
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming: Part II

18-213/18-613:
Introduction to Computer Systems
21st Lecture, March 31, 2022

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Network Layers: Birds Eye View

 The Sockets Interface CSAPP 11.4

 Web Servers CSAPP 11.5.1-11.5.3

 The Tiny Web Server CSAPP 11.6

 Serving Dynamic Content CSAPP 11.5.4

 Proxy Servers

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Protocol and Service Levels

Transport

Network

Link

Physical

Layering: modular approach to network functionality

Application

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Network Layers: Birds Eye View

 The Sockets Interface CSAPP 11.4

 Web Servers CSAPP 11.5.1-11.5.3

 The Tiny Web Server CSAPP 11.6

 Serving Dynamic Content CSAPP 11.5.4

 Proxy Servers

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Anatomy of a Connection

 A connection is uniquely identified by the socket
addresses of its endpoints (socket pair)
▪ (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface

 Set of system-level functions used in conjunction with
Unix I/O to build network applications.

 Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

 Available on all modern systems
▪ Unix variants, Windows, OS X, IOS, Android, ARM

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client Server

Sockets

 What is a socket?
▪ To the kernel, a socket is an endpoint of communication

▪ To an application, a socket is a file descriptor that lets the
application read/write from/to the network

▪ Remember: All Unix I/O devices, including networks, are
modeled as files

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

clientfd serverfd

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing a socket:
Generic Socket Address
 Generic socket address:

▪ For address arguments to connect, bind, and accept

struct sockaddr {

uint16_t sa_family; /* Protocol family */

char sa_data[14]; /* Address data. */

};

sa_family

Family Specific

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing a Socket:
Socket Address Structures

 Internet (IPv4) specific socket address:
▪ Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {

uint16_t sin_family; /* Protocol family (always AF_INET) */

uint16_t sin_port; /* Port num in network byte order */

struct in_addr sin_addr; /* IP addr in network byte order */

unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

socket read

socket write
socket read

terminal write

terminal read

socket write

Connection
request

socket read

close

close
EOF

accept

open_listenfd

open_clientfd

Await connection
request from client

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Start client Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 getaddrinfo is the modern way to convert string
representations of hostnames, host addresses, ports, and
service names to socket address structures.
▪ Replaces obsolete gethostbyname and getservbyname funcs.

 Advantages:
▪ Reentrant (can be safely used by threaded programs).

▪ Allows us to write portable protocol-independent code

▪ Works with both IPv4 and IPv6

 Disadvantages
▪ Somewhat complex

▪ Fortunately, a small number of usage patterns suffice in most cases.

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

 Helper functions:
▪ freeadderinfo frees the entire linked list.

▪ gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */

const char *service, /* Port or service name */

const struct addrinfo *hints,/* Input parameters */

struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

getaddrinfo

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

 getaddrinfo converts string representations of hostnames,
host addresses, ports, service names to socket address structures

SA list

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion:
getnameinfo

 getnameinfo is the inverse of getaddrinfo,
converting a socket address to the
corresponding host and service.
▪ Replaces obsolete gethostbyaddr and
getservbyport funcs.

▪ Reentrant and protocol independent.
int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */

char *host, size_t hostlen, /* Out: host */

char *serv, size_t servlen, /* Out: service */

int flags); /* optional flags */

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Start client Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA listSA list

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: socket

 Clients and servers use the socket function to create a
socket descriptor:

 Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a
reliable (TCP) connection

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listenfdclientfd

SA list SA list

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: bind

 A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

Our convention: typedef struct sockaddr SA;

 Process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd

 Similarly, writes to sockfd are transferred along
connection whose endpoint is addr

int bind(int sockfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

listenfd

listenfd <-> SA

SA list

clientfd

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: listen

 Kernel assumes that descriptor from socket function is an
active socket that will be on the client end

 A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

 Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

 backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests (128-ish by default)

int listen(int sockfd, int backlog);

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

clientfd

SA list

listenfd

listenfd <-> SA

listening listenfd

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: accept

 Servers wait for connection requests from clients by
calling accept:

 Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

 Returns a connected descriptor connfd that can be used
to communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

SA list SA list

clientfd listenfd

listenfd <-> SA

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: connect

 A client establishes a connection with a server by calling
connect:

 Attempts to establish a connection with server at socket
address addr

▪ If successful, then clientfd is now ready for reading and writing.

▪ Resulting connection is characterized by socket pair

(x:y, addr.sin_addr:addr.sin_port)

▪ x is client address

▪ y is ephemeral port that uniquely identifies client process on
client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Connected vs. Listening Descriptors

 Listening descriptor
▪ End point for client connection requests

▪ Created once and exists for lifetime of the server

 Connected descriptor
▪ End point of the connection between client and server

▪ A new descriptor is created each time the server accepts a
connection request from a client

▪ Exists only as long as it takes to service client

 Why the distinction?
▪ Allows for concurrent servers that can communicate over many

client connections simultaneously

▪ E.g., Each time we receive a new request, we fork a child to
handle the request

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

connected connfdconnected (to SA) clientfd

SA list SA list

clientfd listenfd

listenfd <-> SA

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Servers Using telnet

 The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
▪ Our simple echo server

▪ Web servers

▪ Mail servers

 Usage:
▪ linux> telnet <host> <portnumber>

▪ Creates a connection with a server running on <host> and
listening on port <portnumber>

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing the Echo Server With telnet

whaleshark> ./echoserveri 18213

Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)

server received 11 bytes

server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 18213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

Hi there!

Hi there!

Howdy!

Howdy!

^]

telnet> quit

Connection closed.

makoshark>

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Network Layers: Birds Eye View

 The Sockets Interface CSAPP 11.4

 Web Servers CSAPP 11.5.1-11.5.3

 The Tiny Web Server CSAPP 11.6

 Serving Dynamic Content CSAPP 11.5.4

 Proxy Servers

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web Server Basics

Web
server

HTTP request

HTTP response
(content)

 Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)

▪ Client and server establish TCP
connection

▪ Client requests content

▪ Server responds with requested
content

▪ Client and server close connection
(eventually)

 Current version is HTTP/1.1

▪ RFC 2616, June, 1999.

▪ HTTP/2 is so different that it might
as well be a new protocol.

Web
client

(browser)

http://www.w3.org/Protocols/rfc2616/rfc2616.html

IP

TCP

HTTP

Datagrams

Streams

Web content

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web Content

 Web servers return content to clients
▪ content: a sequence of bytes with an associated MIME (Multipurpose

Internet Mail Extensions) type

▪ Content is identified by its URL (Uniform Resource Locator)

 Example MIME types
▪ text/html HTML document

▪ text/plain Unformatted text

▪ image/gif Binary image encoded in GIF format

▪ image/png Binary image encoded in PNG format

▪ image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Static and Dynamic Content

 Static content: content stored in files and retrieved in response
to an HTTP request
▪ Examples: HTML files, images, audio clips, Javascript programs

▪ Request identifies which content file

 Dynamic content: content produced on-the-fly in response to an
HTTP request
▪ Example: content produced by a program executed by the server on behalf

of the client

▪ Request identifies file containing executable code

 Any URL can refer to either static or dynamic content

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

URLs and how clients and servers use them

 Unique name for a file: URL (Universal Resource Locator)

 Example URL: http://www.cmu.edu:80/index.html

 Clients use prefix (http://www.cmu.edu:80) to infer:

▪ What kind (protocol) of server to contact (HTTP)

▪ Where the server is (www.cmu.edu)

▪ What port it is listening on (80)

 Servers use suffix (/index.html) to:

▪ Determine if request is for static or dynamic content.

▪ No hard and fast rules for this

▪ One convention: executables reside in cgi-bin directory

▪ Find file on file system

▪ Initial “/” in suffix denotes home directory for requested content.

▪ Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Requests

 HTTP request is a request line, followed by zero or more
request headers

 Request line: <method> <uri> <version>

▪ <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

▪ <uri> is typically URL for proxies, URL suffix for servers

▪ A URL is a type of URI (Uniform Resource Identifier)

▪ See http://www.ietf.org/rfc/rfc2396.txt

▪ <version> is HTTP version of request (HTTP/1.0 or HTTP/1.1)

 Request headers: <header name>: <header data>

▪ Provide additional information to the server

http://www.ietf.org/rfc/rfc2396.txt

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Responses
 HTTP response is a response line followed by zero or more

response headers, possibly followed by content, with blank line
(“\r\n”) separating headers from content.

 Response line:

<version> <status code> <status msg>

▪ <version> is HTTP version of the response

▪ <status code> is numeric status

▪ <status msg> is corresponding English text

▪ 200 OK Request was handled without error

▪ 301 Moved Provide alternate URL

▪ 404 Not found Server couldn’t find the file

 Response headers: <header name>: <header data>
▪ Provide additional information about response

▪ Content-Type: MIME type of content in response body

▪ Content-Length: Length of content in response body

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Many more HTTP response codes

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP Transaction
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET / HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

Client: blank line terminates headers

HTTP/1.1 301 Moved Permanently Server: response line

Date: Wed, 05 Nov 2014 17:05:11 GMT Server: followed by 5 response headers

Server: Apache/1.3.42 (Unix) Server: this is an Apache server

Location: http://www.cmu.edu/index.shtml Server: page has moved here

Transfer-Encoding: chunked Server: response body will be chunked

Content-Type: text/html; charset=... Server: expect HTML in response body

Server: empty line terminates headers

15c Server: first line in response body

<HTML><HEAD> Server: start of HTML content

…

</BODY></HTML> Server: end of HTML content

0 Server: last line in response body

Connection closed by foreign host. Server: closes connection

 HTTP standard requires that each text line end with “\r\n”

 Blank line (“\r\n”) terminates request and response headers

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP Transaction, Take 2
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET /index.shtml HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

Client: blank line terminates headers

HTTP/1.1 200 OK Server: response line

Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers

Server: Apache/1.3.42 (Unix)

Transfer-Encoding: chunked

Content-Type: text/html; charset=...

Server: empty line terminates headers

1000 Server: begin response body

<html ..> Server: first line of HTML content

…

</html>

0 Server: end response body

Connection closed by foreign host. Server: close connection

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP(S) Transaction, Take 3
whaleshark> openssl s_client www.cs.cmu.edu:443

CONNECTED(00000005)

…

Certificate chain

…

-

Server certificate

-----BEGIN CERTIFICATE-----

MIIGDjCCBPagAwIBAgIRAMiF7LBPDoySilnNoU+mp+gwDQYJKoZIhvcNAQELBQAw

djELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1JMRIwEAYDVQQHEwlBbm4gQXJib3Ix

EjAQBgNVBAoTCUludGVybmV0MjERMA8GA1UECxMISW5Db21tb24xHzAdBgNVBAMT

wkWkvDVBBCwKXrShVxQNsj6J

…

-----END CERTIFICATE-----

subject=/C=US/postalCode=15213/ST=PA/L=Pittsburgh/street=5000 Forbes

Ave/O=Carnegie Mellon University/OU=School of Computer

Science/CN=www.cs.cmu.edu issuer=/C=US/ST=MI/L=Ann

Arbor/O=Internet2/OU=InCommon/CN=InCommon RSA Server CA

SSL handshake has read 6274 bytes and written 483 bytes

…

>GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Tue, 12 Nov 2019 04:22:15 GMT

Server: Apache/2.4.10 (Ubuntu)

Set-Cookie: SHIBLOCATION=scsweb; path=/; domain=.cs.cmu.edu

... HTML Content Continues Below ...

http://www.cs.cmu.edu:443/

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check Canvas > Networking (part II)

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Network Layers: Birds Eye View

 The Sockets Interface CSAPP 11.4

 Web Servers CSAPP 11.5.1-11.5.3

 The Tiny Web Server CSAPP 11.6

 Serving Dynamic Content CSAPP 11.5.4

 Proxy Servers

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Web Server

 Tiny Web server described in text

▪ Tiny is a sequential Web server

▪ Serves static and dynamic content to real browsers

▪ text files, HTML files, GIF, PNG, and JPEG images

▪ 239 lines of commented C code

▪ Not as complete or robust as a real Web server

▪ You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Operation

 Accept connection from client

 Read request from client (via connected socket)

 Split into <method> <uri> <version>
▪ If method not GET, then return error

 If URI contains “cgi-bin” then serve dynamic content

▪ (Would do wrong thing if had file “abcgi-bingo.html”)

▪ Fork process to execute program

 Otherwise serve static content
▪ Copy file to output

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Serving Static Content

void serve_static(int fd, char *filename, int filesize)

{

int srcfd;

char *srcp, filetype[MAXLINE], buf[MAXBUF];

/* Send response headers to client */

get_filetype(filename, filetype);

sprintf(buf, "HTTP/1.0 200 OK\r\n");

sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);

sprintf(buf, "%sConnection: close\r\n", buf);

sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);

sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);

Rio_writen(fd, buf, strlen(buf));

/* Send response body to client */

srcfd = Open(filename, O_RDONLY, 0);

srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);

Close(srcfd);

Rio_writen(fd, srcp, filesize);

Munmap(srcp, filesize);

} tiny.c

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Network Layers: Birds Eye View

 The Sockets Interface CSAPP 11.4

 Web Servers CSAPP 11.5.1-11.5.3

 The Tiny Web Server CSAPP 11.6

 Serving Dynamic Content CSAPP 11.5.4

 Proxy Servers

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content

Client Server

 Client sends request to server

 If request URI contains the
string “/cgi-bin”, the Tiny
server assumes that the
request is for dynamic content

GET /cgi-bin/env.pl HTTP/1.1

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server
 The server creates a child

process and runs the
program identified by the
URI in that process

env.pl

fork/exec

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content (cont)

Client Server The child runs and generates
the dynamic content

 The server captures the
content of the child and
forwards it without
modification to the client

env.pl

Content

Content

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues in Serving Dynamic Content

 How does the client pass program
arguments to the server?

 How does the server pass these
arguments to the child?

 How does the server pass other info
relevant to the request to the child?

 How does the server capture the
content produced by the child?

 These issues are addressed by the
Common Gateway Interface (CGI)
specification.

Client Server

Content

Content

Request

Create

env.pl

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CGI

 Because the children are written according to the CGI
spec, they are often called CGI programs.

 However, CGI really defines a simple standard for
transferring information between the client (browser),
the server, and the child process.

 CGI is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:
▪ E.g., fastCGI, Apache modules, Java servlets, Rails controllers

▪ Avoid having to create process on the fly (expensive and slow).

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The add.com Experience

Output page

host port CGI program

arguments

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET
 Question: How does the client pass arguments to the server?

 Answer: The arguments are appended to the URI

 Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
▪ http://add.com/cgi-bin/adder?15213&18213

▪ adder is the CGI program on the server that will do the addition.

▪ argument list starts with “?”

▪ arguments separated by “&”

▪ spaces represented by “+” or “%20”

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 URL suffix:
▪ cgi-bin/adder?15213&18213

 Result displayed on browser:

Welcome to add.com: THE Internet

addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content With GET

 Question: How does the server pass these arguments to
the child?

 Answer: In environment variable QUERY_STRING

▪ A single string containing everything after the “?”

▪ For add: QUERY_STRING = “15213&18213”

/* Extract the two arguments */

if ((buf = getenv("QUERY_STRING")) != NULL) {

p = strchr(buf, '&');

*p = '\0';

strcpy(arg1, buf);

strcpy(arg2, p+1);

n1 = atoi(arg1);

n2 = atoi(arg2);

} adder.c

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void serve_dynamic(int fd, char *filename, char *cgiargs)

{

char buf[MAXLINE], *emptylist[] = { NULL };

/* Return first part of HTTP response */

sprintf(buf, "HTTP/1.0 200 OK\r\n");

Rio_writen(fd, buf, strlen(buf));

sprintf(buf, "Server: Tiny Web Server\r\n");

Rio_writen(fd, buf, strlen(buf));

if (Fork() == 0) { /* Child */

/* Real server would set all CGI vars here */

setenv("QUERY_STRING", cgiargs, 1);

Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */

Execve(filename, emptylist, environ); /* Run CGI program */

}

Wait(NULL); /* Parent waits for and reaps child */

}

Serving Dynamic Content with GET

 Question: How does the server capture the content produced by the child?

 Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

tiny.c

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Serving Dynamic Content with GET

/* Make the response body */

sprintf(content, "Welcome to add.com: ");

sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);

sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",

content, n1, n2, n1 + n2);

sprintf(content, "%sThanks for visiting!\r\n", content);

/* Generate the HTTP response */

printf("Content-length: %d\r\n", (int)strlen(content));

printf("Content-type: text/html\r\n\r\n");

printf("%s", content);

fflush(stdout);

exit(0); adder.c

 Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

GET /cgi-bin/adder?15213&18213 HTTP/1.0

HTTP/1.0 200 OK

Server: Tiny Web Server

Connection: close

Content-length: 117

Content-type: text/html

Welcome to add.com: THE Internet addition portal.

<p>The answer is: 15213 + 18213 = 33426

<p>Thanks for visiting!

Connection closed by foreign host.

bash:makoshark>

Serving Dynamic Content With GET

HTTP request sent by client

HTTP response generated

by the server

HTTP response generated

by the CGI program

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Network Layers: Birds Eye View

 The Sockets Interface CSAPP 11.4

 Web Servers CSAPP 11.5.1-11.5.3

 The Tiny Web Server CSAPP 11.6

 Serving Dynamic Content CSAPP 11.5.4

 Proxy Servers

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies

 A proxy is an intermediary between a client and an origin server
▪ To the client, the proxy acts like a server

▪ To the server, the proxy acts like a client

Client Proxy
Origin
Server

1. Client request 2. Proxy request

3. Server response4. Proxy response

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Proxies?

 Can perform useful functions as requests and responses pass by
▪ Examples: Caching, logging, anonymization, filtering, transcoding

Client
A

Proxy
cache

Origin
Server

Request foo.html

Request foo.html

foo.html

foo.html

Client
B

Request foo.html

foo.html

Fast inexpensive local network

Slower more

expensive

global network

