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Planning using Dynamic Optimization

Lecturer: Chris Atkeson Scribe: Elliot Cuzzillo

1 Problem

We consider the problem of finding a plan that globally minimizes some cost function C(execution),
over a discretized, deterministic state space and discretized timesteps.

2 Approaches

Primarily we consider solutions using dynamic programming. These solutions require that we
represent all states explicitly, which means that they become unfeasible for higher-dimensional
problems (the “curse of dimensionality”). We also consider some special-purpose solutions.

3 Trajectories

3.1 Theory

Recall from previous lectures that in the linear quadratic regulator problem. There, we linearize
the dynamics of the system around a point. The dynamics are then given by

xt+1 = Axt + But

where A and B are matrices, xt is the state at time t, and ut is the controls applied at time t. The
cost is given by

cost(xt, ut) = xtQtx
T
t + utRtu

T
t

Now we consider a more general dynamic system:

xt+1 = f(xt, ut)

One possible approach is to discretize the state space and apply dynamic programming methods
over all the states. This is considered later in the lecture.

Another approach is to begin with a trajectory, for instance from a human teacher, and linearize
the dynamics about that trajectory. Then, we have a time sequence xh

0 , uh
0 , . . . (where the h stands

for ’human teacher’). About the trajectory point at each timestep, we make a taylor expansion of
the dynamics f(xt, ut).

A minor caveat is that if we linearize the dynamics about this trajectory point, there’s an offset
(the zeroth-order term in the taylor series), and the LQR equations are derived to requlate to zero,
so we have to rederive the equations to use an offset:
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• First, augment the state vector with a trailing 1, as is done in graphics with homogenous
matrices:

x̂ =
(

x
1

)
• Also just like in graphics, we augment A as follows:

Â =
(

A xd
t

0 1

)
where xd

t is the desired state of the system according to the trajectory at time t.

• We augment B entirely with zeros.

B̂ =
(

B 0
0 0

)
• Finally, we take the second-order taylor expansion of the cost function around the trajectory

point. We don’t care about the constant term in this expansion, since only cost differences are
relevant to the problem. We do care about the linear and quadratic terms; the cost equation
changes to add a linear term qT

t xt, and we define

Q̂ =
(

Q qt/2
qT
t /2 γ

)
where γ is chosen large enough that the matrix is positive definite. (In effect, γ specifies how
much cost comes from the trailing 1 in xt.

3.2 Evaluation

Having explored trajectories, we now note that trajectories can be spectacularly problematic in
particular instances, such as riding a bicycle. If you use a trajectory-based method on a bicycle,
the trajectory is mostly irrespective of state, so, as Chris colorfully put it, YOU ARE GOING TO
DIE. The bicycle is an unstable system, so inevitably, even with a perfect model, you get pushed
a little bit off the trajectory, and then you die.

So, we have to look at another approach.

4 Policies

Instead of trajectories, where we have a desired position at each timestep xd(t), we now consider
general policies u(x), mapping states to actions.

An entertaining interlude on shaping: Shaping is a technique where you generate a family of easier
problems to use as stepping stones for the larger problem. An example given in class: if you want
to get a killer whale to jump out of its tank and kiss its trainer, you start by conveniently noting
a naturally occurring behavior in killer whales: when there are a bunch of seals on a beach, the
whale will peek out of the water periodically, and then suddenly jump onto the seals, eat them,
and then come back into the water.
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So you get the whale to do that, but pull on its tail to prevent it from eating the trainer.

Interlude over.

• One idea for making a policy is to have a bunch of trajectories, and then at each point in
the state space, find the nearest trajectory, and follow it. Difficulties include finding a good
distance metric to decide which trajectory to follow, and also the possibility that the current
state is outside the stable envelope of the chosen trajectory.

However, this method (termed by Chris ’WWJD’) does do well with state error and model
errors. It has much larger issues when the environment changes and all the trajectories
no longer do anything useful (for instance, if the target state changes). It also fails if the
trajectories are not globally optimal (for instance, if they cross).

• Another approach is to parameterize a policy by u(x, θ), where θ is a vector of parameters.
Then, the policy problem is turned into a normal optimization problem. Then, we run into
the issue that nobody knows how to design good cost functions.

5 Bellman equation

Now we introduce dynamic programming and the Bellman equation as a way to find a globally
optimal policy. Here, the lecture became briefer, and the slides became a superset of what was said
verbally, so it would be better to refer directly to those slides:

http://www.cs.cmu.edu/~cga/acrl/lectures/acrl-dp-public-09.ppt
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