Outline

- Why Machine Learning?
- What is a well-defined learning problem?
- An example: learning to play checkers
- What questions should we ask about Machine Learning?

Why Machine Learning

- Recent progress in algorithms and theory
- Growing flood of online data
- Computational power is available
- Budding industry

Three niches for machine learning:

- Data mining : using historical data to improve decisions
 - $-\operatorname{medical\ records} \to \operatorname{medical\ knowledge}$
- Software applications we can't program by hand
 - autonomous driving
 - -speech recognition
- Self customizing programs
 - Newsreader that learns user interests

lecture slides for textbook $Machine\ Learning,\ T.\ Mitchell,\ McGraw\ Hill,\ 1997$

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Typical Datamining Task

Data: Patient103 time=1 Patient103 time=2 Patient103 time=n Age: 23 Age: 23 Age: 23 FirstPregnancy: no Anemia: no FirstPregnancy: no Anemia: no FirstPregnancy: no Anemia: no Diabetes: no PreviousPrematureBirth: no Diabetes: YES PreviousPrematureBirth: no Diahetes: no PreviousPrematureBirth: no Ultrasound: ? Ultrasound: abnormal Ultrasound: ? Elective C-Section: ? Elective C-Section: no Elective C-Section: no Emergency C-Section: Yes Emergency C-Section: ? Emergency C-Section: ?

Given:

- 9714 patient records, each describing a pregnancy and birth
- Each patient record contains 215 features

Learn to predict:

• Classes of future patients at high risk for Emergency Cesarean Section

Datamining Result

One of 18 learned rules:

If No previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admission

Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63, Over test data: 12/20 = .60

Credit Risk Analysis

Data:

Customer103: (time=t0)
Years of credit: 9
Loan balance: \$2,400
Income: \$52k
Own House: Yes
Other delinquent accts: 2
Max billing cycles late: 3
Profitable customer?: ?

Customer103: (time=t1)
Years of credit: 9
Loan balance: \$3,250
Income: ?
Own House: Yes
Other delinquent accts: 2
Max billing cycles late: 4
Profitable customer?: ?

Customer103: (time=tn)
Years of credit: 9
Loan balance: \$4,500
Income: ?
Own House: Yes
Other delinquent accts: 3
Max billing cycles late: 6
Profitable customer?: No

Rules learned from synthesized data:

If Other-Delinquent-Accounts > 2, and
 Number-Delinquent-Billing-Cycles > 1

Then Profitable-Customer? = No
[Deny Credit Card application]

If Other-Delinquent-Accounts = 0, and
 (Income > \$30k) OR (Years-of-Credit > 3)
Then Profitable-Customer? = Yes
 [Accept Credit Card application]

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Problems Too Difficult to Program by Hand

ALVINN [Pomerleau] drives 70 mph on highways

Other Prediction Problems

Customer purchase behavior:

Customer103: (time=t0) Customer103: (time=t1) Customer103: (time=tn) Sex: M Sex: M Sex: M Age: 53 Age: 53 Age: 53 Income: \$50k Income: \$50k Income: \$50k Own House: Yes Own House: Yes Own House: Yes MS Products: Word MS Products: Word MS Products: Word Computer: 386 PC Computer: Pentium Computer: Pentium Purchase Excel?: Yes Purchase Excel?: ? Purchase Excel?: ?

Customer retention:

 Customer103:
 (time=th)
 Customer103:
 (time=th)

 Sex: M
 Sex: M
 Sex: M

 Age: 53
 Age: 53
 Age: 53

 Income: \$50k
 Income: \$50k
 Income: \$50k

 Own House: Yes
 Own House: Yes
 Own House: Yes

 Checking: \$5k
 Checking: \$20k
 Checking: \$0

 Savings: \$15k
 Savings: \$0
 Savings: \$0

 Current-oustomer?: yes
 Current-oustomer?: No

Process optimization:

 Product72:
 (time=t0)
 Product72:
 (time=tn)

 Stage:
 mix
 Stage:
 cool

 Mixing-speed:
 60rpm
 Temperature:
 325
 Fan-speed:
 medium

 Viscosity:
 1.3
 Viscosity:
 3.2
 Viscosity:
 1.3

 Fat content:
 15%
 Fat content:
 12%
 Fat content:
 1.2%

 Density:
 2.8
 Density:
 1.2
 Spectral peak:
 3100
 Spectral peak:
 3100

 Product underweight?:
 ??
 Product underweight?:
 Yes

 ...
 ...
 ...
 ...
 ...

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Software that Customizes to User

http://www.wisewire.com

Where Is this Headed?

Today: tip of the iceberg

- First-generation algorithms: neural nets, decision trees, regression ...
- Applied to well-formated database
- Budding industry

Opportunity for tomorrow: enormous impact

- Learn across full mixed-media data
- Learn across multiple internal databases, plus the web and newsfeeds
- Learn by active experimentation
- \bullet Learn decisions rather than predictions
- Cumulative, lifelong learning
- Programming languages with learning embedded?

Relevant Disciplines

- Artificial intelligence
- Bayesian methods
- Computational complexity theory
- Control theory
- Information theory
- Philosophy
- Psychology and neurobiology
- Statistics
- . .

lecture slides for textbook $Machine\ Learning,$ T. Mitchell, McGraw Hill, 1997

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

What is the Learning Problem?

Learning = Improving with experience at some task

- Improve over task T,
- with respect to performance measure P,
- based on experience E.

E.g., Learn to play checkers

- T: Play checkers
- P: % of games won in world tournament
- ullet E: opportunity to play against self

Learning to Play Checkers

- T: Play checkers
- P: Percent of games won in world tournament
- What experience?
- What exactly should be learned?
- How shall it be represented?
- What specific algorithm to learn it?

Type of Training Experience

- Direct or indirect?
- Teacher or not?

A problem: is training experience representative of performance goal?

Choose the Target Function

• $ChooseMove: Board \rightarrow Move ??$

• $V: Board \rightarrow \Re$??

• ...

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Possible Definition for Target Function V

- if b is a final board state that is won, then V(b) = 100
- if b is a final board state that is lost, then V(b) = -100
- if b is a final board state that is drawn, then V(b) = 0
- if b is a not a final state in the game, then V(b) = V(b'), where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game.

This gives correct values, but is not operational

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Choose Representation for Target Function

- collection of rules?
- neural network?
- polynomial function of board features?
- ..

A Representation for Learned Function

 $w_0 + w_1 \cdot bp(b) + w_2 \cdot rp(b) + w_3 \cdot bk(b) + w_4 \cdot rk(b) + w_5 \cdot bt(b) + w_6 \cdot rt(b)$

• bp(b): number of black pieces on board b

• rp(b): number of red pieces on b

• bk(b): number of black kings on b

• rk(b): number of red kings on b

• bt(b): number of red pieces threatened by black (i.e., which can be taken on black's next turn)

• rt(b): number of black pieces threatened by red

Obtaining Training Examples

 \bullet V(b): the true target function

• $\hat{V}(b)$: the learned function

• $V_{train}(b)$: the training value

One rule for estimating training values:

• $V_{train}(b) \leftarrow \hat{V}(Successor(b))$

17

lecture slides for textbook $Machine\ Learning,\ T.\ Mitchell,\ McGraw\ Hill,\ 1997$

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Choose Weight Tuning Rule

LMS Weight update rule:

Do repeatedly:

- \bullet Select a training example b at random
 - 1. Compute error(b):

$$error(b) = V_{train}(b) - \hat{V}(b)$$

2. For each board feature f_i , update weight w_i :

$$w_i \leftarrow w_i + c \cdot f_i \cdot error(b)$$

 \boldsymbol{c} is some small constant, say 0.1, to moderate the rate of learning

Design Choices

Some Issues in Machine Learning

- What algorithms can approximate functions well (and when)?
- How does number of training examples influence accuracy?
- How does complexity of hypothesis representation impact it?
- How does noisy data influence accuracy?
- What are the theoretical limits of learnability?
- How can prior knowledge of learner help?
- What clues can we get from biological learning systems?
- How can systems alter their own representations?

21