
Carnegie Mellon

1

14-513 18-613

Carnegie Mellon

2

OpenMP: An Introduction

18-213/18-613: Introduction to Computer Systems
26th Lecture, April 21th, 2022

Very lightly adapted from Prof. Scott Baden’s Lecture 8, CS-160, Winter 2016 @ CSE, UCSD

Carnegie Mellon

3

Announcements
 Lab 7 (proxylab) checkpoint due today!

▪ Happy hacking!

▪ Final submission due Thursday, April 28th

 Homework is on the usual schedule
▪ Also due Thursday, April 28th.

 We have an early final exam: Monday, May 2nd @ 5:30pm ET
▪ See Fall 2021 practice exams on Web site

▪ Format and content will be similar

▪ Counts BIG: 25% of final grade

▪ Each 4 points = 1 point on final grade

▪ Small Groups next week will help prepare

▪ You’ll need to review: It is comprehensive to “Day One”

▪ Please let us know how we can help

Carnegie Mellon

4

Today

 OpenMP Overview

Carnegie Mellon

5

OpenMP

• A higher level interface for thread programming:

• http://www.openmp.org

• Parallelization via source code annotations

• All major compilers support it, including gnu

• https://gcc.gnu.org/wiki/openmp

• Compare with explicit threads programing

int i0 = (n*TID)/NTHREADS;

int i1 = i0 + n/NTHREADS;

for (i=i0; i< i1; i++)

work(i);

#pragma omp parallel private(i) shared(n)
{

#pragma omp for

for(i=0; i < n; i++)
work(i);

}
8

http://www.openmp.org/

Carnegie Mellon

6

• A program begins life as a single thread

• Enter a parallel region, spawning a team of threads

• The lexically enclosed program statements execute in parallel by
all team members

• When we reach the end of the scope…

• The team of threads synchronize at a barrier and are
disbanded; they enter a wait state

• Only the initial thread continues

• Thread teams can be created and disbanded many times
during program execution, but this can be costly

• A clever compiler can avoid many thread creations and joins

OpenMP’s Fork-Join Model

Carnegie Mellon

7

Fork join model with loops

Serial

Serial

Parallel

Seung-Jai

Min

Serial

Parallel

cout << “Serial\n”;

N = 1000;

#pragma omp parallel{

#pragma omp for

for (i=0; i<N; i++)

A[i] = B[i] + C[i];

#pragma omp single

M = A[N/2];

#pragma omp for

for (j=0; j<M; j++)

p[j] = q[j] – r[j];

}

cout << “Finish\n”;

Carnegie Mellon

8

Scott B. Baden / CSE 160 / Wi '16

Loop parallelization

• The translator automatically generates
appropriate local loop bounds

• Also inserts any needed barriers

• We use private/shared clauses to distinguish
thread private from global data

• Handles irregular problems

• Decomposition can be static or dynamic

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for i = OE; i to N-2 by 2

if (Keys[i] > Keys[i+1]) swap Keys[i]  Keys[i+1]; done *= false; }
end do
return done;

Carnegie Mellon

9

Another way of annotating loops

• These are equivalent

#pragma omp parallel
{
#pragma omp for

for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h

}

#pragma omp parallel for

for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h

Carnegie Mellon

10

Variable scoping

• Any variables declared outside a parallel region are
shared by all threads

• Variables declared inside the region are private
• Shared & private declarations override defaults, also

usefule as documentation

int main (int argc, char *argv[]) {

double a[N], b[N], c[N]; int i;

#pragma omp parallel for shared(a,b,c,N) private(i)

for (i=0; i < N; i++)

a[i] = b[i] = (double) i;

#pragma omp parallel for shared(a,b,c,N) private(i)
for (i=0; i<N; i++)
c[i] = a[i] + sqrt(b[i]);

Carnegie Mellon

11

Dealing with loop carried dependences

• OpenMP will dutifully parallelize a loop when you
tell it to, even if doing so “breaks” the correctness
of the code

int* fib = new int[N];

fib[0] = fib[1] = 1;

#pragma omp parallel for num_threads(2)

for (i=2; i<N; i++)

fib[i] = fib[i-1]+ fib[i-2];

• Sometimes we can restructure an algorithm, as
we saw in odd/even sorting

• OpenMP may warn you when it is doing something
unsafe, but not always

Carnegie Mellon

12

Why dependencies prevent parallelization

• Consider the following loops

#pragma omp parallel
{
#pragma omp for nowait

for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h

#pragma omp for

for (int i=N-2; i>0; i--)

b[i] = (a[i+1] – a[i-1])/2h

}

• Why aren’t the results correct?

Carnegie Mellon

13

Why dependencies prevent parallelization
• Consider the following loops

#pragma omp parallel

{

#pragma omp for nowait

for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h

#pragma omp for

for (int N-2; i>0; i--)

b[i] = (a[i+1] – a[i-1])/2h
}

• Results will be incorrect because the array a[], in
loop #2, depends on the outcome of loop #1 (a true
dependence)
• We don’t know when the threads finish
• OpenMP doesn’t define the order that the loop iterations wil be

incorrect

1Scott B. Baden / CSE 160 / Wi '16

Carnegie Mellon

14

Barrier Synchronization in OpenMP
• To deal with true- and anti-dependences, OpenMP inserts a barrier (by

default) between loops:

for (int i=0; i< N-1; i++)
a[i] = (b[i+1] – b[i-1])/2h

BARRIER
for (int i=N-1; i>=0; i--)

b[i] = (a[i+1] –a[i-1])/2h

• No thread may pass the barrier until all have arrived hence loop 2 may
not write into b until loop 1 has finished reading the old values

• Do we need the barrier in this case? Yes
for (int i=0; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h

BARRIER?

for (int i=N-1; i>=0; i--)

c[i] = a[i]/2;

Carnegie Mellon

15

4. for i = 0 to N-2{

A[i] = B[i];

C[i] = A[i] + B[i];

E[i] = C[i+1];

}

1. for i = 1 to N-1

A[i] = A[i] + B[i-1];

2. for i = 0 to N-2

A[i+1] = A[i] + 1;

Which loops can OpenMP parallellize, assuming there is a

barrier before the start of the loop?

A. 1 & 2

B. 1 & 3

C. 3 & 4

D. 2 & 4

E. All the loops

3. for i = 0 to N-1 step 2

A[i] = A[i-1] +A[i];

9

All arrays have at least N
elements

Carnegie Mellon

16

4. for i = 0 to N-2{

A[i] = B[i];

C[i] = A[i] + B[i];

E[i] = C[i+1];

}

1. for i = 1 to N-1

A[i] = A[i] + B[i-1];

2. for i = 0 to N-2

A[i+1] = A[i] + 1;

Which loops can OpenMP parallellize, assuming there is a

barrier before the start of the loop?

A. 1 & 2

B. 1 & 3

C. 3 & 4

D. 2 & 4

E. All the loops

3. for i = 0 to N-1 step 2

A[i] = A[i-1] +A[i];

9

All arrays have at least N
elements

Carnegie Mellon

17

1. for i = 1 to N-1

A[i] = A[i] + B[i-1];

2. for i = 0 to N-2

A[i+1] = A[i] + 1;

How would you parallelize loop 2 by
hand?

1Scott B. Baden / CSE 160 / Wi '16

Carnegie Mellon

18

for i = 0 to N-2

A[i+1] = A[i] + 1;

How would you parallelize loop 2 by
hand?

for i = 0 to N-2

A[i+1] = A[0] + i;

1Scott B. Baden / CSE 160 / Wi '16

Carnegie Mellon

19

A. Between loops 1 and 2

B. Between loops 2 and 3
C. Between both loops
D. D. None

#pragma omp parallel for shared(a,b,c) private(i)
for (i=0; i<N; i++)
c[i] = (double) i

#pragma omp parallel for shared(c) private(i) nowait
for (i=1; i<N; i+=2)

c[i] = c[i] + c[i-1]
#pragma omp parallel for shared(c) private(i) nowait

for (i=2; i<N; i+=2)
c[i] = c[i] + c[i-1]

To ensure correctness, where must we
remove the nowait clause?

1Scott B. Baden / CSE 160 / Wi '16

Carnegie Mellon

20

A. Between loops 1 and 2

B. Between loops 2 and 3
C. Between both loops
D. D. None

#pragma omp parallel for shared(a,b,c) private(i)
for (i=0; i<N; i++)
c[i] = (double) i

#pragma omp parallel for shared(c) private(i) nowait
for (i=1; i<N; i+=2)

c[i] = c[i] + c[i-1]
#pragma omp parallel for shared(c) private(i) nowait

for (i=2; i<N; i+=2)
c[i] = c[i] + c[i-1]

To ensure correctness, where must we
remove the nowait clause?

2Scott B. Baden / CSE 160 / Wi '16

Carnegie Mellon

21

Exercise: Removing data dependencies

• How can we split this loop into 2 loops so
that each loop parallelizes, and the result it
correct?

 Binitially:

 B on 1 thread:

0 1 2 3 4 5 6 7

7 7 7 7 11 12 13 14

#pragma omp parallel for shared (N,B)

for i = 0 to N-1

B[i] += B[N-1-i];

B[0] += B[7], B[1] += B[6], B[2] += B[5]

B[3] += B[4], B[4] += B[3], B[5] += B[2]

B[6] += B[1], B[7] += B[0]

Carnegie Mellon

22

Splitting a loop

• For iterations i=N/2+1 to N, B[N-i] references
newly computed data

• All others reference “old” data

• B initially:

• Correct
result:

0 1 2 3 4 5 6 7

7 7 7 7 11 12 13 14

#pragma omp parallel for nowait
for i = 0 to N/2-1

B[i] += B[N-1-i];
for i = N/2+1 to N-1

B[i] += B[N-1-i];

for i = 0 to N-1
B[i] += B[N-i];

2

Carnegie Mellon

23

• In some applications, we reduce a collection of values down to a single
global value

• Taking the sum of a list of numbers
• Decoding when Odd/Even sort has finished

• OpenMP avoids the need for an explicit serial section

int Sweep(int *Keys, int N, int OE,) {

bool done = true;

#pragma omp parallel for reduction(&:done)

for (int i = OE; i < N-1; i+=2) {

if (Keys[i] > Keys[i+1]) {

Keys[i] ↔ Keys[i+1];

done &= false;

}

} //All threads ‘and’ their done flag into a local variable

// and store the accumulated value into the global

return done;

}

Reductions in OpenMP

Carnegie Mellon

24

Reductions in OpenMP

• In some applications, we reduce a collection of values
down to a single value

• Taking the sum of a list of numbers

• Decoding when Odd/Even sort has finished

• OpenMP avoids the need for an explicit serial section

int Sweep(int *Keys, int N, int OE) {
bool done = true;

#pragma omp parallel for reduction(&:done)

for (int i = OE; i < N-1; i+=2) {

if (Keys[i] > Keys[i+1]) {

Keys[i] ↔ Keys[i+1];

done &= false;

}

} //All threads ‘and’ their done flag into the local variable

return done;

}

Carnegie Mellon

25

Which functions may we use in a reduction?

a0 + a1 + …. + an-1

a0 - a1 - …. - an-1

a0 ⋀ a1 ⋀ …. ⋀ an-1

A. Add

B. Subtract

C. Logical And

D. A and B

E. A,B and C

2
8

Carnegie Mellon

26

Which functions may we use in a reduction?

a0 + a1 + …. + an-1

a0 - a1 - …. - an-1

a0 ⋀ a1 ⋀ …. ⋀ an-1

A. Add

B. Subtract

C. Logical And

D. A and B

E. A,B and C

2
8

Carnegie Mellon

27

Odd-Even sortin OpenMP
for s = 1 to MaxIter do

done = Sweep(Keys, N, 0);
done &= Sweep(Keys, N, 1);
if (done) break;

end do

int Sweep(int *Keys, int N, int OE){
bool done=true;

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)
for (i = OE; i < N-1; i+=2) {

if (Keys[i] > Keys[i+1]) {
int tmp = Keys[i];
Keys[i] = Keys[i+1];
Keys[i+1] = tmp;
done *= false;

}
return done;

}

ai-1 ai ai+1

P=1 P=2 P=4 P=8

6.09s 3.51s 2.78s 2.78s

-n 8Mi, -i 200, -f 50

g++ -fopenmp, on Bang

Carnegie Mellon

28

Why isn’t a barrier needed between the calls to sweep()?

2

A. The calls to sweep occur outside parallel sections
B. OpenMP inserts barriers after the calls to Sweep
C. OpenMP places a barrier after the “for i" loop insideSweep()
D. A &C
E. B & C

for (s = 1; s<= to MaxIter; s++) {

done = Sweep(Keys, N, 0);

done &= Sweep(Keys, N, 1);

if (done) break;

}

int Sweep(int *Keys, int N, int OE) {

bool done=true;

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)

for (i = OE; i<= (N-2); i-=2) {

if (Keys[i] > Keys[i+1]) {

swap (&Keys[i], &Keys[i+1]);

done &= false;

}

}

return done;

}

Carnegie Mellon

29

Why isn’t a barrier needed between the calls to sweep()?

2

A. The calls to sweep occur outside parallel sections
B. OpenMP inserts barriers after the calls to Sweep
C. OpenMP places a barrier after the “for i" loop insideSweep()
D. A &C
E. B & C

for (s = 1; s<= to MaxIter; s++) {

done = Sweep(Keys, N, 0);

done &= Sweep(Keys, N, 1);

if (done) break;

}

int Sweep(int *Keys, int N, int OE) {

bool done=true;

#pragma omp parallel for shared(Keys) private(i) reduction(&:done)

for (i = OE; i<= (N-2); i-=2) {

if (Keys[i] > Keys[i+1]) {

swap (&Keys[i], &Keys[i+1]);

done &= false;

}

}

return done;

}

Carnegie Mellon

30

Another way of annotating loops + Sharing

• These examples are equivalent

• Why don’t we need to declare private(i)?

#pragma omp parallel for shared(a,b) schedule(static)
for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h

#pragma omp parallel shared(a,b) {
#pragma omp for schedule(static)
for (int i=1; i< N-1; i++)

a[i] = (b[i+1] – b[i-1])/2h
}

• OpenMP has rules about what is shared vs private by default

• Shared by default

• Declared outside a private area

• Global, static, or dynamically allocated

• Private by default

• Loop control variables

• Local/Automatic variables declared within parallel area

Carnegie Mellon

31

The No Wait clause

• Removes the barrier after an omp for loop
• Why are the results incorrect?

• We don’t know when the threads finish
• OpenMP doesn’t define the order that the loop

iterations will be incorrect

#pragma omp parallel
{
#pragma omp for nowait

for (int i=1; i< N-1; i++)
a[i] = (b[i+1] – b[i-

1])/2h

#pragma omp for

for (int i=N-2; i>0; i--)

b[i] = (a[i+1] – a[i-1])/2h
}

3Scott B. Baden / CSE 160 / Wi '16

Carnegie Mellon

32

Parallelizing a nested loop with OpenMP

• Not all implementations can parallelize inner loops
• We parallelize the outer loop index

• Generated code

mymin = 1 + ($TID * n/NT),

for(i=mymin; i < mymax; i++) {
for(j=0; j < n; j++) {

V[i,j] = (u[i-1,j] + u[i+1,j]+ u[i,j-1]+ u[i, j+1] - h2f[i,j])/4
}

}
Barrier();

#pragma omp parallel private(i) shared(n)
#pragma omp for
for(i=0; i < n; i++) {

for(j=0; j < n; j++) {
V[i,j] = (u[i-1,j] + u[i+1,j]+ u[i,j-1]+ u[i, j+1] - h2f[i,j])/4

}

}

Carnegie Mellon

33

An application: Matrix Vector Multiplication

Carnegie Mellon

34

Application: Matrix Vector Multiplication

// GLOBALdouble **A, *x, *y;
#pragma omp parallel shared(A,x,N)
#pragma omp for

for (i=0; i<N; i++){
y[i] = 0.0;
for (j=0; j<N; j++)

y[i] += A[i][j] * x[j];
}

Carnegie Mellon

35

Support for load balancing in OpenMP

• OpenMP supports Block Cyclic decompositions
with chunk size

#pragma omp parallel for schedule(static, 2)
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++){

do
z = z2 + c

while (|z| < 2);
}

}

Carnegie Mellon

36

OpenMP supports self scheduling

Adjust task granularity with a chunksize

#pragma omp parallel for schedule(dynamic, 2)
for(int i = 0; i < n; i++) {

for (int j = 0; j < n; j++){

do
z = z2 + c

while (|z| < 2)
}

}

Carnegie Mellon

37
3Scott B. Baden / CSE 160 / Wi '16

Iteration to thread mapping in OpenMP

#pragma omp parallel shared(N,iters) private(i)

#pragma omp for

for (i = 0; i < N; i++)

iters[i] = omp_get_thread_num();

of openMP threads = 3 (no schedule)

N = 9: 0 0 0 1 1 1 2 2 2

of openMP threads = 4, schedule(static,2):

N = 16: 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

of openMP threads = 4, schedule(static,2)

N=9: 0 0 1 1 2 2 0 0 1

Carnegie Mellon

38

Initializing Data in OpenMP

• Allocate heap storage (shared) outside a parallel region
• Initialize it inside a parallel region

• May allow it to be done in parallel.

double **A;

A =(double**) malloc(sizeof(double*)*N + sizeof(double)*N*N);
assert(A);

#pragma omp parallel private(j) shared(A,N)
for(j=0;j<N;j++)

A[j] = (double *)(A+N) + j*N;

#pragma omp parallel private(i,j) shared(A,N)
for (j=0; j<N; j++)

for (i=0; i<N; ci++)
A[i][j] = 1.0 / (double) (i+j-1);

Carnegie Mellon

39

OpenMP is also an API
• But we don’t use this lower level interface unless

necessary
• Parallel for is much easier to use

#ifdef _OPENMP

#include <omp.h>

#endif

int tid=0, nthrds,1;

#pragma omp parallel

{

#ifdef _OPENMP

tid = omp_get_thread_num();

nthrds = omp_get_num_threads();

#endif

int i0=(n/nthrds)*tid, i1=i0+n/nthrds;

for(i=i0; i < i1; i++)

work(i);

}

Carnegie Mellon

40

Summary: what does OpenMP accomplish for us?

• Higher level interface simplifies the
programmer’s model

• Spawn and join threads, “Outlining” code
into a thread function

• Handles synchronization and partitioning

• If it does all this, why do you think we need to
have a lower level threading interface?

