Carnegie Mellon

VELCOVE ‘” | i |5-74"2_ﬁ|"3"7 =
| ' sepefeaaeroasm,

T ——

<« o A iiting withaniai

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Cache Memories

18-213/18-613: Introduction to Computer Systems
10th Lecture, February 13th, 2025

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Re m i N d er. A I V P OI i Cy http://www.cs.cmu.edu/~18213/academicintegrity.html

m No unauthorized use of information
= Borrowing code: by copying, retyping, looking at a file
= Describing: verbal description of code from one person to another
= Searching the Web for solutions
= Copying code from a previous course or online solution
= Reusing your code from a previous semester (here or elsewhere)

m No unauthorized supplying of information
" Providing copy: Giving a copy of a file to someone

= Providing access:
= Putting material in unprotected directory

= Putting material in unprotected code repository (e.g., Github)

m No collaborations beyond high-level, strategic advice
= Anything more than block diagram or a few words

Start early. Make frequent github commits. Plan for stumbling blocks. Use available help.
Don’t panic: Far better to turn in 25% correct solution than get an AlV,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html

Carnegie Mellon

Today

m Cache memory organization and operation CSAPP 6.4-6.5
m Performance impact of caches

= The memory mountain CSAPP 6.6.1

= Rearranging loops to improve spatial locality CSAPP 6.6.2

= Using blocking to improve temporal locality CSAPP 6.6.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Recall: General Cache Concepts

Smaller, faster, more expensive
Cache 4 9 14 3 memory caches a subset of
the blocks

Data is copied in block-sized

4 transfer units
Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
0 0000000000000 0O0O0CO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 3 7 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
00000000000 O0COCOGEOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cach 2 5 12 3 Block b is not in cache:
ache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)
00000000000 O0CGOCOOGOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Working Set, Locality, and Caches

m Working Set: The set of data a program is currently “working on”
= Definition of “currently” depends on context, e.g., in this loop
= Includes accesses to data and instructions

m Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

= Nearby addresses: Spatial Locality
= Equal addresses: Temporal locality

m Caches take advantage of temporal locality by storing recently
used data, and spatial locality by copying data in block-sized
transfer units

= Locality reduces working set sizes
= Caches are most effective when the working set fits in the cache

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recall: 3 Types of Cache Misses

m Cold (compulsory) miss

= Cold misses occur because the cache starts empty and this is the first
reference to the block.

m Capacity miss
= QOccurs when the set of active cache blocks (working set) is larger than
the cache.
m Conflict miss

= QOccurs when the cache is large enough, but too many data objects all
map (by the placement policy) to the same limited set of blocks

= E.g., if the placement policy maps both 0 and 8 to the same block,
then referencing0, 8, 0, 8, 0, 8§, ... would miss every time.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

CPU Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware

= Hold frequently accessed blocks of main memory
m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file

Cache <—>
memory %
N e :
Bus interface '{0 <:> ain
bridge memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

ALU

System bus Memory bus

Carnegie Mellon

What it Really Looks Like

CPU chip

Memory Controller

Register file
Cache <—> |:> ALU
memory]

Bus interface

I8! Shared L3 CacHelt H - R0

Queue, Uncore ;|
& I/0

GE W T

Ena a3
.ﬂ‘!mlﬂl!l’l!-liﬂ g=zpIeER

-
('_e
o
j21)
o
0
L=
o
=
-
e
o)
o

Shared £
Hlisi@ache

B Lﬁ“an =
H

Memory Controller el

| HyperTransport™ Phy | -
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Ed|t|on 11

What it Really Looks Like (Cont)

Mémory,
Control

i:f.

GNA3.0-

FPU/“_;.’
SIMD

.-

v -

"'Golden Cove :

.__CPU Core

Tlime
LUFPU/ {

‘l.

b L e~

=.CPU.Core
5o =

:Eioldeﬁ Cove':

—Golden Cove
CPU Core

|=L2$/MLC:

1/25MiB

PR S DR

- -1:25MiB;

-L2$/MECG -

e 8 “iemi .

1. 25M|B
‘L2$/MLC_

1.25MiB;
-L2$/MLCxy[

23 eemic e

Gracemont
X HCPU ‘CoreSs="

o

X [Gracemont -

~;cpu Corei} >

L-.-\r_p..

‘System:.Agent;

" 3MiB .
L3$/LLC _
S

. 3MiB’
L3$/LLC

3M|B
L3$/LLC

3MiB
. L3$/LLC

=

3MiB
L3$/LLC

'2x_

.

Rirl‘g Agen_t

2X

RingAgent

‘2x

: Rﬁirn_‘g Agent

® 122X
Ring Agent

p3%
Rlng Agent

0 .
(9)
=
m,
)
(o)
=
=t
o
(=)
(@)
O
=)
e
(=
g..

. 3MiB
L3$/LLC

3MiB
L3$/LLC

3MiB
L3$/LLC

3MiB
_L3$/LLC

3M|B
L3$/LLC

L S

"1v 25M|B =

ol

L2$/MLC

“1 25M|B =|.

o
“1 25M|B =
L2$/MLC

. |'
S [1.25miB=
L2$/MLC

el

'Gracemont » [Gracemont}

PR <

Golden (S
CPU' Core =

1 FPU
‘SIMF‘

~o

Golden Cove?
CPU Core ==

s T
-

L.

3 ~“Golden Cove

| FPU/
(&2 HisIMD

o

CPU Core ==

--"l

g s

._':‘
g FPU/
1SIMD'

.Azx
2

Golden‘Cove:
CPU .Core ...

- T

BCRUICore CPUICorel
- -

j?EPU/
“*INSIMD

D b b

OIS

2 2MiB L2$/MLC

Carnegie Mellon

¥
u.‘;.‘
T 1T

.
46 Ml

GPU Front/‘Backend'
.GPU L3$; -~
- Otherilogices

sidtle o
)

Wy

. 'Sx"leUs,
4 L17/Texs;
=+ SLM:

10nm ESF/InteI 7 Alder Lake dle shot (~209mm2) from Intel via Andreas Schilling on Twitter:
https:/ /twitter.com/aschilling/status/1453391035577495553

Die shot interpretation by Locuza, October 2021

L1 caches per P-core: 32KB Instruction & 48KB Data
L1 caches per E-core: 64KB Instruction & 32KB Data

Intel Alder Lake (2021)

8 P-cores + 8 E-cores
L3 cache: 30MB shared among all cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2¢ lines per set

A
'd Y
(«—
TR —
TR
S=ZSSEtS< X

([3 B M)
\.

Cache size
=S x E x B data bytes

v tag 0l112] scc°- B-1

T — _

N M

valid bit B = 2 bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

CaChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
r A ~ * Locate data starting
4 at offset
o0 00

Address of word:
t bits s bits | b bits
= 9s ~—~—" "
S =2%sets < eoeoe tag set block
index offset

data begins at this offset

v tag o112 -ccc-- B-1

N— 7

valid bit B = 2% bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Example: Direct Mapped Cache (E=1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

r t N nDONGGE Address of int:
v ag tbits | 0..01 | 100

vV tag 011|12)3|4]|5]|6]|7

find set
S=Zssets<
Vv tag 0111213141567
00000000 00O0COCOGEOEOGOOG®EO®OOO
Vv tag 0111213141567
\.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 0[1]2]|3|4]|5]|6]|7

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

'} tag 0|l1]2]|3|4]|5]|6]|7

block offset

int (4 Bytes) is here

If tag doesn’t match (= miss): old line is evicted and replaced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit addresses (address space size M=16 bytes)
X XX X S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss (cold)
1 [0001,], hit
7 [0111,], miss (cold)
8 [1000,], miss (cold)
0 [0000,] miss (conflict)
v Tag Block

Set0 | 1 0 M[O-1]

Set1| O

Set2 | O

set3| 1| 0O M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

2 lines per set t bits 0..01 | 100
A
- ~N
(
v tag 0[1]2|3]|4]|5]|6]|7 v tag 0[1]2)3]|4]|5]|6]|7
vl [tag | [o[a[2]3Tals[6[71l I[V] [tag | [o[1]2]3a[5[6[7]| — find set
< v| | tag] |0]1[2f3]4a]5]|6]7]|]| ||v] | tag | [0]1]2]3]a]5]6]7
OO0 000000000000 000000 0C0O0COCOCGCOGEOSNOSOEOSEONEONOEONOEONONOOOOEOOEOOO
v tag 0[1]2]|3]|4]|5]|6]|7 vV tag 0[1]2)13]|4]|5]|6]|7
\.
S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

' tag 0]1]2]3]|4]|5]|6]7 v tag 011]12|3]4]|5]6]|7]|| —

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0|1]2)3)14]5]|6]|7 v tag 0]1]2]|314]|5]6]|7]| —

block offset

short int (2 Bytes) is here

No match or not valid (= miss):
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=l
XX X 4-bit addresses (M=16 bytes)

S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block
00 MI[0-1]
1 j10 [Mm[8-9]

[1 [01 |M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

What about writes?

m Multiple copies of data exist: va ? tag [Of1]2f " 52
= |1,12, L3, Main Memory, Disk . ~—
Y valid bit dirty bit B = 2b bytes

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Each cache line needs a dirty bit (set if data differs from memory)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location will follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

fStandard Method: \
Middle bits indexing
4 Address of int:
vi | te | |0]1]2]3[4]5]€]7 tbits | 0..01 | 100
vV tag 011|12)3|4]|5]|6]|7 -
find set /
S=2s sets<
v tag 0]1]2)3f4]>5]6]7 /Alternative Method: \
High bits indexing
OO0 0000000 OGDEOGEOGOEOOEOONOONOSOOO
Address of int:
v tag 0|1l2]|3]|4]|516]7 1..11 t bits 100
\. .
find set

_ J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

lllustration of Indexing 0000xx
Approaches noDx
0010xx

m 64-byte memory 001 Lxx
" 6-bit addresses 0100xx

m 16 byte, direct-mapped cache 0101xx
m Block size = 4. (Thus, 4 sets; why?) 0110xx
m 2 bits tag, 2 bits index, 2 bits offset 0111xx
1000xx

1001xx

Set 0 1010xx

Set 1 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Middle Bits Indexing

m Addresses of form TTSSBB

= TT Tag bits
= SS Set index bits
"= BB Offset bits

m Makes good use of spatial locality

Set 0

Set 1

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx

1111xx

26

Carnegie Mellon

High Bits Indexing

m Addresses of form SSTTBB

= SS Set index bits
= TT Tag bits
"= BB Offset bits

m Program with high spatial locality
would generate lots of conflicts

Set 0

Set 1

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx

1111xx

27

Carnegie Mellon

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€8s €85 Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
eee Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache _
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Example: Core i7 L1 Data Cache

N\
>
RIS
> .o
L. E = 2¢ lines per set \e‘d" QQ’G 6\0
32 KB 8-way set associative 7 ~ 0 0 [0000
64 bytes/block | I ---- 1|1 foo0l
47 bit address range | I |- - - D 2 2 8%3
S=2setsq | | Joeee 1] 5 |5 | 0101
= 6 | 6 | 0110
S_ s_ 0 0000 OO OOOOOIOIOIOIOIEOINONPONOINOIOSIOSEOSETSEDS '7 ‘7 0111
= ,S°= 8 | 8 | 1000
= Je= (| J G 9 | 9 [1001
A [10 1010
C= Cache size: B [11[1011
= — C=SxExBdatabytes | C |12 | 1100
E|“ tag | [o]1]2]-o1] > T13 11101
[—
valid bit E, 1: iiig
Address of word:
| thits | sbits | bbits |
—
tag set block
. . 27
index offset Stack Address: Bloc.k offset: 0x?"
0x00007£7262a1e010 Set index: 0x??
Block offset: . bits Tag: 0x??

Set index: . bits
Tag: . bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Example: Core i7 L1 Data Cache

>
E = 2¢ lines per set \e~0+ 00(}2\(\@6
32 kB 8-way set associative e N 0 10 10000
64 bytes/block | | CEERY I % ; 88%
47 bit address range | I |- - - D 2 2 8%3
B = 64 srzsetsq | | TR — 5[5 0101
S=64’S=6 LB B B O B B B B B B NN BB AN I BN BN N NN N W] -7 7 0111
8 | 8 | 1000
E=8,e=3 9) Qg — 9 [9 [1001
A [10] 1010
C = 64 X 64 X 8 = 32’768 Cache size: B 11 1011
C =S x E x B data byt C [12]1100
[o] [os] [ofafz]]e1] S o o e ST
valic!l bit E 14 1110
F |15 1111
Address of word:
| thits | sbits | bbits |
—
tag set block . 55
index offset Stack Address: Block offset: 0x7?7
0x00007£7262ale010 Set index: 0x?°?
Block offset: 6 bits Tag: 0x??
Set index: 6 bits
Tag: 35 bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Example: Core i7 L1 Data Cache

A\
&
E = 2¢ lines per set \e~0+ 000\6\(\9‘
32 kB 8-way set associative e N 0 10 10000
64 bytes/block | | CEERY I % ; 88%
47 bit address range | I |- - - D 2 2 8%3
S=2sets{ | [| |----| I 515 | 0101
B=64 6 | 6 | 0110
S=64,s=6 | e cecceccsessccnne T T o111
8 | 8 | 1000
E=8,e=3 q) g — 9 [9 | 1001
10 | 1010
C=64x64 x8=32,768 Cache size: e
L"—,.l [Twe | [o[2]2]]81] C =S x E x B data bytes C |12 | 1100
| D |13] 1101
valid bit H_/ E 14 1110
F |15 1111
Address of word:
| thits | sbits | bbits |
N NN
tag i::::x ::fsilf(Stack Address: Block offset: 0x10
0x00007£7262ale010 Set index: 0x0
Block offset: 6 bits Tag: 0x7£f7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 0000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Cache Performance Metrics

m Miss Rate

" Fraction of memory accesses not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (as %):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
" Time to deliver a cached block to the processor
= includes time to determine whether line is in cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2
m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

How Bad Can a Few Cache Misses Be?

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider this simplified example:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles =4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Quiz Time!

Canvas Quiz: Day 10 — Cache Memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Today

m Performance impact of caches
= The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array "data" with stride of "stride", Call test () with many
* using 4x4 loop unrolling. combinations of elems
*/

int test(int elems, int stride) { and stride.

long i, sx2=stride*2, sx3=stride*3, sx4d=stride*4;

long accO0 = 0, accl = 0, acc2 = 0, ace3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

* Combine 4 elements at a time *

/ . * / 1. Call test() once to

for (i = 0; 1 < limit; i += sx4) {
acc0 = accO0 + data[i];
accl = accl + data[i+stride];

warm up the caches.

acc2 = acc2 + data[i+sx2]; 2. Call test() again and
acc3 = acc3 + data[i+sx3]; measure the read
} throughput(MB/s)

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = accO0 + datal[i];

}

return ((accO0 + accl) + (acc2 + acec3));

} mountain/mountain.c

38

Carnegie Mellon

Core i7 Haswell

The Memory Mountain 2.1 OHz

32 KB L1 d-cache
256 KB L2 cache
Aggressive 8 MB L3 cache

prefetching T~ —— 64 B block size
16000

14000 1

0

@ |

= 12000

= |

2 10000

(@]

= 8000 A Ridges

| -of temporal
8 6000 + 4 o
o _ locality
4000 +
2000 A
Slopes o
of spatial 3k
locality 512k 128
2m
. T~ 7 8m .
Stride (x8 bytes) s9 T Size (bytes)
T 32m
si1
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Closer Look at Stride Effects

Throughput for size = 128K

35000
Q/\
30000
wiss rate = stride/8
./\
\ Miss rate = 1.0
X

)

25000

@ 20000

=p=\easured

MB/s

15000

10000

5000 8 elems per
cache block

sl s2 s3 s4 s5 s6 s/ s8 s9 s10 s11 s12
stride

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Matrix Multiplication Example

Variable sum

m Description: /* ijk */ held in register
= Multiply N x N matrices for (i=0; i<n; i++) {
" Matrix elements are for (3=0; Jj<n; Jj++) {

doubles (8 bytes) sum = 0.0; <
for (k=0; k<n; k++)

sum += a[i] [k] * b[k]1[3F];
c[i][j] = sum;

= O(N?3) total operations

= N reads per source
element

= N values summed per
destination

matmult/mm.c

= but may be able to
hold in register

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:

= Look at access pattern of inner loop

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (i = 0; i < N; i++)
sum += a[0][i];
= accesses successive elements
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; i++)
sum += a[i] [0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Matrix Multiplication (i jk)

/* ijk */
for (i=0; i<n; i++) {

for (3=0; 3j<n; J++) { (*.i)
L] @
for (k=0; k<n; k++) (i,%)
sum += a[i] [k] * b[k][]j]; A B C

c[i][§] = sum; ‘ ‘ ‘
}

} matmult/mm.c Row-wise Column- Fixed
wise

Inner loop:

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) { (*,])

sum = 0.0; g QJ)
HEE 3
for (k=0; k<n; k++) (i,%) ‘ |
A B

sum += a[i] [k] * b[k][]J]~ C

c[i][j] = sum ‘ ‘ ‘
}

Inner loop:

matmult/mm.c Row-wise Column- Fixed
wise
Misses per inner loop iteration:
A B C
0.25 1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i.K) E(k,*)g
r = a[i] [k]; O (i,*)
B C

for (j=0; j<n; j++) A
c[i][J] += r * b[k][]]’ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B C

0.0 0.25 0.25
Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Matrix Multiplication (jki)

/* 3ki */ Inner loop:
for (j=0; j<n; j++) { (* k) (*)
for (k=0; k<n; k++) { :[| (k.j) |:E
r = b[k]1[]]; "
for (i=0; i<n; i++) A B C
c[1][]J] += ali][k] * r; ‘ ‘ ‘
}
matmult/mm.cf Column- Fixed Column-

wise wise

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (3=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];
c[i][j] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[i][3] += r * b[k][]];
}
}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][]]~
for (i=0; i<n; i++)
c[i][j] += al[i][k] * r;

ijk (& jik):
e 2 loads, O stores
e avg misses/iter = 1.25

kij (& ikj):
e 2 |oads, 1 store
e avg misses/iter = 0.5

jki (& kji):
e 2 |loads, 1 store
* avg misses/iter = 2.0

49

Carnegie Mellon

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration
100

jki/kji (2.0)

-+—jki
--kji
-=3ijk
- ik

ijk/jik (1.25)

10

_——

e e s Y
kij/ikj (0.5)

1 | || || || || || || || || || || || || ||

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Today

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (J = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

]
X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache line = 8 doubles
" Cache size C << n (much smaller than n)

m Firstiteration: r ~N

= n/8 +n=9n/8 misses

]
X

= Afterwards in cache:
(schematic) . —

Il
X

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache line = 8 doubles
" Cache size C << n (much smaller than n)

n
m Second iteration: —N—
= Again: :
n/8 + n =9n/8 misses _ X

8 wide
m Total misses:
" 9n/8 n*=(9/8) n3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=L)

for (j = 0; j < n; j+=L)
for (k = 0; k < n; k+=L)
/* L x L mini matrix multiplications */
for (il = i; il < i+L; il++)
for (j1 = j; jl < jJ+L; Jjl++)
for (k1 = k; k1l < k+L; kl++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl];

} matmult/bmm.c

jl

Cc a b C
= X +
B 3.2 0 I
1

Block size L x L 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache line = 8 doubles. Blocking size L> 8
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3L2< C

. . . n/L blocks
m First (block) iteration:

A
r N\
= Misses per block: L°/8 []]]
X

= Blocks per Iteration: 2n/L

(omitting matrix c)
= Misses per lteration:

2/Q —
2n/L x L?/8 = nL/4 Block size L x L

[] HERER
= Afterwards in cache
(schematic) X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache line = 8 doubles. Blocking size L> 8
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3L2< C

. . n/L blocks
m Second (block) iteration: A

' N\
" Same misses as L] BEEEE

first iteration
= 2n/L x L2/8 = nL/4

X

Block size L x L
m Total misses:

= nlL/4 misses per iteration x (n/L)? iterations = n3/(4L) misses

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Blocking Summary

m No blocking: (9/8) n® misses
m Blocking: (1/(4L)) n® misses

m Use largest block size L, such that L satisfies 3L> < C

® Fit three blocks in cache! Two input, one output.

m Reason for dramatic difference:

= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!

= But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects sequentially
with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Supplemental slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Core i5 Haswell

The Memory Mountain 3.1 GHz

32 KB L1 d-cache

Aggressive 256 KB L2 cache
prefetching 8 MB L3 cache
64 B block size
2" 24000 -
2
2
g Ridges
= of temporal
g locality
e
Slopes i
of spatial 3 T g
locality s5 ’7 512k
S
Stride (x8 bytes) - Size (bytes)
Sliog

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Cache Capacity Effects from Core i7 Haswel

3.1 GHz

Memory Mountain 32 KB L1 d-cache

256 KB L2 cache
8 MB L3 cache

30000 64 B block size
25000 -
@
@ 20000 -
2
g 15000 Main L3 L2 H
=) LJ LL
s Memory Slice through
= memory
'S 10000 . .
§ mountain with
stride=8
5000
0

Working set size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Modeling Block Size Effects
from Memory Mountain

Throughput for size = 128K

Carnegie Mellon

Core i7 Haswell
2.26 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

35000
6
30000 /\ _ 10
\ Throughput =
25000 / 8.0S + 24.3
o 20000
§ == \easured
2 15000 =i=Model
10000
5000
0
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 Strides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

63

Carnegie Mellon

Core 2 Duo

12008 Memory Mountain 2.4 GHz

32 KB L1 d-cache
6MB L2 cache
64 B block size

No,
0000 . Prefetching

18000 L

16000 ——

« |
S 14000 +
2 12000
e
S 10000 -
2 |
S 8000 -
ke |
@
£ 6000

4000 -+

2000

| =
0 =
g 128k
" B12k
Stride (x8 bytes — i
(x8 bytes) s9 T om Size (bytes)
sll
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Matrix Multiplication (ik j)

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) E(k’*);l
r = a[i] [k]; O (i,*)
B C

for (j=0; j<n; j++) A
c[i1][]J] += r * b[k][]]; ‘ ‘ ‘

Inner loop:

ma tmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 025 0.25
Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Matrix Multiplication (ki)

/* kji */
Inner loop:
for (k=0; k<n; k++) {
for (3=0; j<n; Jj++) { (* k)
r = b[k] []]’
for (i=0; i<n; i++) A
c[1][]J] += ali][k] * r; ‘
matmult/mm.c
Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

(E,J')

B

|

Fixed

Carnegie Mellon

(*,%')

C

|

Column-
wise

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

66

Carnegie Mellon

Recap: Stack and instruction pointers

Shared
m The stack pointer (%rsp) S
points to the top of the stack Stack — rsp
m The instruction pointer (%rip)
points to the next instruction
to be executed
m They are independent
= But linked by call and ret
instructions
Heap
Data
Text «— rip

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Recap: stack operations

m push %rax =

more stuff

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

"
AL

rax

~ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

"
AL

m call func=

rax

~ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

"
AL

m call func=
= sub %rsp, 8
= mov %rip, (%rsp)

rax

= jmp func

g
AL

rip

~ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

"
AL

m call func=
= sub %rsp, 8
= mov %rip, (%rsp)

rax

= jmp func

g
AL

m ret=
rip

~ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

"
AL

m call func=
= sub %rsp, 8
= mov %rip, (%rsp)

rax

= jmp func \ < rsp

m ret=
" mov (%rsp), %rip
= add %rsp, 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

m call func= > 9
= sub %rsp, 8
%rin (© rax
= mov %rip, (%rsp)
= jmp func \ < rsp

m ret=
= mov (%rsp), %rip
= add %rsp, 8

m pop Yrax =

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

Carnegie Mellon

Recap: stack operations

m push %rax = i)
= sub %rsp, 8 more stuff
" mov %rax, (%rsp)
m call func=) ¢ P

= sub %rsp, 8
= mov %rip, (%rsp)
= jmp func

m ret=
= mov (%rsp), %rip
= add %rsp, 8

m pop Yrax =
" mov (%rsp), %rax
= add %rsp, 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 75

	Slide 1
	Slide 2: Cache Memories 18-213/18-613: Introduction to Computer Systems 10th Lecture, February 13th, 2025
	Slide 3: Reminder: AIV Policy
	Slide 4: Today
	Slide 5: Recall: General Cache Concepts
	Slide 6: General Cache Concepts: Hit
	Slide 7: General Cache Concepts: Miss
	Slide 8: Working Set, Locality, and Caches
	Slide 9: Recall: 3 Types of Cache Misses
	Slide 10: CPU Cache Memories
	Slide 11: What it Really Looks Like
	Slide 12: What it Really Looks Like (Cont.)
	Slide 13: General Cache Organization (S, E, B)
	Slide 14: Cache Read
	Slide 15: Example: Direct Mapped Cache (E = 1)
	Slide 16: Example: Direct Mapped Cache (E = 1)
	Slide 17: Example: Direct Mapped Cache (E = 1)
	Slide 18: Direct-Mapped Cache Simulation
	Slide 19: E-way Set Associative Cache (Here: E = 2)
	Slide 20: E-way Set Associative Cache (Here: E = 2)
	Slide 21: E-way Set Associative Cache (Here: E = 2)
	Slide 22: 2-Way Set Associative Cache Simulation
	Slide 23: What about writes?
	Slide 24: Why Index Using Middle Bits?
	Slide 25: Illustration of Indexing Approaches
	Slide 26: Middle Bits Indexing
	Slide 27: High Bits Indexing
	Slide 28: Intel Core i7 Cache Hierarchy
	Slide 29: Example: Core i7 L1 Data Cache
	Slide 30: Example: Core i7 L1 Data Cache
	Slide 31: Example: Core i7 L1 Data Cache
	Slide 32: Cache Performance Metrics
	Slide 33: How Bad Can a Few Cache Misses Be?
	Slide 34: Writing Cache Friendly Code
	Slide 35: Quiz Time!
	Slide 36: Today
	Slide 37: The Memory Mountain
	Slide 38: Memory Mountain Test Function
	Slide 39: The Memory Mountain
	Slide 40: Closer Look at Stride Effects
	Slide 41: Today
	Slide 42: Matrix Multiplication Example
	Slide 43: Miss Rate Analysis for Matrix Multiply
	Slide 44: Layout of C Arrays in Memory (review)
	Slide 45: Matrix Multiplication (ijk)
	Slide 46: Matrix Multiplication (jik)
	Slide 47: Matrix Multiplication (kij)
	Slide 48: Matrix Multiplication (jki)
	Slide 49: Summary of Matrix Multiplication
	Slide 50: Core i7 Matrix Multiply Performance
	Slide 51: Today
	Slide 52: Example: Matrix Multiplication
	Slide 53: Cache Miss Analysis
	Slide 54: Cache Miss Analysis
	Slide 55: Blocked Matrix Multiplication
	Slide 56: Cache Miss Analysis
	Slide 57: Cache Miss Analysis
	Slide 58: Blocking Summary
	Slide 59: Cache Summary
	Slide 60: Supplemental slides
	Slide 61: The Memory Mountain
	Slide 62: Cache Capacity Effects from Memory Mountain
	Slide 63: Modeling Block Size Effects from Memory Mountain
	Slide 64: 2008 Memory Mountain
	Slide 65: Matrix Multiplication (ikj)
	Slide 66: Matrix Multiplication (kji)
	Slide 67: Recap: Stack and instruction pointers
	Slide 68: Recap: stack operations
	Slide 69: Recap: stack operations
	Slide 70: Recap: stack operations
	Slide 71: Recap: stack operations
	Slide 72: Recap: stack operations
	Slide 73: Recap: stack operations
	Slide 74: Recap: stack operations
	Slide 75: Recap: stack operations

