Carnegie Mellon

o ————.

15213
sesnile isaouiin

<L A it s

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Dynamic Memory Allocation:
Advanced Concepts

18-213/18-613: Introduction to Computer Systems
14t Lecture, February 26, 2025

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

m Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at run time.

= for data structures whose size
is only known at runtime

m Dynamic memory allocators
manage an area of process
VM known as the heap.

0x400000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Kernel virtual memory

User stack
(created at runtime)

v
T

Memory-mapped region for
shared libraries

T

|

Carnegie Mellon

Memory
invisible to
user code

+«—3rsp

(stack
pointer)

- brk

Run-time heap
(created by malloc)

A

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Loaded
from

the
executable
file

Carnegie Mellon

Review: Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

Unused oo™ saL eemmTTTTmmel e Need to tag

nused _-- Sa -7 T~ g s

7 3'2 ‘Zé ‘;2' 16 each block as
A allocated/free

m Method 2: Explicit list among the free blocks using pointers

T~ T\

7739 48 39| 16 Need space
Z for pointers

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Review: Boundary Tags for Coalescing

m Boundary tags

= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

—————,

7 R \\A’/’ \Aa" N*A*’ :(/‘
32 32 32 32 48 48 32 32
‘//: ’f"\ ”WNN a”i\ ’I’ A
Header —— Size - a = 1: Allocated block
a = 0: Free block
Format of . _
allocated and Payload and Size: Total block size
padding
free blocks Payload: Application data
(allocated blocks only)
Boundary tag > Size a
(footer)

Disadvantage: Internal fragmentation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Review: Internal vs. External Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
A
a N
Internal Internal
fragmentation fragmentation

m External fragmentation occurs when there is enough aggregate
heap memory, but no single free block is large enough

P4 = malloc(7*sizeof(size t))

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Review: No Boundary Tag for Allocated Blocks

m Boundary tag needed only for free blocks
m When sizes are multiples of 16, have 4 spare bits

1 word 1 word
~ —"~ ~ ~ —" ~
Size b1 a = 1: Allocated block Size b0
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free
Payload
Unallocated
Size: block size
Optional Payload: application data
padding Size b0
Allocated Free
Block Block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 1)

_ m1l ?1 m1l ?1
previous
block
block n 11 n 10
being —
freed n 10
m2 11 m2 01
next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 2)

_ m1l ?1 m1l ?1
previous
block
block n 11 n+m2 10
being —
freed
m2 10

next
block m2 10 n+m2 10

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 3)

_ ml ?0 n+ml ?0
previous
block
ml ?0
block n 01
being —
freed n+ml 20
m2 11 m2 01
next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

No Boundary Tag for Allocated Blocks
(Case 4)

orevious m1l ?0 n+ml+m?2 ?0
block
ml ?0
block n 01
being —_—
freed
m2 10
next
block m2 10 n+ml+m?2 ?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Implicit Lists Summary

m Implementation: very simple

m Allocate cost:
" [inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory Overhead:
= Depends on placement policy
= Strategies include first fit, next fit, and best fit

m Not used in practice formalloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Today

m Implicit free lists (review)

m Explicit free lists CSAPP 9.9.13
m Segregated free lists CSAPP 9.9.14

m Memory-related perils and pitfalls CSAPP 9.11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

——————
~~~~~~~

Unused - SaalemmTT TN -

7/ 32 48 32 16

i

m Method 2: Explicit list among the free blocks using pointers

= N

732 48 32 7 16

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14



Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding

Optional

N

Size a Size a

m Maintain list(s) of free blocks, not all blocks
= Luckily we track only free blocks, so we can use payload area
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= To find adjacent blocks according to memory order

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15



Explicit Free Lists

m Logically:

\ 4

\ 4

L 3

m Physically: blocks can be in any order

—
v

/ Forward (next) links
A ‘/Q 8

32 —7 32|32 3248 /|~ 4832 3232 ' , 32

/
C \/ .
K Back (prev) links

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16



Carnegie Mellon

Allocating From Explicit Free Lists

conceptual graphic

Before

2

After (with splitting)

W

= malloc(..)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17



Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?
m Unordered
= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= FIFO (first-in-first-out) policy
= |nsert freed block at the end of the free list
" Pro: simple and constant time

" Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con:requires search

"  Pro: studies suggest fragmentation is lower than LIFO/FIFO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18



Freeing With a LIFO Policy (Case 1)

Allocated Allocated

conceptual graphic

Before
free(p)

Root a o)

m Insert the freed block at the root of the list

After

Root I ‘v@

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19




Freeing With a LIFO Policy (Case 2)

Allocated Free

conceptual graphic
Before free (p)

Root ! I % O

m Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root I "W

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20




Freeing With a LIFO Policy (Case 3)

Free Allocated

conceptual graphic

LIO

m Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

After P
Root > LO b % p

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Before free (p)

Root i I




Freeing With a LIFO Policy (Case 4)

Free Free

conceptual graphic

it

m Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

After

Before free (p)

Root i I

Root I————p

§

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

o ¢
@




Carnegie Mellon

Some Advice: An Implementation Trick

LIFO Insertion

FIFO Insertion / Point

POint \’\ / |

. > > >
>

A 8 [ ¢ [ o [—

D =

Free > K

Pointer Next fit

m Use circular, doubly-linked list
m Support multiple approaches with single data structure

m First-fit vs. next-fit
= Either keep free pointer fixed or move as search list

m LIFO vs. FIFO
" |nsert as next block (LIFO), or previous block (FIFO)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23



Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free because need to splice
blocks in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24



Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25



Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

Unused ===~ o pmmmmmmmail _emmea Need to tag

nused _-- =" TN~ g IS

7 3'2 ‘Zé ‘;2' 16 each block as
A allocated/free

m Method 2: Explicit list among the free blocks using pointers

T~ T\

7739 48 39| 16 Need space
Z for pointers

» m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26



Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

l

A 4
A 4

16

\ 4
A 4

32-48

64—inf —

m Often have separate classes for each small size
m For larger sizes: One class for each size [2! + 1,2!11]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27



Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m > n (i.e., first fit)
= |f an appropriate block is found:

= Split block and place fragment on appropriate list

= |If no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in appropriate size class.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28



Seglist Allocator (cont.)

m To free a block:

= Coalesce and place on appropriate list

m Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
= Higher throughput
= |og time for power-of-two size classes vs. linear time
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29



Carnegie Mellon

More Info on Allocators

m D. Knuth, The Art of Computer Programming, vol 1, 37 edition,
Addison Wesley, 1997

"= The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30



Carnegie Mellon

Quiz Time!

Canvas Quiz: Day 15 — Malloc Advanced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31



Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32



Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33



Carnegie Mellon

Dereferencing Bad Pointers

m The classic scanf bug

int val;

scanf ("$d", wval);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34



Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc (N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; IJ<N; jJ++)
yl[i] += A[i][J]1*x[]];
return y;

m Can avoid by using calloc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35



Carnegie Mellon

Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (lnt) ) ’
for (i=0; i<N; i++) {

pl[i] = malloc (M*sizeof (int)) ;

}

m Can you spot the bug?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36



Carnegie Mellon

Overwriting Memory

m Off-by-one errors

char **p;
p = malloc (N*sizeof (int *)) ;

for (i=0; i<=N; i++) {
pl[i] = malloc(M*sizeof (int)) ;

char *p;

p = malloc(strlen(s))
strcpy (p,s) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37



Carnegie Mellon

Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38



Carnegie Mellon

Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (p && *p != val)
p += sizeof (int);

return p;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39



Carnegie Mellon

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ;

m What gets decremented?
= (See next slide)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40



Carnegie Mellon

C operators

Postfix

Operators Associativity
() [ left to right
1~ * ( : )(type) sizeof right to left
* S~ left to right
Unary Unary .

. Prefix left to right
<< > LT left to right
< <= > = left to right
== I= left to right

@ left to right

e Binary left to right
| left to right
&& left to right
| ] left to right
> - right to left
= 4= —= *= [= %= &= = I= <<= >>= right to left
, left to right

m ->, (),and [] have high precedence, with * and & just below
m Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated ,,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Carnegie Mellon

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ; .
Operators Associativity

} () [1 -> . ++ left to right
! ++ == + - & (type) sizeof right to left

% left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
= 4= -= *= [= 3= &= = = <<= >>= right to left
p left to right

I~ 1

m Same effect as

" size--;

AA+ o
A
v
A%

A
= i
v
v
Il

m Rewrite as

" (*size)--;

W— = >
-—

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42



Carnegie Mellon

Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43



Carnegie Mellon

Freeing Blocks Multiple Times

m Nasty!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
<manipulate y>
free (x) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44



Carnegie Mellon

Referencing Freed Blocks

m Evil!

x = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
for (i=0; i<M; i++)
y[i] = x[i]++;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45



Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof (int)) ;

return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46



Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47



Carnegie Mellon

Dealing With Memory Bugs
m Debugger: gdb

" Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

m Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
m Binary translator: valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Checks each individual reference at runtime
= Bad pointers, overwrites, refs outside of allocated block

m glibc malloc contains checking code
" setenv MALLOC CHECK 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48



Carnegie Mellon

Supplemental slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49



Carnegie Mellon

Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to explicitly free memory

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

m Common in many dynamic languages:
= Python, Ruby, Java, Perl, ML, Lisp, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51



Carnegie Mellon

Garbage Collection

m How does the memory manager know when memory can be
freed?

" |n general we cannot know what is going to be used in the future since it
depends on conditionals

= But we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block

= Cannot hide pointers
(e.g., by coercing them to an int, and then back again)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52



Classical GC Algorithms

m Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
m Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
m Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
m Generational Collectors (Lieberman and Hewitt, 1983)
= Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
m For more information:

Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53



Carnegie Mellon

Memory as a Graph

m We view memory as a directed graph
= Each block is a node in the graph
= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

rootnodes () QO
/ \

Heap nodes O reachable

y

Not-reachable

G Q Q (garbage)
C/ E or

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54



Mark and Sweep Collecting

m Can build on top of malloc/free package

" Allocate usingmalloc until you “run out of space”

m When out of space:

= Use extra mark bit in the head of each block
=" Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

Carnegie Mellon

Note: arrows
here denote

root
/~ \¥ /\
| [* 7]

Before mark L\l/l_l/

N\

/l\t

‘1 I

I memory refs, not
free list ptrs.
| Mark bit set

After mark L\l/l_‘l/

AN

After sweep

free

/I\t

free

Bryant and O’Hallaron, Computer Systems: A

erspective, Third Edition

55



Carnegie Mellon

Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read(b, i) : readlocation i of block b into register
" write(b,i,v): write vinto location i of blockb

m Each block will have a header word
=" addressedasb[-1], forablockb

= Used for different purposes in different collectors

m Instructions used by the Garbage Collector
" is ptr(p) : determines whether pis a pointer
= length (b): returns the length of block b, not including the header
" get roots(): returns all the roots

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56



Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if (!'is_ptr(p)) return;
if (markBitSet(p)) return;
setMarkBit (p) ;
for (i=0; i < length(p);, i++)
mark (p[i]) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57



Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return;
setMarkBit (p) ;
for (i=0; i < length(p);, i++)
mark (p[i]) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58



Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ;

for (i=0; i < length(p); i++)
mark (p[i]) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59



Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++)
mark (p[i]) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60



Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61



Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call

return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62



Carnegie Mellon

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) ({ // for entire heap
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p);
p += length (p+1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63



Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) ({ // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ;
else if (allocateBitSet(p))
free(p);

p += length(p+1l) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64



Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) ({ // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p))
free(p);

p += length(p+1l) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65



Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) ({ // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free(p);

p += length(p+1l) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66



Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) ({ // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free(p) ; // yes -> its garbage, free it

p += length(p+1l) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67



Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) ({ // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free(p) ; // yes -> its garbage, free it

p += length(p+1) ; // goto next block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68



C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int
int (*p) [13] p is a pointer to an array[13] of int
int *£ () fis a function returning a pointer to int
int (*£f) () fis a pointer to a function returning int
int (*(*x[3]) ()) [5] X is an array[3] of pointers to functions

returning pointers to array[5] of ints

Source: K&R Sec 5.12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70



C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int
int (*p) [13] p is a pointer to an array[13] of int
int *f£() fis a function returning a pointer to int
int (*£f) () fis a pointer to a function returning int
int (* (*x[31) ()) [5] X is an array[3] of pointers to functions

returning pointers to array[5] of ints

int (*(*£())[13]) () fis a function returning ptr to an array[13]
of pointers to functions returning int

Source: K&R Sec 5.12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71



Carnegie Mellon

Parsing: int (*(*£())[13]) ()

int (*(*£()) [13]) () £
int (*(*£()) [13]) () f is a function
int (*(*£())[13]) () f is a function

that returns a ptr

int ( [13]) () f is a function
that returns a ptr to an
array of 13

int (* [137) () f i1is a function that returns
a ptr to an array of 13 ptrs

int (*(*£())[13]) () f is a function that returns
a ptr to an array of 13 ptrs
to functions returning an int

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72



	Slide 1
	Slide 2: Dynamic Memory Allocation:  Advanced Concepts  18-213/18-613: Introduction to Computer Systems  14th Lecture, February 26, 2025
	Slide 3: Review: Dynamic Memory Allocation 
	Slide 4: Review: Keeping Track of Free Blocks
	Slide 5: Review: Boundary Tags for Coalescing 
	Slide 6: Review: Internal vs. External Fragmentation
	Slide 7: Review: No Boundary Tag for Allocated Blocks
	Slide 8: No Boundary Tag for Allocated Blocks (Case 1)
	Slide 9: No Boundary Tag for Allocated Blocks (Case 2)
	Slide 10: No Boundary Tag for Allocated Blocks (Case 3)
	Slide 11: No Boundary Tag for Allocated Blocks (Case 4)
	Slide 12: Implicit Lists Summary
	Slide 13: Today
	Slide 14: Keeping Track of Free Blocks
	Slide 15: Explicit Free Lists
	Slide 16: Explicit Free Lists
	Slide 17: Allocating From Explicit Free Lists
	Slide 18: Freeing With Explicit Free Lists
	Slide 19: Freeing With a LIFO Policy (Case 1)
	Slide 20: Freeing With a LIFO Policy (Case 2)
	Slide 21: Freeing With a LIFO Policy (Case 3)
	Slide 22: Freeing With a LIFO Policy (Case 4)
	Slide 23: Some Advice: An Implementation Trick
	Slide 24: Explicit List Summary
	Slide 25: Today
	Slide 26: Keeping Track of Free Blocks
	Slide 27: Segregated List (Seglist) Allocators
	Slide 28: Seglist Allocator
	Slide 29: Seglist Allocator (cont.)
	Slide 30: More Info on Allocators
	Slide 31: Quiz Time!
	Slide 32: Today
	Slide 33: Memory-Related Perils and Pitfalls
	Slide 34: Dereferencing Bad Pointers
	Slide 35: Reading Uninitialized Memory
	Slide 36: Overwriting Memory
	Slide 37: Overwriting Memory
	Slide 38: Overwriting Memory
	Slide 39: Overwriting Memory
	Slide 40: Overwriting Memory
	Slide 41: C operators
	Slide 42: Overwriting Memory
	Slide 43: Referencing Nonexistent Variables
	Slide 44: Freeing Blocks Multiple Times
	Slide 45: Referencing Freed Blocks
	Slide 46: Failing to Free Blocks (Memory Leaks)
	Slide 47: Failing to Free Blocks (Memory Leaks)
	Slide 48: Dealing With Memory Bugs
	Slide 49: Supplemental slides
	Slide 51: Implicit Memory Management: Garbage Collection
	Slide 52: Garbage Collection
	Slide 53: Classical GC Algorithms
	Slide 54: Memory as a Graph
	Slide 55: Mark and Sweep Collecting
	Slide 56: Assumptions For a Simple Implementation
	Slide 57: Mark and Sweep Pseudocode
	Slide 58: Mark and Sweep Pseudocode
	Slide 59: Mark and Sweep Pseudocode
	Slide 60: Mark and Sweep Pseudocode
	Slide 61: Mark and Sweep Pseudocode
	Slide 62: Mark and Sweep Pseudocode
	Slide 63: Mark and Sweep Pseudocode
	Slide 64: Mark and Sweep Pseudocode
	Slide 65: Mark and Sweep Pseudocode
	Slide 66: Mark and Sweep Pseudocode
	Slide 67: Mark and Sweep Pseudocode
	Slide 68: Mark and Sweep Pseudocode
	Slide 70: C Pointer Declarations: Test Yourself!
	Slide 71: C Pointer Declarations: Test Yourself!
	Slide 72: Parsing:  int (*(*f())[13])()

