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Review: Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

m Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at run time.

= for data structures whose size
is only known at runtime

m Dynamic memory allocators
manage an area of process
VM known as the heap.
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Review: Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

Unused oo™ saL eemmTTTTmmel e Need to tag

nused _-- Sa -7 T~ g s

7 3'2 ‘Zé ‘;2' 16 each block as
A allocated/free

m Method 2: Explicit list among the free blocks using pointers

T~ T\

7739 48 39| 16 Need space
Z for pointers

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Review: Boundary Tags for Coalescing

m Boundary tags

= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

—————,

7 R \\A’/’ \Aa" N*A*’ :(/‘
32 32 32 32 48 48 32 32
‘//: ’f"\ ”WNN a”i\ ’I’ A
Header —— Size - a = 1: Allocated block
a = 0: Free block
Format of . _
allocated and Payload and Size: Total block size
padding
free blocks Payload: Application data
(allocated blocks only)
Boundary tag > Size a
(footer)

Disadvantage: Internal fragmentation
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Review: Internal vs. External Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
A
a N
Internal Internal
fragmentation fragmentation

m External fragmentation occurs when there is enough aggregate
heap memory, but no single free block is large enough

P4 = malloc(7*sizeof(size t))
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Review: No Boundary Tag for Allocated Blocks

m Boundary tag needed only for free blocks
m When sizes are multiples of 16, have 4 spare bits

1 word 1 word
~ —"~ ~ ~ —" ~
Size b1 a = 1: Allocated block Size b0
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free
Payload
Unallocated
Size: block size
Optional Payload: application data
padding Size b0
Allocated Free
Block Block
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No Boundary Tag for Allocated Blocks
(Case 1)

_ m1l ?1 m1l ?1
previous
block
block n 11 n 10
being —
freed n 10
m2 11 m2 01
next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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No Boundary Tag for Allocated Blocks
(Case 2)

_ m1l ?1 m1l ?1
previous
block
block n 11 n+m2 10
being —
freed
m2 10

next
block m2 10 n+m2 10

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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No Boundary Tag for Allocated Blocks
(Case 3)

_ ml ?0 n+ml ?0
previous
block
ml ?0
block n 01
being —
freed n+ml 20
m2 11 m2 01
next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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No Boundary Tag for Allocated Blocks
(Case 4)

orevious m1l ?0 n+ml+m?2 ?0
block
ml ?0
block n 01
being —_—
freed
m2 10
next
block m2 10 n+ml+m?2 ?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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Implicit Lists Summary

m Implementation: very simple

m Allocate cost:
" [inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory Overhead:
= Depends on placement policy
= Strategies include first fit, next fit, and best fit

m Not used in practice formalloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators
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Today

m Implicit free lists (review)

m Explicit free lists CSAPP 9.9.13
m Segregated free lists CSAPP 9.9.14

m Memory-related perils and pitfalls CSAPP 9.11
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

——————
~~~~~~~

Unused - SaalemmTT TN -

7/ 32 48 32 16

i

m Method 2: Explicit list among the free blocks using pointers

= N

732 48 32 7 16

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding

Optional

N

Size a Size a

m Maintain list(s) of free blocks, not all blocks
= Luckily we track only free blocks, so we can use payload area
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= To find adjacent blocks according to memory order
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Explicit Free Lists

m Logically:

\ 4

\ 4

L 3

m Physically: blocks can be in any order

—
v

/ Forward (next) links
A ‘/Q 8

32 —7 32|32 3248 /|~ 4832 3232 ' , 32

/
C \/ .
K Back (prev) links
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Allocating From Explicit Free Lists

conceptual graphic

Before

2

After (with splitting)

W

= malloc(..)
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Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?
m Unordered
= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= FIFO (first-in-first-out) policy
= |nsert freed block at the end of the free list
" Pro: simple and constant time

" Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con:requires search

"  Pro: studies suggest fragmentation is lower than LIFO/FIFO
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Freeing With a LIFO Policy (Case 1)

Allocated Allocated

conceptual graphic

Before
free(p)

Root a o)

m Insert the freed block at the root of the list

After

Root I ‘v@
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Freeing With a LIFO Policy (Case 2)

Allocated Free

conceptual graphic
Before free (p)

Root ! I % O

m Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root I "W
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Freeing With a LIFO Policy (Case 3)

Free Allocated

conceptual graphic

LIO

m Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

After P
Root > LO b % p
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Before free (p)

Root i I




Freeing With a LIFO Policy (Case 4)

Free Free

conceptual graphic

it

m Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

After

Before free (p)

Root i I

Root I————p

§
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Some Advice: An Implementation Trick

LIFO Insertion

FIFO Insertion / Point

POint \’\ / |

. > > >
>

A 8 [ ¢ [ o [—

D =

Free > K

Pointer Next fit

m Use circular, doubly-linked list
m Support multiple approaches with single data structure

m First-fit vs. next-fit
= Either keep free pointer fixed or move as search list

m LIFO vs. FIFO
" |nsert as next block (LIFO), or previous block (FIFO)
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Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free because need to splice
blocks in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?
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Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

Unused ===~ o pmmmmmmmail _emmea Need to tag

nused _-- =" TN~ g IS

7 3'2 ‘Zé ‘;2' 16 each block as
A allocated/free

m Method 2: Explicit list among the free blocks using pointers

T~ T\

7739 48 39| 16 Need space
Z for pointers

» m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

l

A 4
A 4

16

\ 4
A 4

32-48

64—inf —

m Often have separate classes for each small size
m For larger sizes: One class for each size [2! + 1,2!11]
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Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m > n (i.e., first fit)
= |f an appropriate block is found:

= Split block and place fragment on appropriate list

= |If no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in appropriate size class.
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Seglist Allocator (cont.)

m To free a block:

= Coalesce and place on appropriate list

m Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
= Higher throughput
= |og time for power-of-two size classes vs. linear time
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.
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More Info on Allocators

m D. Knuth, The Art of Computer Programming, vol 1, 37 edition,
Addison Wesley, 1997

"= The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)
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Quiz Time!

Canvas Quiz: Day 15 — Malloc Advanced
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Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls
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Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks
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Dereferencing Bad Pointers

m The classic scanf bug

int val;

scanf ("$d", wval);
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Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc (N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; IJ<N; jJ++)
yl[i] += A[i][J]1*x[]];
return y;

m Can avoid by using calloc
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Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (lnt) ) ’
for (i=0; i<N; i++) {

pl[i] = malloc (M*sizeof (int)) ;

}

m Can you spot the bug?
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Overwriting Memory

m Off-by-one errors

char **p;
p = malloc (N*sizeof (int *)) ;

for (i=0; i<=N; i++) {
pl[i] = malloc(M*sizeof (int)) ;

char *p;

p = malloc(strlen(s))
strcpy (p,s) ;
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Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks
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Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (p && *p != val)
p += sizeof (int);

return p;
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Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ;

m What gets decremented?
= (See next slide)
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C operators

Postfix

Operators Associativity
() [ left to right
1~ * ( : )(type) sizeof right to left
* S~ left to right
Unary Unary .

. Prefix left to right
<< > LT left to right
< <= > = left to right
== I= left to right

@ left to right

e Binary left to right
| left to right
&& left to right
| ] left to right
> - right to left
= 4= —= *= [= %= &= = I= <<= >>= right to left
, left to right

m ->, (),and [] have high precedence, with * and & just below
m Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated ,,
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Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ; .
Operators Associativity

} () [1 -> . ++ left to right
! ++ == + - & (type) sizeof right to left

% left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
= 4= -= *= [= 3= &= = = <<= >>= right to left
p left to right

I~ 1

m Same effect as

" size--;

AA+ o
A
v
A%

A
= i
v
v
Il

m Rewrite as

" (*size)--;

W— = >
-—
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Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;
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Freeing Blocks Multiple Times

m Nasty!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
<manipulate y>
free (x) ;
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Referencing Freed Blocks

m Evil!

x = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
for (i=0; i<M; i++)
y[i] = x[i]++;
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Failing to Free Blocks (Memory Leaks)

m Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof (int)) ;

return;
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Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;
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Dealing With Memory Bugs
m Debugger: gdb

" Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

m Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
m Binary translator: valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Checks each individual reference at runtime
= Bad pointers, overwrites, refs outside of allocated block

m glibc malloc contains checking code
" setenv MALLOC CHECK 3
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Supplemental slides
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Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to explicitly free memory

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

m Common in many dynamic languages:
= Python, Ruby, Java, Perl, ML, Lisp, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51
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Garbage Collection

m How does the memory manager know when memory can be
freed?

" |n general we cannot know what is going to be used in the future since it
depends on conditionals

= But we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block

= Cannot hide pointers
(e.g., by coercing them to an int, and then back again)
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Classical GC Algorithms

m Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
m Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
m Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
m Generational Collectors (Lieberman and Hewitt, 1983)
= Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
m For more information:

Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.
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Memory as a Graph

m We view memory as a directed graph
= Each block is a node in the graph
= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

rootnodes () QO
/ \

Heap nodes O reachable

y

Not-reachable

G Q Q (garbage)
C/ E or

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54



Mark and Sweep Collecting

m Can build on top of malloc/free package

" Allocate usingmalloc until you “run out of space”

m When out of space:

= Use extra mark bit in the head of each block
=" Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

Carnegie Mellon

Note: arrows
here denote

root
/~ \¥ /\
| [* 7]

Before mark L\l/l_l/

N\

/l\t

‘1 I

I memory refs, not
free list ptrs.
| Mark bit set

After mark L\l/l_‘l/

AN

After sweep

free

/I\t

free

Bryant and O’Hallaron, Computer Systems: A
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Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read(b, i) : readlocation i of block b into register
" write(b,i,v): write vinto location i of blockb

m Each block will have a header word
=" addressedasb[-1], forablockb

= Used for different purposes in different collectors

m Instructions used by the Garbage Collector
" is ptr(p) : determines whether pis a pointer
= length (b): returns the length of block b, not including the header
" get roots(): returns all the roots
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if (!'is_ptr(p)) return;
if (markBitSet(p)) return;
setMarkBit (p) ;
for (i=0; i < length(p);, i++)
mark (p[i]) ;
return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return;
setMarkBit (p) ;
for (i=0; i < length(p);, i++)
mark (p[i]) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ;

for (i=0; i < length(p); i++)
mark (p[i]) ;
return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++)
mark (p[i]) ;
return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit

for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ;
return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph
ptr mark (ptr p) {

if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call

return;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) ({ // for entire heap
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p);
p += length (p+1) ;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) ({ // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ;
else if (allocateBitSet(p))
free(p);

p += length(p+1l) ;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) ({ // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p))
free(p);

p += length(p+1l) ;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) ({ // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free(p);

p += length(p+1l) ;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) ({ // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free(p) ; // yes -> its garbage, free it

p += length(p+1l) ;
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Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block
mark (p[i]) ; // make recursive call
return;
}

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

while (p < end) ({ // for entire heap
if markBitSet (p) // did we reach this block?
clearMarkBit () ; // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?
free(p) ; // yes -> its garbage, free it

p += length(p+1) ; // goto next block
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C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int
int (*p) [13] p is a pointer to an array[13] of int
int *£ () fis a function returning a pointer to int
int (*£f) () fis a pointer to a function returning int
int (*(*x[3]) ()) [5] X is an array[3] of pointers to functions

returning pointers to array[5] of ints

Source: K&R Sec 5.12
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C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int
int (*p) [13] p is a pointer to an array[13] of int
int *f£() fis a function returning a pointer to int
int (*£f) () fis a pointer to a function returning int
int (* (*x[31) ()) [5] X is an array[3] of pointers to functions

returning pointers to array[5] of ints

int (*(*£())[13]) () fis a function returning ptr to an array[13]
of pointers to functions returning int

Source: K&R Sec 5.12
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Carnegie Mellon

Parsing: int (*(*£())[13]) ()

int (*(*£()) [13]) () £
int (*(*£()) [13]) () f is a function
int (*(*£())[13]) () f is a function

that returns a ptr

int ( [13]) () f is a function
that returns a ptr to an
array of 13

int (* [137) () f i1is a function that returns
a ptr to an array of 13 ptrs

int (*(*£())[13]) () f is a function that returns
a ptr to an array of 13 ptrs
to functions returning an int
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