depends on current state, such that under-
lying states have a markovian property. ).

Assume all you get are observations.

2.1 Learned a policy

Features make up observations, like in the tetris hw.
A policy 7(y)— > a, non-deterministic functions that take ys and map them to actions p(aly).
This is a finite state machine where p(aly) is better than n(y)— > a.

Could get stuck in one state, or could pick randomly. Has lots of local optima to parameterize and
could be really hard.



2.2

Figure 2: Finite state machine (a;j— > stay, aa— > move).

Invent state

An internal information state is complete and markovian ( considering previous things doesn’t
provide more information).

State types:

2.3

e history I-state

keep all observations that you’ve seen. y1,y2,ys3, y4... This is bad since it can grow large with
the time horizon. The history state may be smaller than the belief state for short horizons.

null information state
always go back to same, doesn’t tell us anything

belief state, b
b = p(x¢|yr..t) probability in x; given all the information up until now.

This is a state because p(xy4+1) is compressed in p(z;), and there is completeness where
knowing information about the past does not help.

I-space MDP

need state space: B elements: b
ex. b € p(z) probability in x

actions: same as original MDP

transition function
motion - by = > bf(z) * p(2'|z, a), only take control, not thinking of observations, and is
deterministic.



observation - p(y|b) = >, b(x) * p(y|z) don’t know observation ahead of time. Observation is
deterministic.

Given an observation where can you end up? Determine the probability that you are in a
state given an observation. b;y1 contains by



