

Dynamic Memory Allocation: Basic Concepts

18-213/18-613: Introduction to Computer Systems 14th Lecture, March 1, 2022

Announcements

Midterm Exam Released yesterday

- And due Friday
- Cachelab Due Thursday

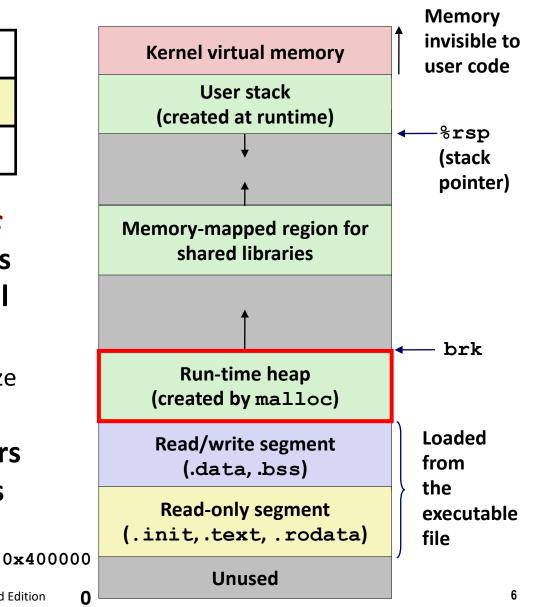
This week: Understanding this Error

What causes this error? Why does it matter?

Today

Basic concepts

Implicit free lists


Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Неар

- Programmers use dynamic memory allocators (such as malloc) to acquire virtual memory (VM) at run time.
 - for data structures whose size is only known at runtime
- Dynamic memory allocators manage an area of process
 VM known as the *heap*.

Dynamic Memory Allocation

- Allocator maintains heap as collection of variable sized blocks, which are either allocated or free
- Types of allocators
 - *Explicit allocator*: application allocates and frees space
 - E.g., malloc and free in C
 - Implicit allocator: application allocates, but does not free space
 - E.g., **new** and garbage collection in Java
- Will discuss simple explicit memory allocation today

The malloc Package

#include <stdlib.h>

void *malloc(size_t size)

- Successful:
 - Returns a pointer to a memory block of at least size bytes aligned to a 16-byte boundary (on x86-64)
 - If size == 0, returns NULL
- Unsuccessful: returns NULL (0) and sets errno to ENOMEM

void free(void *p)

- Returns the block pointed at by p to pool of available memory
- p must come from a previous call to malloc, calloc, or realloc

Other functions

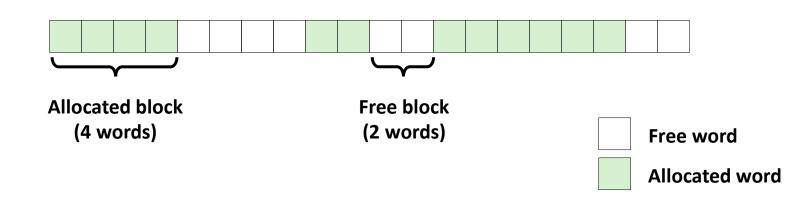
- **calloc:** Version of **malloc** that initializes allocated block to zero.
- realloc: Changes the size of a previously allocated block.
- **sbrk:** Used internally by allocators to grow or shrink the heap

malloc Example

```
#include <stdio.h>
#include <stdlib.h>
void foo(long n) {
    long i, *p;
    /* Allocate a block of n longs */
    p = (long *) malloc(n * sizeof(long));
    if (p == NULL) {
        perror("malloc");
        exit(0);
    }
    /* Initialize allocated block */
    for (i=0; i<n; i++)</pre>
       p[i] = i;
    /* Do something with p */
    . . .
    /* Return allocated block to the heap */
    free(p);
}
```

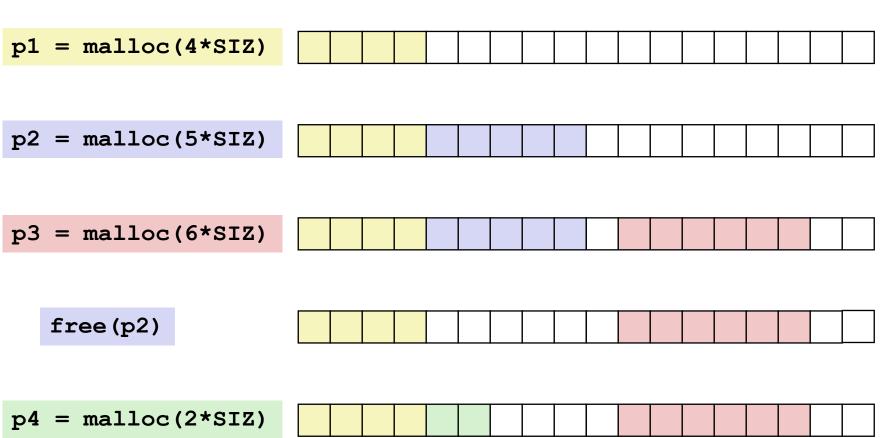
Sample Implementation

Code


- File mm-reference.c
- Manages fixed size heap
- Functions mm_malloc, mm_free

Features

- Based on words of 8-bytes each
- Pointers returned by malloc are double-word aligned
 - Double word = 2 words
- Compile and run tests with command interpreter


Visualization Conventions

- Show 8-byte words as squares
- Allocations are double-word aligned.

#define SIZ sizeof(size t)

Allocation Example (Conceptual)

Constraints

Applications

- Can issue arbitrary sequence of malloc and free requests
- free request must be to a malloc'd block

Explicit Allocators

- Can't control number or size of allocated blocks
- Must respond immediately to malloc requests
 - *i.e.*, can't reorder or buffer requests
- Must allocate blocks from free memory
 - *i.e.*, can only place allocated blocks in free memory
- Must align blocks so they satisfy all alignment requirements
 - 16-byte (x86-64) alignment on 64-bit systems
- Can manipulate and modify only free memory
- Can't move the allocated blocks once they are malloc'd
 - *i.e.*, compaction is not allowed. *Why not?*

Performance Goal: Throughput

Given some sequence of malloc and free requests:

• $R_{0}, R_{1}, ..., R_{k}, ..., R_{n-1}$

Goals: maximize throughput and peak memory utilization

These goals are often conflicting

Throughput:

- Number of completed requests per unit time
- Example:
 - 5,000 malloc calls and 5,000 free calls in 10 seconds
 - Throughput is 1,000 operations/second

Performance Goal: Minimize Overhead

- Given some sequence of malloc and free requests:
 - $R_{0}, R_{1}, ..., R_{k}, ..., R_{n-1}$

Def: Aggregate payload P_k

- malloc(p) results in a block with a payload of p bytes
- After request R_k has completed, the aggregate payload P_k is the sum of currently allocated payloads

Def: Current heap size H_k

- Assume H_k is monotonically nondecreasing
 - i.e., heap only grows when allocator uses **sbrk**

Def: Overhead after k+1 requests

- Fraction of heap space NOT used for program data
- $O_k = H_k / (\max_{i \le k} P_i) 1.0$

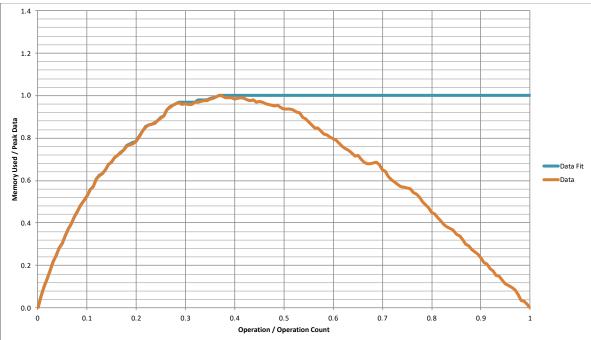
Benchmark Example

Benchmark

syn-array-short

- Trace provided with malloc lab
- Allocate & free 10 blocks
- a = allocate
- f = free
- Bias toward allocate at beginning & free at end
- Blocks numbered 0–9
- Allocated: Sum of all allocated amounts
- Peak: Max so far of Allocated

Step	Command			Delta	Allocated	Peak
1	a	0	9904	9904	9904	9904
2	a	1	50084	50084	59988	59988
3	a	2	20	20	60008	60008
4	a	3	16784	16784	76792	76792
5	f	3		-16784	60008	76792
6	a	4	840	840	60848	76792
7	a	5	3244	3244	64092	76792
8	f	0		-9904	54188	76792
9	a	6	2012	2012	56200	76792
10	f	2		-20	56180	76792
11	a	7	33856	33856	90036	90036
12	f	1		-50084	39952	90036
13	a	8	136	136	40088	90036
14	f	7		-33856	6232	90036
15	f	6		-2012	4220	90036
16	a	9	20	20	4240	90036
17	f	4		-840	3400	90036
18	f	8		-136	3264	90036
19	f	5		-3244	20	90036
20	f	9		-20	0	90036


Benchmark Visualization

Step	Command	Delta	Allocated	Peak	1				
1	a 0 9904	9904	9904	9904	0.9				
2	a 1 50084	50084	59988	59988	<u>ල</u> 0.8				
3	a 2 20	20	60008	60008	Se				
4	a 3 16784	16784	76792	76792	⊃ 0.7 ≥				
5	f 3	-16784	60008	76792	Vemor 0.6 0.5				
6	a 4 840	840	60848	76792	≥ 0.5				
7	a 5 3244	3244	64092	76792					
8	f 0	-9904	54188	76792	0.4				
9	a 6 2012	2012	56200	76792	0.4 Normalized No.2				
10	f 2	-20	56180	76792	ō Z 0.2				
11	a 7 33856	33856	90036	90036					
12	f 1	-50084	39952	90036	0.1	here here here here here here here here			
13	a 8 136	136	40088	90036	0				
14	f 7	-33856	6232	90036		0 0.2 0.4 0.6 0.8 1			
15	f 6	-2012	4220	90036	Normalized Operation Number				
16	a 9 20	20	4240	90036	DataData Fit				
17	f 4	-840	3400	90036					
18	f 8	-136	3264	90036					
19	f 5	-3244	20	90036					
20	f 9	-20	0	90036	Dat	ata line shows total allocated data (P_i)			

- Data Fit line shows peak of total ($\max_{i \le k} P_i$)
- Normalized in X & Y

1

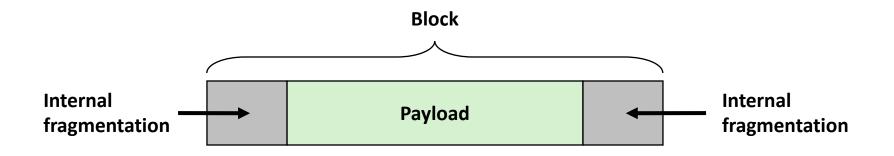
Full Benchmark Behavior

Given sequence of mallocs & frees (40,000 blocks)

- Starts with all mallocs, and shifts toward all frees
- Manage space for all allocated blocks

Metrics

- Data: P_i
- Data fit: $\max_{i \le k} P_i$

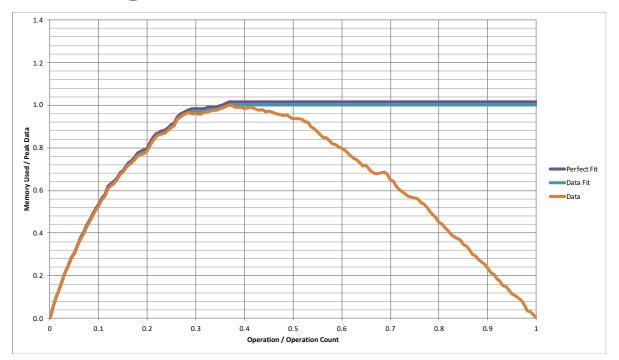

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Fragmentation

- Poor memory utilization caused by *fragmentation*
 - internal fragmentation
 - external fragmentation

Internal Fragmentation

For a given block, internal fragmentation occurs if payload is smaller than block size

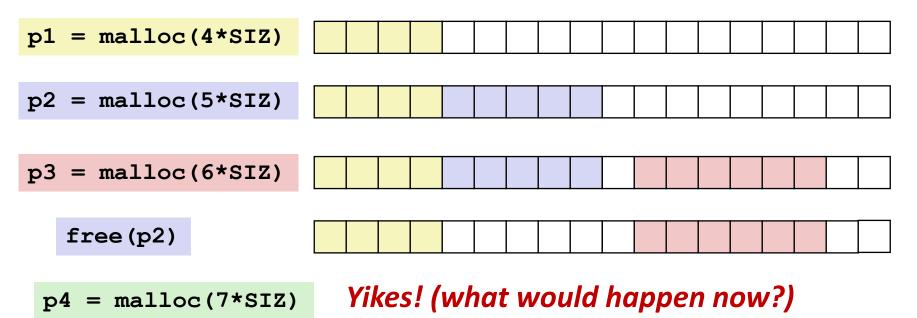

Caused by

- Overhead of maintaining heap data structures
- Padding for alignment purposes
- Explicit policy decisions (e.g., to return a big block to satisfy a small request)

Depends only on the pattern of *previous* requests

Thus, easy to measure

Internal Fragmentation Effect

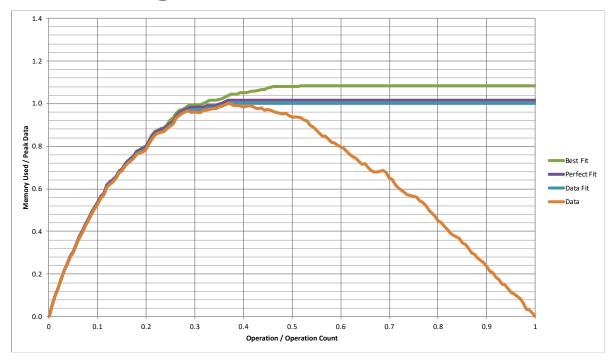


- Perfect Fit: Only requires space for allocated data, data structures, and unused space due to alignment constraints
 - For this benchmark, 1.5% overhead
 - Cannot achieve in practice
 - Especially since cannot move allocated blocks

#define SIZ sizeof(size t)

External Fragmentation

 Occurs when there is enough aggregate heap memory, but no single free block is large enough



Amount of external fragmentation depends on the pattern of future requests

Thus, difficult to measure

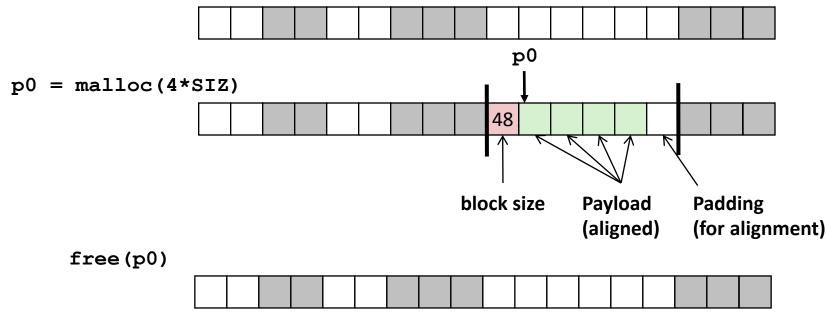
Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

External Fragmentation Effect

Best Fit: One allocation strategy

- (To be discussed later)
- Total overhead = 8.3% on this benchmark

Implementation Issues

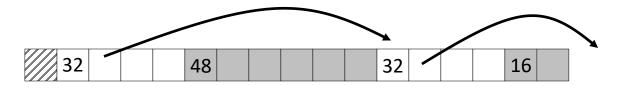

- How do we know how much memory to free given just a pointer?
- How do we keep track of the free blocks?
- What do we do with the extra space when allocating a structure that is smaller than the free block it is placed in?
- How do we pick a block to use for allocation -- many might fit?

How do we reuse a block that has been freed?

Knowing How Much to Free

Standard method

- Keep the length (in bytes) of a block in the word preceding the block.
 - Including the header
 - This word is often called the *header field* or *header*
- Requires an extra word for every allocated block


Keeping Track of Free Blocks

Method 1: Implicit list using length—links all blocks

Need to tag each block as allocated/free

Method 2: Explicit list among the free blocks using pointers

Need space for pointers

Method 3: Segregated free list

Different free lists for different size classes

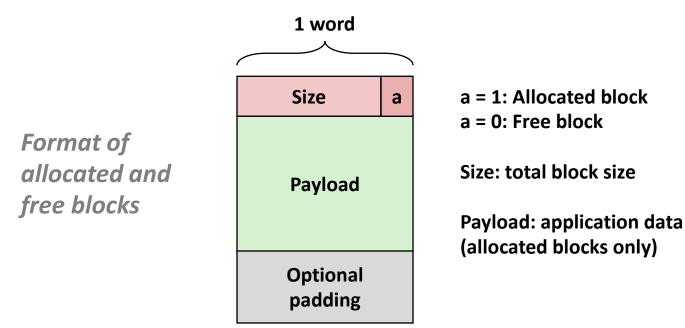
Method 4: Blocks sorted by size

 Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

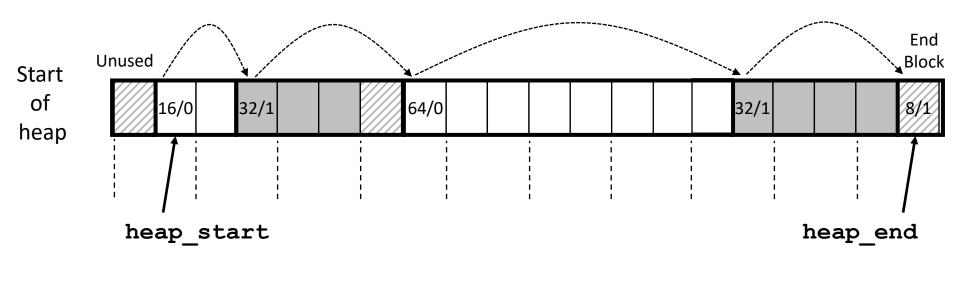
Today

- Basic concepts
- Implicit free lists


Method 1: Implicit Free List

For each block we need both size and allocation status

Could store this information in two words: wasteful!


Standard trick

- When blocks are aligned, some low-order address bits are always 0
- Instead of storing an always-0 bit, use it as an allocated/free flag
- When reading the Size word, must mask out this bit

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Detailed Implicit Free List Example

Double-word aligned

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with "size in words/allocated bit"
Headers are at non-aligned positions
→ Payloads are aligned

Implicit List: Data Structures

header payload

Block declaration

typedef uint64_t word_t;
typedef struct block
{
 word t header;

```
unsigned char payload[0];
} block_t;
```

// Zero length array

Getting payload from block pointer // block_t *block
return (void *) (block->payload);

C function offsetof (struct, member) returns offset of member within struct

Implicit List: Header access

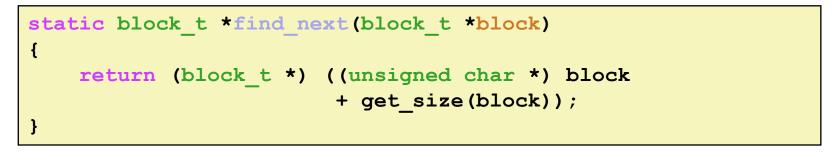
Getting allocated bit from header

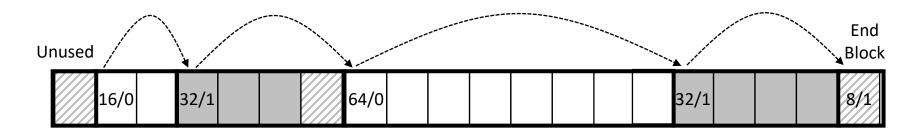
return header & 0x1;

Getting size from header

return header & ~0xfL;

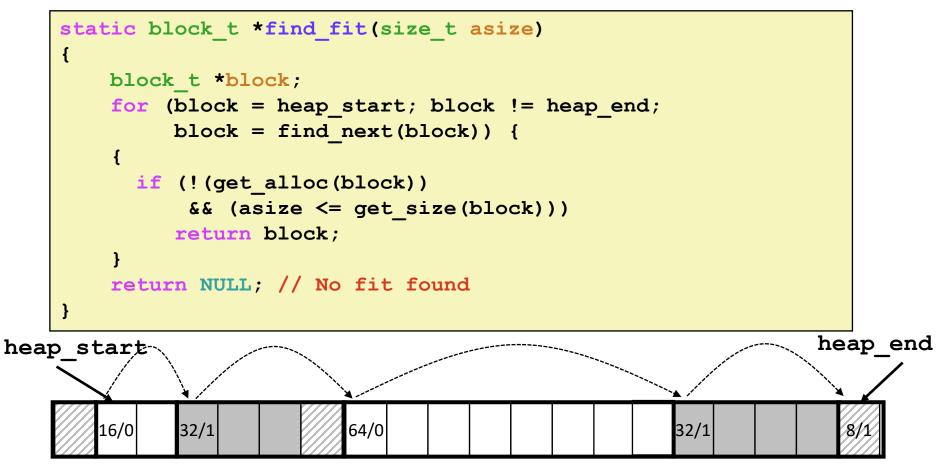
Initializing header


//block_t *block


block->header = size | alloc;

Implicit List: Traversing list

Find next block



Implicit List: Finding a Free Block

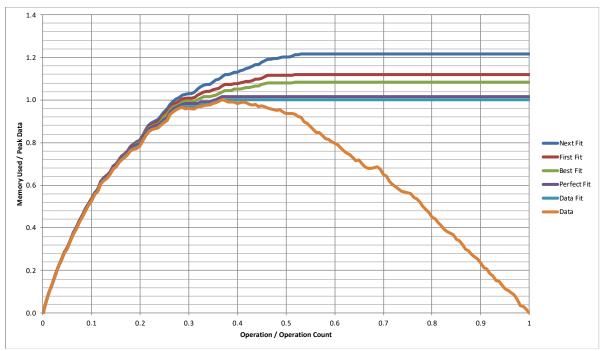
First fit:

- Search list from beginning, choose *first* free block that fits:
- Finding space for asize bytes (including header):

Implicit List: Finding a Free Block

First fit:

- Search list from beginning, choose *first* free block that fits:
- Can take linear time in total number of blocks (allocated and free)
- In practice it can cause "splinters" at beginning of list

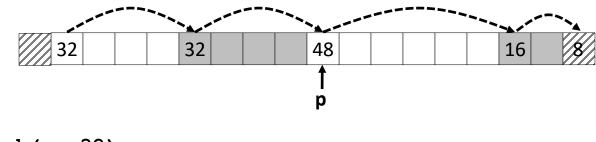

Next fit:

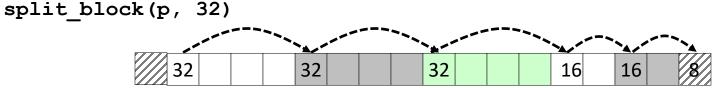
- Like first fit, but search list starting where previous search finished
- Should often be faster than first fit: avoids re-scanning unhelpful blocks
- Some research suggests that fragmentation is worse

Best fit:

- Search the list, choose the **best** free block: fits, with fewest bytes left over
- Keeps fragments small—usually improves memory utilization
- Will typically run slower than first fit
- Still a greedy algorithm. No guarantee of optimality

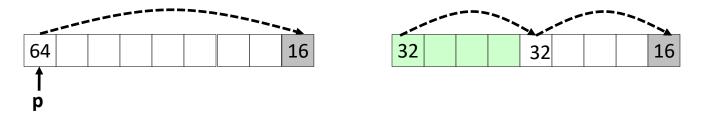
Comparing Strategies

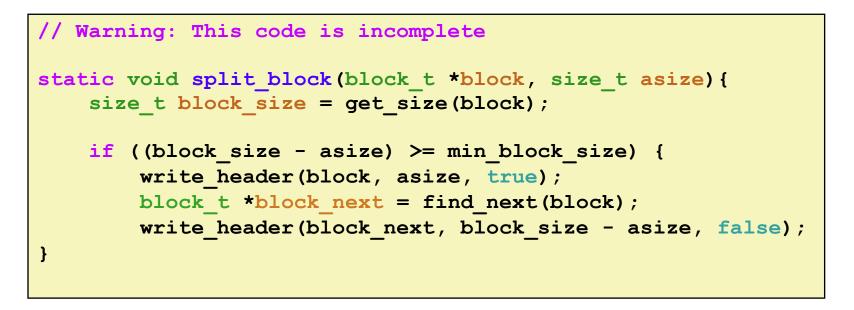

Total Overheads (for this benchmark)


- Perfect Fit: 1.6%
- Best Fit: 8.3%
- First Fit: 11.9%
- Next Fit: 21.6%

Implicit List: Allocating in Free Block

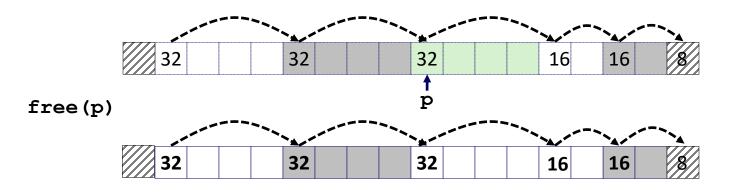
Allocating in a free block: *splitting*


 Since allocated space might be smaller than free space, we might want to split the block



Implicit List: Splitting Free Block

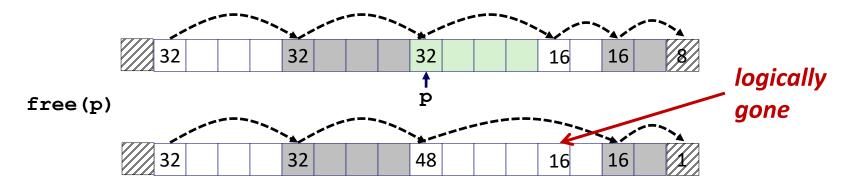
split_block(p, 32)



Implicit List: Freeing a Block

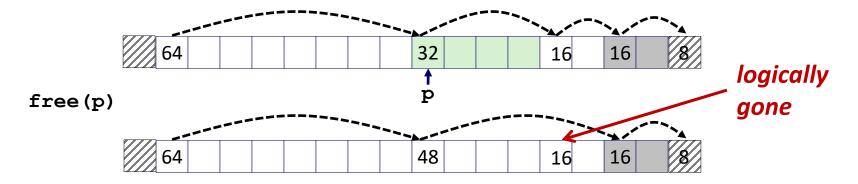
Simplest implementation:

- Need only clear the "allocated" flag
- But can lead to "false fragmentation"


malloc(5*SIZ)

Yikes!

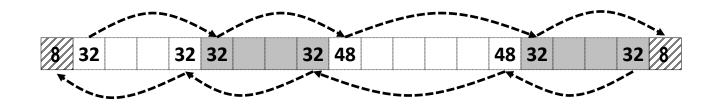
There is enough contiguous free space, but the allocator won't be able to find it


Implicit List: Coalescing

- Join (coalesce) with next/previous blocks, if they are free
 - Coalescing with next block

Implicit List: Coalescing

- Join (coalesce) with next block, if it is free
 - Coalescing with next block



- How do we coalesce with previous block?
 - How do we know where it starts?
 - How can we determine whether its allocated?

Implicit List: Bidirectional Coalescing

Boundary tags [Knuth73]

- Replicate size/allocated word at "bottom" (end) of free blocks
- Allows us to traverse the "list" backwards, but requires extra space
- Important and general technique!

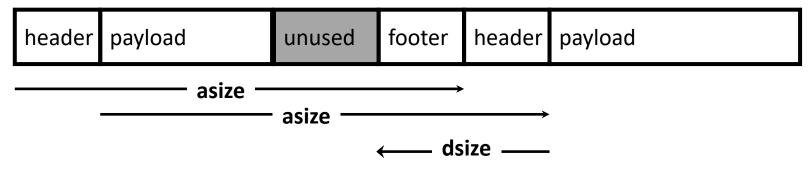
HeaderSizeaFormat of
allocated and
free blocksPayload and
paddingImage: Comparison of the second secon

a = 1: Allocated block a = 0: Free block

Size: Total block size

Payload: Application data (allocated blocks only)

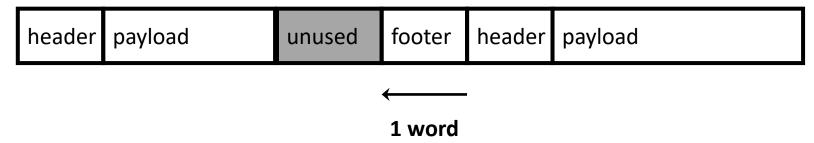
Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition


Quiz Time!

Check out:

Canvas > Day 12 – Malloc Basics

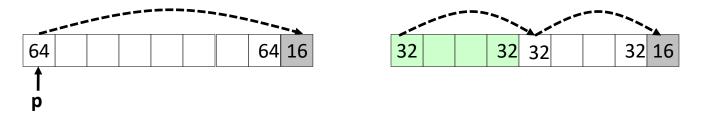
Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

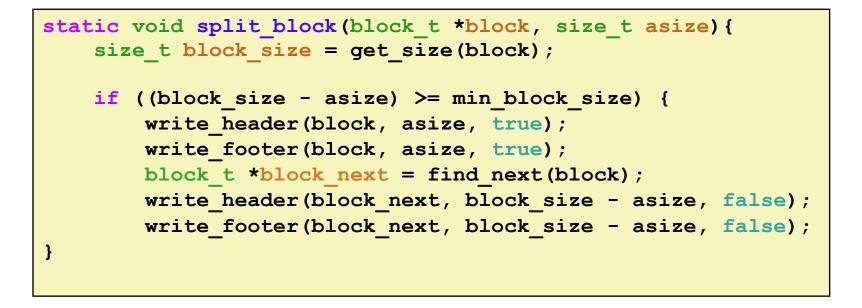

Implementation with Footers

Locating footer of current block

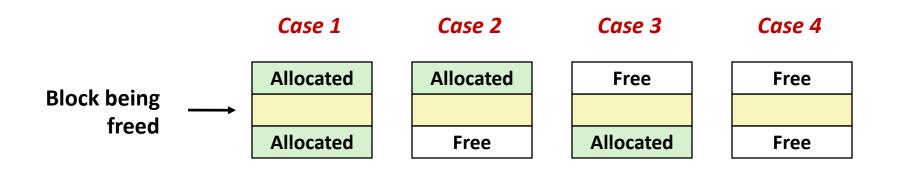
```
const size_t dsize = 2*sizeof(word_t);
static word_t *header_to_footer(block_t *block)
{
    size_t asize = get_size(block);
    return (word_t *) (block->payload + asize - dsize);
}
```

Implementation with Footers

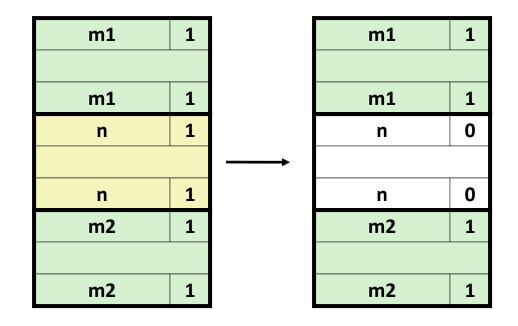


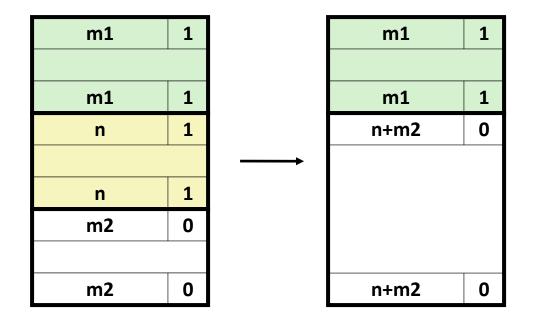

Locating footer of previous block

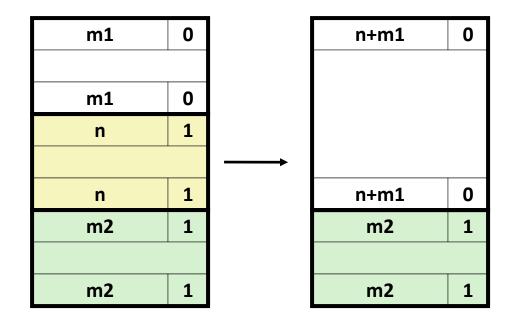
```
static word_t *find_prev_footer(block_t *block)
{
    return &(block->header) - 1;
}
```

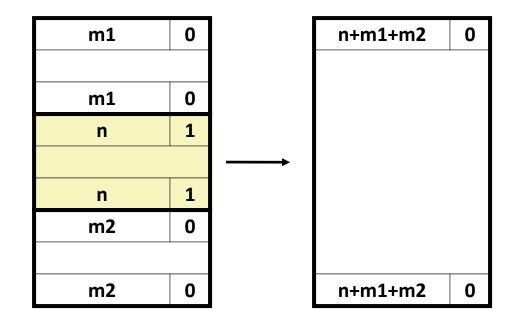

Splitting Free Block: Full Version

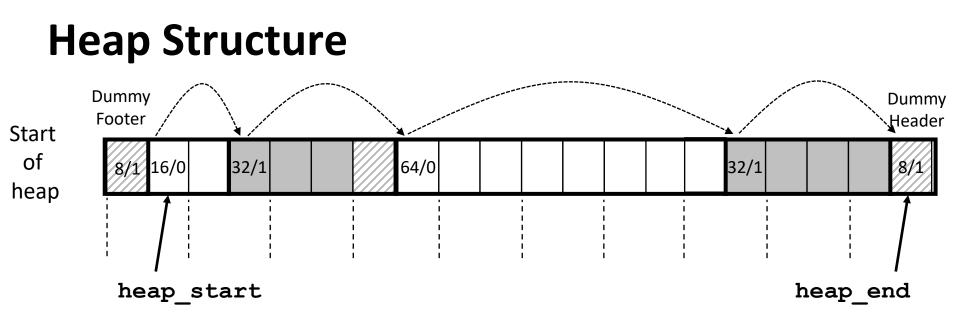
split_block(p, 32)




Constant Time Coalescing


Constant Time Coalescing (Case 1)


Constant Time Coalescing (Case 2)



Constant Time Coalescing (Case 3)

Constant Time Coalescing (Case 4)

Dummy footer before first header

- Marked as allocated
- Prevents accidental coalescing when freeing first block

Dummy header after last footer

Prevents accidental coalescing when freeing final block

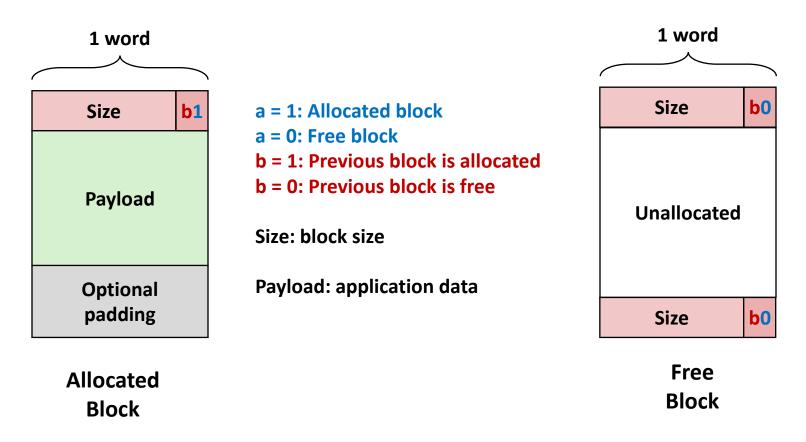
Top-Level Malloc Code

```
const size t dsize = 2*sizeof(word t);
void *mm malloc(size t size)
ł
    size t asize = round up(size + dsize, dsize);
   block t *block = find fit(asize);
    if (block == NULL)
        return NULL;
    size t block size = get size(block);
    write header (block, block size, true);
    write footer(block, block size, true);
    split block(block, asize);
    return header to payload (block);
```

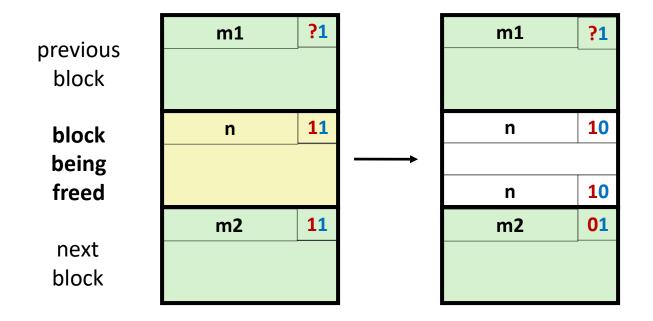
round_up(n, m) = m *((n+m-1)/m)

Top-Level Free Code

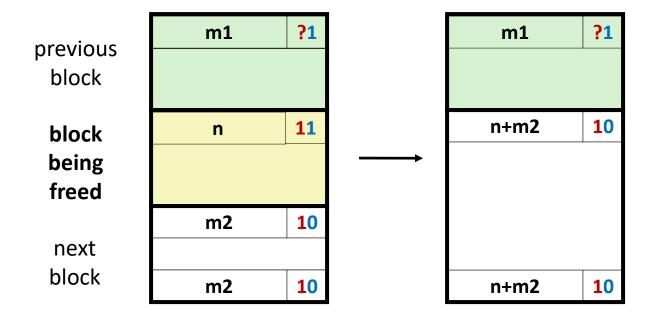
```
void mm_free(void *bp)
{
    block_t *block = payload_to_header(bp);
    size_t size = get_size(block);
    write_header(block, size, false);
    write_footer(block, size, false);
    coalesce_block(block);
}
```

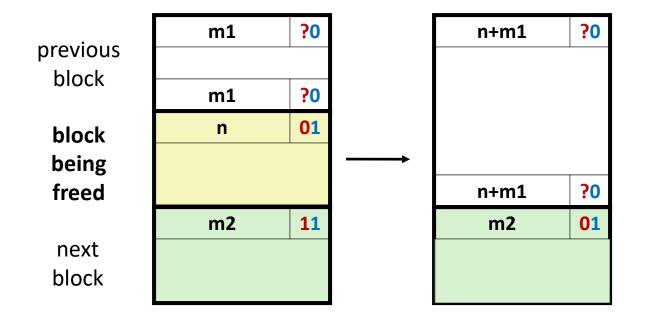

Disadvantages of Boundary Tags

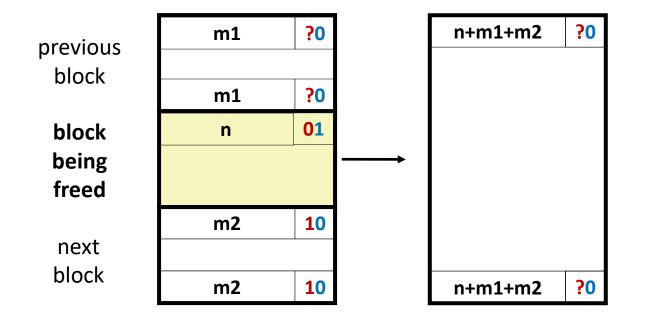
- Internal fragmentation
- Can it be optimized?
 - Which blocks need the footer tag?
 - What does that mean?


Size	а
Payload and padding	
Size	а

No Boundary Tag for Allocated Blocks


- Boundary tag needed only for free blocks
- When sizes are multiples of 16, have 4 spare bits


No Boundary Tag for Allocated Blocks (Case 1)


No Boundary Tag for Allocated Blocks (Case 2)

No Boundary Tag for Allocated Blocks (Case 3)

No Boundary Tag for Allocated Blocks (Case 4)

Summary of Key Allocator Policies

Placement policy:

- First-fit, next-fit, best-fit, etc.
- Trades off lower throughput for less fragmentation
- Interesting observation: segregated free lists (next lecture) approximate a best fit placement policy without having to search entire free list

Splitting policy:

- When do we go ahead and split free blocks?
- How much internal fragmentation are we willing to tolerate?

Coalescing policy:

- Immediate coalescing: coalesce each time free is called
- Deferred coalescing: try to improve performance of free by deferring coalescing until needed.

Implicit Lists: Summary

Implementation: very simple

Allocate cost:

linear time worst case

Free cost:

- constant time worst case
- even with coalescing

Memory Overhead

- will depend on placement policy
- First-fit, next-fit or best-fit
- Not used in practice for malloc/free because of lineartime allocation
 - used in many special purpose applications

However, the concepts of splitting and boundary tag coalescing are general to *all* allocators