
Adaptive Control and Reinforcement Learning (16-899C, S09) Lecture #3 (22-Jan-09)

Linear Programming, Dynamic Programming and Value-Iteration

Lecturer: Drew Bagnell Scribe: Brian C. Becker

1 Hwk#1: Tetris

• The scoring function is lines removed/rows cleared and you do not get a bonus for clearing
multiple rows at a time.

• The AI can take as long as it wants to place the piece (in another words, the game does not
speed up it progresses).

• There is no slide over. When a piece touches another piece, it freezes in place.

• The AI can rotate the piece above the board so you don't run into problems with insu�cient
space to rotate.

• Use the standard height of 20 and width of 10.

• A good AI should be able to clear about 100,000 rows.

• You can use any learning algorithm you want; in fact you can hand code heuristics.

• The game should only implement a one piece placing. The AI should not know what the next
piece is going to be.

2 LQR: Finite Horizon

The general form for a Linear Quadratic Regulator (LQR) with a �nite horizon is

uTt = −xTt Kt (1)

Kt = ATVt+1Bt(Rt +BT
t Vt+1Bt)−1 (2)

Vt = Qt +KT
t RtKt + (At +BtKt)TVt+1(At +BtKt) (3)

Where ut is the input to the system for the current time step t, xt is the current state of the system,
Kt is the Kalman Gain, and Vt is the cost of being in the current state. Qt and Rt are positive
de�nite or positive semi-de�nite costs on the state and input, respectively. At and Bt describe the
system dynamics and form the state-space model xt+1 = Atxt + Btut in discrete time. Often, At,
Bt, Qt, and Rt don't change with time (the costs and system dynamics don't vary from instant to
instant) and can be denoted as A, B, Q, and R.

1



The problem of LQR can be de�ned as follows: given a set of costs on the state (Q) and the input
(R) and a �nal desired state xT , an optimal sequence of inputs U ∈ {u0, . . . , uT } can be found by
starting with the input for the �nal state and working backwards to the current state. See previous
lecture for more details.

2.1 Advantages

The advantage of LQR is that it �nds optimal solutions as de�ned by your costs Q and R. It also
handles Multi-Input Multi-Output (MIMO) systems much better than say a PID controller. MIMO
systems are often highly coupled, leading to a nightmarish back and forth tweaking of PID values
for the various subsystems. LQR handles all this for you in the costs and state-space dynamics.

2.2 Disadvantages

There are several instances where the standard �nite horizon LQR formulation fails, including
systems involving stochasticity, in�nite horizons, nonlinearities in system dynamics, non-quadratic
cost functions, and missing states. Each will be brie�y examined.

2.2.1 Stochasticity

In a stochastic system, we expect a certain amount of noise or uncertainty in the system. Noisy
sensors incorrectly measure positions, velocities, and forces while noisy actuators cannot move the
robot to the commanded position or velocity with perfect accuracy. To cope with this uncertainty,
we add a Gaussian noise term to our model:

xt+1 = Atxt +Btut + ∆ (4)

y = Ctxt + δ (5)

where ∆ ∼ N(0,Σ) and δ ∼ N(0, L). We'll discuss stochastic observations more when we get to
the topic of POMDPs.

2.2.2 Nonlinear System Dynamics

If the system is inherently nonlinear, you can simply linearize the system about a trajectory and
use LQR. In particular, linearizing using a �rst order Taylor series expansion is useful for trajectory
following. If this is insu�cient, the �x is to use Di�erential Dynamic Programming, which will be
covered later.

2.2.3 Non-quadratic Cost Function

Sometimes the cost functions are non-quadratic, especially on real-world systems. LQR assumes
that the system can actuate any input where in reality actuators have limits. For instance, LQR

2



may �nd an optimal sequence of inputs for the system, but some inputs exceed the torque limits of
the motors. The solution for this is usually to place a cap on the inputs LQR �nds or adjust the Q
and R matrices so this does not happen.

2.2.4 Missing states

Frequently, sensors will not give you all the states you need. You might have a noisy position sensor
and no velocity sensor. This is unfortunate because your state depends on the velocity as well as the
position. In this case, you can try to estimate the missing state through numerical di�erentiation.
The results are typically unsatisfactory because of noise. A smoothing lowpass �lter or a Kalman
�lter can help estimate the states with higher accuracy.

2.2.5 In�nite Horizon

In the case of pathplanning, the �nal state is a static con�guration at a static location. However
in other situations, there may be no �nal static state you want to reach. For instance, in the case
of an inverted pendulum, you want to keep running the control forever. As T → ∞, it becomes
computationally infeasible to evaluate the optimal control inputs. The problem here is that for
controlling an inverted pendulum under noise, lim T→∞Vt will go to in�nity.

The �rst option is to simply keep iterating. Take T to be a very large number and start working
backwards. For this to work, the following limit must exist:

lim T→∞Vt (6)

In standard pathplanning, Vt → 0 as the robot approaches and �nally reaches the goal point. In
order for this to work, we need a �nal absorbing state that uses zero cost to remain in the state.
Even if the above limit exists and is �nite, there are cases where this approach does not work. For
instance, if Vt has a �nite limit, but cycles between states.

The formulation of the general in�nite horizon MDP is:

V ∗∞(s) = r(s) + min
a

EP (s′|s,a)[V
∗
∞(s′)] (7)

where V ∗ = xTV x. The value can be represented by a quadratic as in xTV x for LQR. Then you
can get the stationary optimal policy π∗∞:

π∗∞ = arg min
a

[r(s, a) + EP (s′|s,a)[V
∗
∞(s′)] (8)

2.2.6 Receeding Horizon

The second option for solving the in�nite horizon case is to use a receding horizon. First, plan
5 steps ahead, take one step, then plan another 5 steps ahead, etc. By repeatedly using a small
horizon, you can ensure that your control inputs are at least optimal for some distance into the

3



future. This is particularly useful when it is costly to compute more than several time steps into
the future and you still need realtime control over the robot.

2.2.7 Introducing a Final Absorbing State

A third option is to add a discount factor to ensure that limT→∞ Vt exists. In essence, you are
arti�cially enforcing a �nal absorbing state associated with a cost of zero even if it doesn't exist. In
the inverted pendulum example, you never have a �nal state where the cost is zero. You will always
have to have some input to counteract gravity and other disturbances such as wind. However, by
arti�cially introducing a �dead� state where no more control input is needed (reward is zero), we
can solve the LQR formulation. To make this work, we add a transition probability γ ∈ [0, 1] that
speci�es the chance of NOT transitioning to the dead state. Once in the dead state, the system
cannot get out. This is a handy trick to make sure there is a �nal absorbing state. The formulation
then becomes:

V ∗∞(s) = r(s) + γmin
a

EP (s′|s,a)[V
∗
∞(s′)] + (1− γ)VDEAD (9)

Because the reward of the �nal absorbing state is zero, VDEAD = 0 and the �nal term can be
neglected. By solving this equation iteratively using value iteration, we can obtain the optimal
policy.

2.2.8 Policy Iteration

Another more e�ective way to solve this is to use policy iteration where you select an initial policy
π0 to execute at T − 1 and iterate:

V π0
T−2 = r(s) + γE[V π0

∞ ] (10)

This formula is linear in V and can be solved with:

(I − γTπ0)V π0
∞ = r(s)P (s′|s, π0(s))

π1(s) = arg max
a

EP (s′|s,a)[V
π0(s′)] (11)

where Tπ0 is the time when executing the last policy before steady state. This converges to a globally
optimal solution in a �nite number of iterations because there are a �nite number of policies. This
is guaranteed to do as well as value iteration at each iteration. Realistically, nobody does value
iteration anymore for discrete MDPS because policy iteration is so much better. In a modi�ed
version of policy iteration, you can start with the last answer. One thing to keep in mind is while V
is unique, the policy generated might not be unique. That is to say, if trying to plan a path around
a rock, it might be equally good or bad to go around the rock to the left or to the right.

4


