
Adaptive Control and Reinforcement Learning (16-899C, S09) Lecture #7 (Feb. 5, 2009)

Trajectory Optimization / DDP / Learning Models

Lecturer: Chris Atkeson Scribe: Mehmet R Dogar

1 Trajectory Optimization

Scalar Example:

- Initial state x0

- Control mega-vector U = (u0, u1, . . .) where u0 is all the controls on the first step, u1 is all
the controls on the second step, and so on.

- Our score is a function of the mega-vector. It is the sum of one-step costs: S(U) =
∑

L(xi, ui).

- Gradient is given by ∂S(U)
∂ui

, and the Hessian is given by ∂2S(U)
∂ui∂uj

.

- Let’s say we want to do gradient descent. Can we eficiently compute the gradient or the
Hessian? When we say “efficient”, is there a special structure to the gradient or the Hessian
that we can exploit? Yes there is.

- For i < j, since we can’t change the past:
∂Li

∂uj
= 0

- For i = j
∂Li

∂ui
= Lu

- For i > j, using the chain rule to find ∂Li

∂uj

∂Li

∂uj
= ∂Li

∂xj

∂xi

∂uj

∂xi

∂uj
=

∂xj+1

∂uj

∂xj+2

∂xj+1
. . . ∂xi

∂xi−1

- Is there more structure? Yes.

If we define Vi =
∑n

i L(xk, uk) then

∂s(U)
∂uk

= ∂Lk

∂uk
+

∂Vk+1

∂xk+1

∂xk+1

∂uk

2 Regulator Tasks

- Examples: balance a pole, move at a constant velocity.

- A reasonable starting point is a Linear Quadratic Regulator (LQR controller).

1

- Might have nonlinear dynamics xk+1 = f(xk, uk), but since stay around xd, can locally
linearize xk+1 = Axk + Buk.

- Might have complex scoring function c(x, u), but can locally approximate with a quadratic
model c ≈ xT Qx + uT Ru. (Why do we use a quadratic to approximate instead of a linear
approximation? Because we want it to have a bottom.)

- dlqr() does these for you in Matlab.

Linearization Example: Pendulum

- Iθ̈ = −mgl sin(θ) − µθ̇ + τ

- We need to (i) linearize, (ii) discretize time, (iii) vectorize.

- Linearization:

Only nonlinear term is sin(θ) and we know that sin(θ) = θ for sufficiently small θ. Hence

Iθ̈ = −mglθ − µθ̇ + τ

- Discretize time and vectorize:
(

θ

θ̇

)

k+1

=

(

1 T
−mglT

I
1−µT

I

)(

θ

θ̇

)

k

+

(

0
T/I

)

k

(τ)

3 LQR Derivation

- Assume V () is quadratic: Vk+1(x) = xT Vxx:k+1x

- Cost of executing action u in state x is the immediate cost plus the value of the next state:
C(x, u) = xT Qx + uT Ru + (Ax + Bu)T Vxx:k+1(Ax + Bu).

- We want ∂C
∂u

= 0.

- Then we have: BT Vxx:k+1Ax = (BT Vxx:k+1B + R)u.

- Hence, we have a linear controller: u = Kx

- where K = −(BT Vxx:k+1B + R)−1BT Vxx:k+1A

- and Vxx:k = AT Vxx:k+1A + Q + AT Vxx:k+1BK.

If we relate this to the gradient calculation that we did earlier:

∂xi

∂uj
= BA . . . A

2

Figure 1: Value function for one-link example.

Figure 2: Policy for one-link example.

4 Trajectory Optimization with Differential Dynamic Program-
ming (DDP)

Local models about (xp, up):

- V (x) ≈ V0 + Vxx̂ + 1
2 x̂T Vxxx̂

- f(x, u) ≈ f0 + fxx̂ + fuû + 1
2 x̂T fxxx̂ + x̂T fxuû + 1

2 ûT fuuû

- L(x, u) ≈ L0 + Lxx̂ + Luû + 1
2 x̂T Lxxx̂ + x̂T Lxuû + 1

2 ûT Luuû

Value function for one-link example: see Fig. 1.

Policy for one-link example: see Fig. 2.

3

5 Q function

- x: state, u: control or action

- Dynamics: xk+1 = f(xk, uk)

- Cost function: L(x, u)

- Value function V (x) =
∑

L(x, u)

- Q function Q(x, u) = L(x, u) + V (f(x, u))

- Bellman’s Equation V (x) = minu Q(x, u)

- Policy/control law: u(x) = arg minu Q(x, u)

6 Propagating local models along a trajectory

DDP gradient version:

- Vx:k−1 = Qx = Lx + Vxfx

- ∆u = Qu = Lu + Vxfu

DDP version:

- Qx = Lx + Vxfx

- Qu = Lu + Vxfu

- Qxx = Lxx + Vxfxx + (fx)T Vxxfx

- Qux = Lux + Vxfux + (fu)T Vxxfx

- Quu = Luu + Vxfuu + (fu)T Vxxfu

- ∆u = (Quu)−1Qu

- K = (Quu)−1Qux

- Vxk−1
= Qx − QuK

- Vxxk−1
= Qxx − QxuK

4

7 Levenberg Marquardt

Suppose we have y = f(x) and we want to minimize

minx(s = yT y/2)

The gradient is given by

∂s
∂x

= (∂f
∂x

)T y = JT y

and the Hessian is

∂2s
∂2x

= H = (∂2f
∂2x

)y + JT J

Then we can do second order gradient descent using ∆x = H−1JT y. But a problem is that H may
not be positive definite.

Solution: ∆x = (H + λI)−1JT y

- As λ gets smaller this is the second order approach and the search is faster but not guaranteed
to minimize.

- As λ gets larger this is the first order approach (∆x = JT y/λ), so guaranteed to minimize,
but slower.

- You can adjust λ on-the-fly, according to how good you are doing.

Trick 2: H ≈ JT J .

JT J is always at least semi positive-definite.

Levenberg Marquardt-like DDP:

- ∆u = (Quu + λI)−1Qu

- K = (Quu + λI)−1Qux

- Drop fxx, fxu, fux, and fuu terms.

Other tricks:

- If ∆u fails, try ǫ∆u.

- Just optimize last part of trajectory.

8 Learning to balance a pole

It’s a regulator.

What could be learned?

5

- J

- model: A,B. (In Machine Learning literature f(x, u), i.e. learning dynamics). This is
“Indirect AC Learning”.

- K (In ML literature this is policy learning). This is “Direct AC Learning”.

Indirect AC Learning is good because you can use the model even if the goal changes. But planners
are generally not that great, so sometimes directly having the policy might be better.

In the study that Chris showed the video of, the robot mainly learned the model.

Why not do trajectory learning? Maybe the robot is not capable of doing exactly what the teacher
did.

Optimization based learning:

- Regulator at top.

- Learn model (parametric, LWR).

- Learn optimization criterion.

- Use demonstration as initial trajectory.

- Reoptimize using new model, ignore past performance otherwise.

Trying to learn only the model may not be sufficient either. It was not sufficient in the case Chris
showed. The problem was the residual steady-state error, where the robot can not improve its
model anymore. Needed direct goal-based learning as well.

Bad models:

- Trajectory must always match model.

- Integrating bad models generates garbage and stability problems.

- Value functions are inaccurate as well.

- Optimization-based planners greedily take advantage of modeling errors.

- Plan with model violations:

c(x, u)+ = λ |xk+1 − f(xk, uk)|
2

If you are confident of your model you can use a large λ; if you are not confident you can use
a smaller λ.

Drew’s comment: “Does not that let the planner be more greedy in taking advantage of
modeling errors?”

6

