Andrew’s Leap

Robotics

Summer 2000

Copyright © 2000 by Lee Taylor, Greg Reshko, and Matt Mason

Robot Programming Quick Reference

Program Template:

All programs that you write will require some basic structure in order for them to compile properly. This structure is shown in the example below, feel free to copy this format for use in your own programs.

//

// templat.c

//

// This is a basic template for all Andrew’s Leap robot programs

// All programs should have this basic structure

//

#include <leap2.h>

// Put any required function prototypes here

void main(void)

{

// Variable declarations go here

leapInit();

while(!keypressed()) // This is common, but not required

{

// Robot code you write goes here, as well as in any functions

}

leapDone();

}

// Put any additional functions you write down here

Quick Reference of Basic Robot Functions:

leapInit(),leapDone()

These functions are used to set-up the robot so everything else will work, be sure leapInit() is the first function that gets called whenever your program starts. leapDone() should be called any time your program stops running.

check(input)

Use to check switches, push buttons, and bump sensors. Returns true if the input is active. Possible values of “input” are: D1, D2, D3, D4, DIP1, DIP2, BUT1, BUT2.

sample(sensor)

Use to get the value of analog sensors, such as light sensors, the thumbwheel POTentiometer, and motor current. Returns a value between 0 and 255 depending on the reading of the sensor. Possible values of “sensor” are: AN1, AN2, AN3, AN4, AN5, AN6, AN7, AN8, POT, RMOTCUR, LMOTCUR.

drive(motor,how)

Controls a motor’s direction and speed. The value of “motor” can be either RMOTOR or LMOTOR. The value of “how” can be any integer from –100 (full reverse) to 100 (full forward). A value of 0 for “how” will cause a motor to stop.

motorDir(motor,direction)

Sets the direction of a motor without altering its current speed. The value of “motor” can be either RMOTOR or LMOTOR. The value of “direction” can be either FORWARD or REVERSE.

motorReverse(motor)

Reverses the direction of a motor without altering its current speed. The value of “motor” can be either RMOTOR or LMOTOR.

wait(ticks)

Pauses program execution for the specified amount of time. Motors will continue to run during this time. The time value of “ticks” can be anything from 0 to 65535 ticks. There are 450 ticks in a second.

setDelay(ticks)

Sets a timer to run in the background for the specified amount of time. Returns true if the timer was successfully initialized. Returns false if the timer is still running from a previous call to setDelay() and does not re-start the timer with the new value. Program execution continues and other things can be done while this timer is running. The status of the timer can be determined with the checkDelay() function. The time value of “ticks” can be anything from 0 to 65535 ticks. There are 450 ticks in a second.

checkDelay()

Returns the status of the background timer set by a call to setDelay(). Returns true if the timer is still running. Returns false if the timer has expired.

ledOn(led)

Turns on an LED on the interface board. The value of “led” can be either RED, YELLOW, or GREEN.

ledOff(led)

Turns off an LED on the interface board. The value of “led” can be either RED, YELLOW, or GREEN.

tone(freq)

Plays the specified tone on the speaker of the interface board. The tone will continue to play until stopped. The value of “freq” can be from 30 to 1200 hertz. The note A above middle C is 440 Hz.

toneStop()

Stops any sound playing on the speaker of the interface board.

digOut(port, status)

Turns the specified output, such as a small light bulb, on or off. Possible values of “port” are POWER1, POWER2, and POWER3. Refer to the diagram for locations of ports on the board. The value of “status” can be either 1 (on) or 0 (off).

servoAngle(servo, angle)

Sets servo’s angle to the specified measure. “servo” can be SERVO1 or SERVO2. The given “angle” should be between 0 and 180 degrees.

enable(interface)

Enables the specified interface. The value of “interface” can be ENCODERS, ENCODER1, or ENCODER2.

disable(interface)

Disables the specified interface.

resetCount()

Resets encoders’ counters and sets both counters to 0.

getCount(encoder)

Returns the value of encoder’s counter. “encoder” can be either ENCODER1 or ENCODER2. Note that encoder increments its counter every time when the encoder wheel turns – regardless of the direction of rotation.

getVel(encoder)

Returns speed of the specified encoder wheel. The speed is always a positive value.

