

Synchronization: Advanced

18-213/18-613: Introduction to Computer Systems 24th Lecture, April 15, 2025

Review: Semaphores

- *Semaphore:* non-negative global integer synchronization variable
- Manipulated by P and V operations:
 - P(s): [while (s == 0) wait(); s--;]
 - Dutch for "Proberen" (test)
 - *V(s):* [**s++**;]
 - Dutch for "Verhogen" (increment)
- OS kernel guarantees that operations between brackets [] are executed indivisibly/atomically
 - Only one P or V operation at a time can modify s.
 - When while loop in P terminates, only that P can decrement s
- Semaphore invariant: s ≥ 0

Review: Using Semaphores to

Protect Shared Resources via Mutual Exclusion

Basic idea:

- Associate a unique semaphore mutex, initially 1, with each shared variable (or related set of shared variables)
- Surround each access to the shared variable(s) with P(mutex) and V(mutex) operations

```
mutex = 1
P(mutex)
cnt++
V(mutex)
```

Review: Using Lock for Mutual Exclusion

Basic idea:

- Mutex is special case of semaphore that only has value 0 (locked) or 1 (unlocked)
- Lock(m): [while (m == 0); m=0;]
- Unlock(m): [m=1]
- ~2x faster than using semaphore for this purpose
- And, more clearly indicates programmer's intention

```
mutex = 1

lock(mutex)
cnt++
unlock(mutex)

mutex = 1

P(mutex)
cnt++
V(mutex)
```

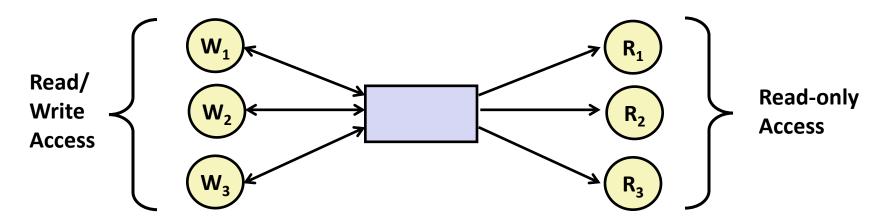
Note about Examples

- Lecture examples will use semaphores for both counting and mutual exclusion
 - Code is much shorter than using pthread_mutex

Review: Using Semaphores to

Coordinate Access to Shared Resources

- Basic idea: Thread uses a semaphore operation to notify another thread that some condition has become true
 - Use counting semaphores to keep track of resource state.
 - Use binary semaphores to notify other threads.
- The Producer-Consumer Problem

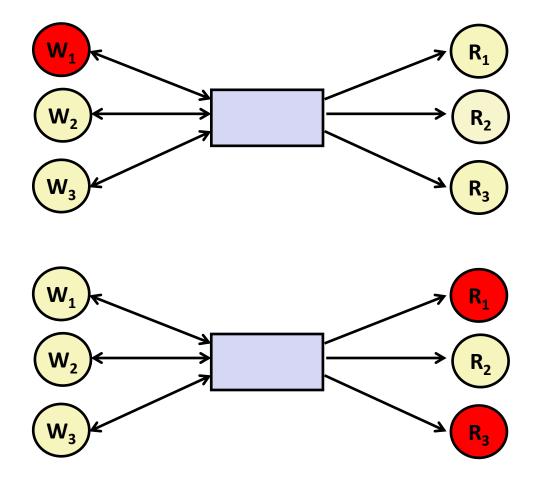

- Mediating interactions between processes that generate information and that then make use of that information
- Single entry buffer implemented with two binary semaphores
 - One to control access by producer(s)
 - One to control access by consumer(s)
- N-entry buffer implemented with semaphores + circular buffer

Today

- - Readers-writers problem
- Other concurrency issues
 - Races
 - Deadlocks
 - Thread safety
 - Interactions between threads and signal handling

CSAPP 12.7

Readers-Writers Problem


Problem statement:

- Reader threads only read the object
- Writer threads modify the object (read/write access)
- Writers must have exclusive access to the object
- Unlimited number of readers can access the object concurrently

Occurs frequently in real systems, e.g.,

- Online airline reservation system
- Multithreaded caching Web proxy

Readers/Writers Examples

Variants of Readers-Writers

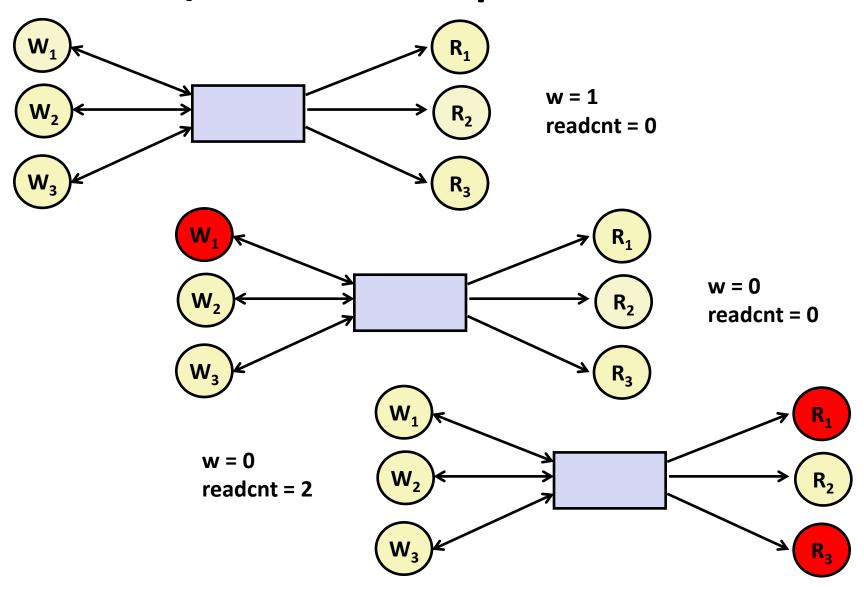
- First readers-writers problem (favors readers)
 - No reader should be kept waiting unless a writer has already been granted permission to use the object.
 - A reader that arrives after a waiting writer gets priority over the writer.
- Second readers-writers problem (favors writers)
 - Once a writer is ready to write, it performs its write as soon as possible
 - A reader that arrives after a writer must wait, even if the writer is also waiting.
- Starvation (where a thread waits indefinitely) is possible in both cases.

Readers:

```
int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */
void reader(void)
  while (1) {
    P(&mutex);
    readcnt++;
    if (readcnt == 1) /* First in */
     P(&w);
   V(&mutex);
    /* Reading happens here */
    P(&mutex);
    readcnt--;
    if (readcnt == 0) /* Last out */
     V(&w);
   V(&mutex);
```

Writers:

```
void writer(void)
{
  while (1) {
    P(&w);


    /* Writing here */

    V(&w);
}
```

rw1.c

A reader that arrives after a waiting writer gets priority over the writer

Readers/Writers Examples

Readers:

```
int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */
void reader(void)
  while (1) {
   P(&mutex);
    readcnt++;
    if (readcnt == 1) /* First in */
     P(&w);
   V(&mutex);
    /* Reading happens here */
    P(&mutex);
    readcnt--;
    if (readcnt == 0) /* Last out */
     V(&w);
   V(&mutex);
```

Writers:

```
void writer(void)
{
   while (1) {
    P(&w);

   /* Writing here */

   V(&w);
}
```

rw1.c

Arrivals: R1 R2 W1 R3

Readers:

```
int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */
void reader(void)
  while (1) {
   P(&mutex);
   readcnt++;
    if (readcnt == 1) /* First in */
     P(&w);
   V(&mutex);
     * Reading happens here */
    P(&mutex);
    readcnt--;
    if (readcnt == 0) /* Last out */
     V(&w);
   V(&mutex);
```

Writers:

```
void writer(void)
{
  while (1) {
    P(&w);

    /* Writing here */

    V(&w);
  }
}
```

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 1 w == 0

Readers:

```
int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */
void reader(void)
  while (1) {
   P(&mutex);
    readcnt++;
   if (readcnt == 1) /* First in */
      P(&w);
   V(&mutex);
     * Reading happens here */
    P(&mutex);
    readcnt--;
    if (readcnt == 0) /* Last out */
     V(&w);
   V(&mutex);
```

Writers:

```
void writer(void)
{
   while (1) {
     P(&w);

   /* Writing here */

     V(&w);
   }
}
```

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 2 w == 0

Readers:

```
int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */
void reader(void)
  while (1) {
   P(&mutex);
   readcnt++;
    if (readcnt == 1) /* First in */
     P(&w);
   V(&mutex);
     * Reading happens here */
    P(&mutex);
    readcnt--;
    if (readcnt == 0) /* Last out */
     V(&w);
   V(&mutex);
```

Writers:

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 2 w == 0

Readers:

```
int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */
void reader(void)
 while (1) {
   P(&mutex);
   readcnt++;
    if (readcnt == 1) /* First in */
     P(&w);
   V(&mutex);
      Reading happens here */
    P(&mutex);
    readcnt--;
    if (readcnt == 0) /* Last out */
     V(&w);
    V(&mutex);
```

Writers:

```
void writer(void)
{
    while (1) {
        P(&w);

        /* Writing here */

        V(&w);
    }
}
```

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 1 w == 0

Readers:

```
int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */
void reader(void)
  while (1) {
   P(&mutex);
    readcnt++;
   if (readcnt == 1) /* First in */
      P(&w);
   V(&mutex);
    /* Reading happens here */
    P(&mutex);
    readcnt--;
    if (readcnt == 0) /* Last out */
     V(&w);
    V(&mutex);
```

Writers:

```
void writer(void)
{
   while (1) {
      P(&w);

      /* Writing here */

      V(&w);
   }
}
```

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 2 w == 0

Readers:

```
int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */
void reader(void)
 while (1) {
   P(&mutex);
    readcnt++;
    if (readcnt == 1) /* First in */
     P(&w);
   V(&mutex);
    /* Reading happens here */
    P(&mutex);
    readcnt--;
    if (readcnt == 0) /* Last out */
     V(&w);
    V(&mutex);
```

Writers:

```
void writer(void)
{
  while (1) {
    P(&w);

    /* Writing here */

    V(&w);
  }
}
```

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 1 w == 0

Readers:

```
int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */
void reader(void)
  while (1) {
   P(&mutex);
    readcnt++;
    if (readcnt == 1) /* First in */
     P(&w);
   V(&mutex);
    /* Reading happens here */
    P(&mutex);
    readcnt--;
    if (readcnt == 0) /* Last out */
     V(&w);
    √(&mutex);
```

Writers:

```
void writer(void)
{
    while (1) {
        P(&w);

        /* Writing here */

        V(&w);
    }
}
```

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 0 w == 1

Other Versions of Readers-Writers

Shortcoming of first solution

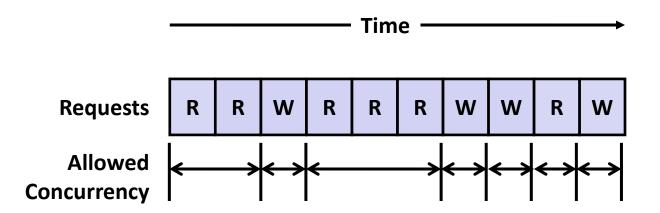
Continuous stream of readers will block writers indefinitely

Second version

- Once writer comes along, blocks access to later readers
- Series of writes could block all reads

FIFO implementation

- See rwqueue code in code directory
- Service requests in order received
- Threads kept in FIFO
- Each has semaphore that enables its access to critical section


Solution to Second Readers-Writers Problem

```
int readcnt, writecnt;  // Initially 0
sem t rmutex, wmutex, r, w; // Initially 1
void reader(void)
{
 while (1) {
   P(&r);
   P(&rmutex);
    readcnt++;
    if (readcnt == 1) /* First in */
    P(&w);
   V(&rmutex);
   V(&r)
    /* Reading happens here */
    P(&rmutex);
    readcnt--;
    if (readcnt == 0) /* Last out */
     V(&w);
   V(&rmutex);
```

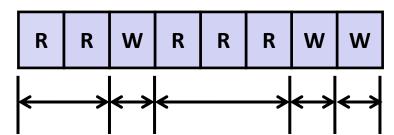
```
void writer(void)
  while (1) {
    P(&wmutex);
    writecnt++;
    if (writecnt == 1)
        P(&r);
   V(&wmutex);
    P(&w);
    /* Writing here */
    V(&w);
    P(&wmutex);
    writecnt--;
    if (writecnt == 0);
       V(&r);
    V(&wmutex);
```

A reader that arrives after a writer must wait, even if the writer is also waiting

Managing Readers/Writers with FIFO

Idea

- Read & Write requests are inserted into FIFO
- Requests handled as remove from FIFO
 - Read allowed to proceed if currently idle or processing read
 - Write allowed to proceed only when idle
- Requests inform controller when they have completed


Fairness

Guarantee every request is eventually handled

Readers Writers FIFO Implementation

Full code in rwqueue.{h,c}

Readers Writers FIFO Use

In rwqueue-test.c

```
/* Get write access to data and write */
void iwriter(int *buf, int v)
{
    rw_token_t tok;
    rw_queue_request_write(&q, &tok);
    /* Critical section */
    *buf = v;
    /* End of Critical Section */
    rw_queue_release(&q);
}
```

Enqueue write request.

Blocked until its your turn.

(One writer per turn)

Enqueue read request.

Blocked until its your turn.

(Multiple readers OK in same turn)

```
/* Get read access to data and read */
int ireader(int *buf)
{
    rw_token_t tok;
    rw_queue_request_read(&q, &tok);
    /* Critical section */
    int v = *buf;
    /* End of Critical section */
    rw_queue_release(&q);
    return v;
}
```

Library Reader/Writer Lock

- Data type pthread_rwlock_t
- Operations
 - Acquire read lock

```
Pthread rwlock rdlock (pthread rw lock t *rwlock)
```

Acquire write lock

```
Pthread_rwlock_wrlock(pthread_rw_lock_t *rwlock)
```

Release (either) lock

```
Pthread rwlock unlock (pthread rw lock t *rwlock)
```

Observation

- Library must be used correctly!
 - Up to programmer to decide what requires read access and what requires write access

Today

- Using semaphores to schedule shared resources
 - Readers-writers problem
- Other concurrency issues
 - Races
 - Deadlocks
 - Thread safety
 - Interactions between threads and signal handling

Recall: One Worry: Races

 A race occurs when correctness of the program depends on one thread reaching point x before another thread reaches point y

```
/* a threaded program with a race */
int main(int argc, char** argv) {
   pthread t tid[N];
    int i;
    for (i = 0; i < N; i++)
        Pthread create(&tid[i], NULL, thread, &i);
    for (i = 0; i < N; i++)
       Pthread join(tid[i], NULL);
    return 0;
/* thread routine */
void *thread(void *varqp) {
    int myid = *((int *)varqp);
    printf("Hello from thread %d\n", myid);
    return NULL;
```

Race Elimination

- Don't share state
 - E.g., use malloc to generate separate copy of argument for each thread
- Use synchronization primitives to control access to shared state
 - Different shared state can use different primitives

Today

- Using semaphores to schedule shared resources
 - Producer-consumer problem
- Other concurrency issues
 - Races
 - Deadlocks
 - Thread safety
 - Interactions between threads and signal handling

Another Worry: Deadlock

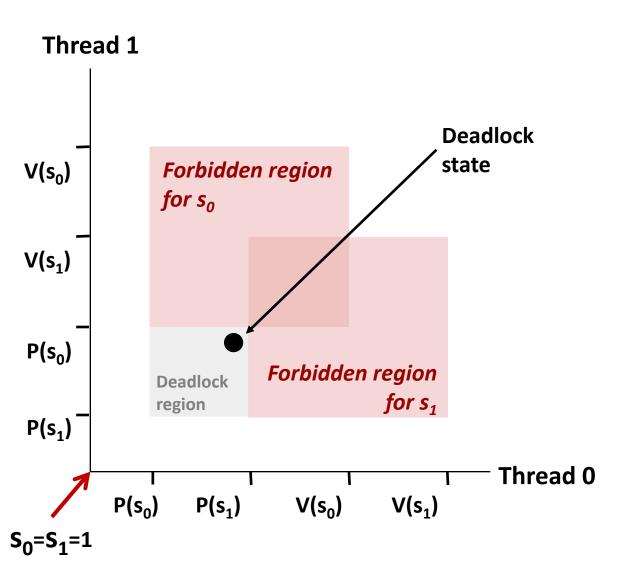
Def: A process is deadlocked iff it is waiting for a condition that will never be true.

Typical Scenario

- Processes 1 and 2 needs two resources (A and B) to proceed
- Process 1 acquires A, waits for B
- Process 2 acquires B, waits for A
- Both will wait forever!

More fully (and beyond the scope of this course), a deadlock has four requirements

- Mutual exclusion
- Circular waiting
- Hold and wait
- No pre-emption


Deadlocking With Semaphores

```
int main(int argc, char** argv)
{
    pthread_t tid[2];
    Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
    Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
    Pthread_create(&tid[0], NULL, count, (void*) 0);
    Pthread_create(&tid[1], NULL, count, (void*) 1);
    Pthread_join(tid[0], NULL);
    Pthread_join(tid[1], NULL);
    printf("cnt=%d\n", cnt);
    return 0;
}
```

```
void *count(void *vargp)
{
    int i;
    int id = (int) vargp;
    for (i = 0; i < NITERS; i++) {
        P(&mutex[id]); P(&mutex[1-id]);
        cnt++;
        V(&mutex[id]); V(&mutex[1-id]);
    }
    return NULL;
}</pre>
```

```
Tid[0]: Tid[1]:
P(s<sub>0</sub>); P(s<sub>1</sub>);
P(s<sub>1</sub>); P(s<sub>0</sub>);
cnt++; V(s<sub>0</sub>); V(s<sub>1</sub>);
V(s<sub>1</sub>);
```

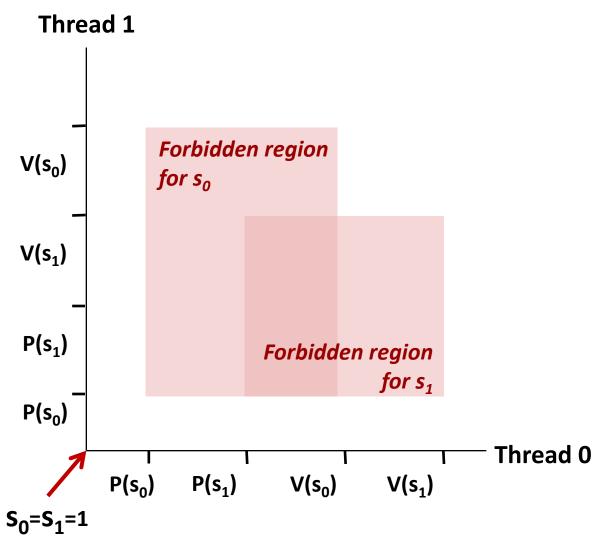
Deadlock Visualized in Progress Graph

Locking introduces the potential for *deadlock:* waiting for a condition that will never be true

Any trajectory that enters the *deadlock region* will eventually reach the *deadlock state*, waiting for either S₀ or S₁ to become nonzero

Other trajectories luck out and skirt the deadlock region

Unfortunate fact: deadlock is often nondeterministic (race)


Avoiding Deadlock Acquire shared resources in same order

```
int main(int argc, char** argv)
   pthread t tid[2];
   Sem init(&mutex[0], 0, 1); /* mutex[0] = 1 */
    Sem init(&mutex[1], 0, 1); /* mutex[1] = 1 */
   Pthread create(&tid[0], NULL, count, (void*) 0);
   Pthread create(&tid[1], NULL, count, (void*) 1);
   Pthread join(tid[0], NULL);
   Pthread join(tid[1], NULL);
   printf("cnt=%d\n", cnt);
    return 0;
```

```
void *count(void *varqp)
    int i;
    int id = (int) varqp;
    for (i = 0; i < NITERS; i++) {
        P(&mutex[0]); P(&mutex[1]);
       cnt++;
       V(&mutex[id]); V(&mutex[1-id]);
    return NULL;
```

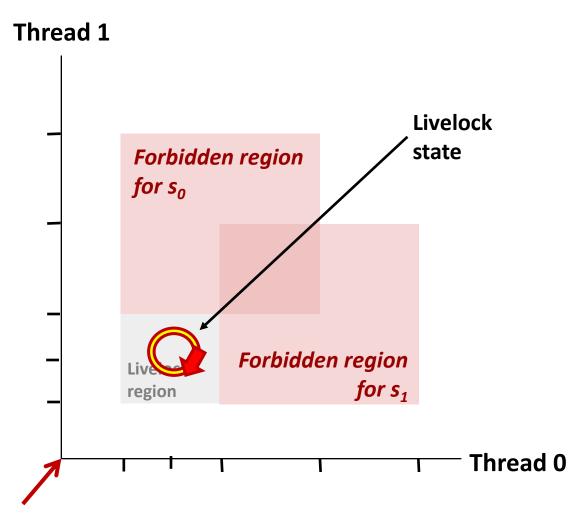
```
Tid[0]:
           Tid[1]:
           P(s_0);
P(s_0);
P(s_1);
           P(s_1);
cnt++;
           cnt++;
V(s_0);
           V(s_1);
           V(s_0);
V(s_1);
```

Avoided Deadlock in Progress Graph

No way for trajectory to get stuck

Processes acquire locks in same order

Order in which locks released is immaterial


Demonstration

- See program deadlock.c
- 100 threads, each acquiring same two locks
- Risky mode
 - Even numbered threads request locks in opposite order of oddnumbered ones

Safe mode

All threads acquire locks in same order

Livelock Visualized in Progress Graph

Livelock is similar to a deadlock, except the threads change state, but remain in a deadlock trajectory.

Deadlock, Livelock, Starvation

Deadlock

One or more threads is waiting on a condition that will never be true

Livelock

 One or more threads is changing state, but will never leave a deadlock / livelock trajectory

Starvation

One or more threads is temporarily unable to make progress

Quiz Time!

Canvas Quiz: Day 24 – Synchronization Advanced

Today

- Using semaphores to schedule shared resources
 - Readers-writers problem
- Other concurrency issues
 - Races
 - Deadlocks
 - Thread safety
 - Interactions between threads and signal handling

Crucial concept: Thread Safety

- Functions called from a thread must be thread-safe
- Def: A function is thread-safe iff it will always produce correct results when called repeatedly from multiple concurrent threads.
- Classes of thread-unsafe functions:
 - Class 1: Functions that do not protect shared variables
 - Class 2: Functions that keep state across multiple invocations
 - Class 3: Functions that return a pointer to a static variable
 - Class 4: Functions that call thread-unsafe functions

Thread-Unsafe Functions (Class 1)

- Failing to protect shared variables
 - Fix: Use P and V semaphore operations (or mutex)
 - Example: goodcnt.c
 - Issue: Synchronization operations will slow down code

Thread-Unsafe Functions (Class 2)

- Relying on persistent state across multiple function invocations
 - Example: Random number generator that relies on static state

```
static unsigned int next = 1;
/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
    next = next*1103515245 + 12345;
    return (unsigned int) (next/65536) % 32768;
/* srand: set seed for rand() */
void srand(unsigned int seed)
   next = seed;
```

Thread-Safe Random Number Generator

- Pass state as part of argument
 - and, thereby, eliminate static state

```
/* rand_r - return pseudo-random integer on 0..32767 */
int rand_r(int *nextp)
{
    *nextp = *nextp*1103515245 + 12345;
    return (unsigned int) (*nextp/65536) % 32768;
}
```

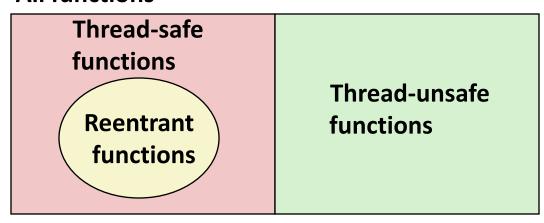
Consequence: programmer using rand_r must maintain seed

Thread-Unsafe Functions (Class 3)

- Returning a pointer to a static variable
- Fix 1. Rewrite function so caller passes address of variable to store result
 - Requires changes in caller and callee
- Fix 2. Lock-and-copy
 - Requires simple changes in caller (and none in callee)
 - However, caller must free memory.

```
/* Convert integer to string */
char *itoa(int x)
{
    static char buf[11];
    sprintf(buf, "%d", x);
    return buf;
}
```

```
char *lc_itoa(int x, char *dest)
{
    P(&mutex);
    strcpy(dest, itoa(x));
    V(&mutex);
    return dest;
}
```


Thread-Unsafe Functions (Class 4)

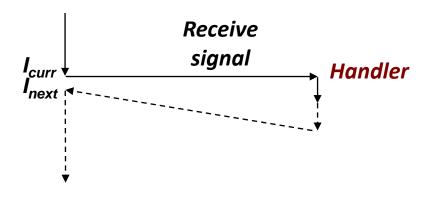
- Calling thread-unsafe functions
 - Calling one thread-unsafe function makes the entire function that calls it thread-unsafe
 - Fix: Modify the function so it calls only thread-safe functions ©

Reentrant Functions

- Def: A function is reentrant iff it accesses no shared variables when called by multiple threads.
 - Important subset of thread-safe functions
 - Require no synchronization operations
 - Only way to make a Class 2 function thread-safe is to make it reentrant (e.g., rand_r)

All functions

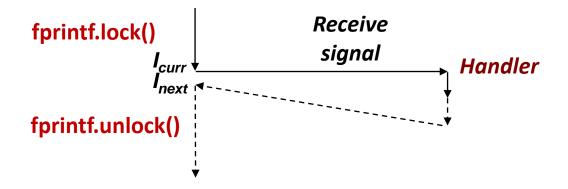
Thread-Safe Library Functions


- All functions in the Standard C Library (at the back of your K&R text) are thread-safe
 - Examples: malloc, free, printf, scanf
- Most Unix system calls are thread-safe, with a few exceptions:

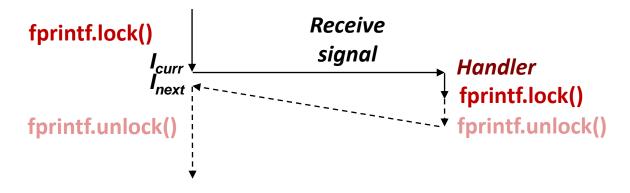
Thread-unsafe function	Class	Reentrant version
asctime	3	asctime_r
ctime	3	ctime_r
gethostbyaddr	3	gethostbyaddr_r
gethostbyname	3	gethostbyname_r
inet_ntoa	3	(none)
localtime	3	localtime_r
rand	2	rand_r

Today

- Using semaphores to schedule shared resources
 - Readers-writers problem
- Other concurrency issues
 - Races
 - Deadlocks
 - Thread safety
 - Interactions between threads and signal handling


Review: Signal Handling

Action


- Signal can occur at any point in program execution
 - Unless signal is blocked
- Signal handler runs within same thread
- Must run to completion and then return to regular program execution

Threads / Signals Interactions

- Many library functions use lock-and-copy for thread safety
 - Because they have hidden state
 - malloc
 - Free lists
 - fprintf, printf, puts
 - So that outputs from multiple threads don't interleave
 - sprintf
 - Not officially asynch-signal-safe, but seems to be OK
- OK for handler that doesn't use these library functions

Bad Thread / Signal Interactions

What if:

- Signal received while library function holds lock
- Handler calls same (or related) library function

Deadlock!

- Signal handler cannot proceed until it gets lock
- Main program cannot proceed until handler completes

Key Point

- Threads employ symmetric concurrency
- Signal handling is asymmetric

Threads Summary

- Threads provide another mechanism for writing concurrent programs
- Threads are growing in popularity
 - Somewhat cheaper than processes
 - Easy to share data between threads
- However, the ease of sharing has a cost:
 - Easy to introduce subtle synchronization errors
 - Tread carefully with threads!
- For more info:
 - D. Butenhof, "Programming with Posix Threads", Addison-Wesley, 1997