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1.1 Motivations

Motivation for IOC:

• Find cost function of real trajectories.

• Cost function can be very hard to produce

– Might know what you want but can’t say it

• “Cost” functions and cost functions

– More appropriate (simplified) cost functions

• Intent recognition

– Predict a person’s actions

• Scientific Interests

– Find the cost function for some biological system

• Imitation learning

– Command a system to replicate some demonstrated behavior

– Conceptually, could do better than the teacher.
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1.2 Complexity

Ordering in terms of generalizability:

Trajectory //Policy //Value Function //Cost Function

Least Generalizable Most Generalizable

Remarks: Cost functions generalize the best, but are more computationally expensive (need to do
optimal control to generate a trajectory).

Computational complexity goes the other way (←). Amount of Modeling required goes to the right.

2 Solving the General IOC problem

At a high level, this is what’s happening:

1. Get a set of features

2. Drive robot (or show a path) to get a demonstrated path.

3. Generate a cost function that makes the demonstrated trajectory(ies) optimal.

The features can be anything salient in the available data. For our robot navigation example, some
potential features are:

• Green-ness

• Density of LIDAR data

• . . .

The simplest cost function on the features we can think of is a linear combination of the features:

c(w) = wTf (1)

2.1 IOC as optimization

We can formulate the above problem as a big optimization problem:

∀i cost of expert plani ≤ cost of arbitrary plan (2)

Since this is true for all plans, it must be true for any plan. Thus, it’s true for the best plan. This
reduces the size of the optimization problem.
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So we can re-write more formally as:
min||w||2 (3)

subject to
∑

i∈ demonstrated plan

wTf(statei) ≤ min
plan

∑

i∈ plan

wTf(statei) (4)

This presents a problem that the zero-vector is “optimal” for w, so we will optimize with a margin.

2.2 Subgradient Optimization

With a loss term, we now have an unconstrained optimization problem:

c(w) =
N
∑

i

(

wTfi(ξi)− min
ξ∈Ci

(

wTfi (ξ)− li (ξ)
)

)

+
λ

2
||w||2 (5)

where i are the examples, ξ are paths (ξi is a demonstrated path), and w is the current policy
(weight vector). This tries to minimize the difference between human examples and the planned
path using the current policy.

Since c(w) is convex in w, we can use the gradient. However, it’s ill-defined because of the min
operator. Fortunately, the sub-gradient always does go towards the optimal:

∇c(w) =
N
∑

i

fi(ξi)− fi(ξ
∗) + λwi (6)

where ξ∗ is the “best” candidate path.

Basically, we are computing the over-counted and under-counted features and computing the dif-
ference between the demonstrated and the optimal path. Our update rule becomes:

w ← w + α∇ (7)

2.3 Boosting Version

Here’s a boosting version of the algorithm:

• +1 for places expert went to

• -1 for places current plan goes to

Classifier makes w best for this iteration.
Repeat until convergence, where cost function(x) =

∑

i classifieri(x).
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2.4 Pathological cases and other failures

If a plan could never be generated by the Optimal Control algorithm, we will never find a weight
vector that will generate that type of plan. Examples include a plan with a loop. This really only
becomes a problem if the demonstrated path is very sub-optimal.

Another failure case is if there are “hidden” features in the plan (for example, an unknown objec-
tive), we will not be able to generate a weight vector.

In most cases, the failures of the IOC can be countered by adding the necessary features to the
feature vector.

3 Relationship to LQR
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where xd
t is the demonstrated behavior, and x∗

t is the current best optimal control. Q = QT ≻ Q,
R = RT � R.

3.1 Gradient Descent

To do gradient descent, we define R̃ = R + I.

∂
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(9)

Differentiating element-by-element (using Matrix calculus) yields:
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