
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

14-513 18-613

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Overview +
From Bits to Integers

18-213/18-613
Introduction to Computer Systems

1st Lecture, Jan 18, 2022

Instructor

Greg Kesden

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Scope:
(Systems) Knowledge is Power!
 Scope

▪ Computer organization (instruction-set architecture and assembly
programming, etc)

▪ Software development tool chain (ABI, compilers, linkers, debuggers, etc)

▪ Memory hierarchy (types of memory, locality, caching)

▪ Virtual memory

▪ Processes and process management

▪ Exceptions, signals, and other exceptional control flow

▪ Files, File systems, and File I/O

▪ Networking and Network programming

▪ Concurrency and concurrency control (synchronization)

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective
 Most Systems Courses are Builder-Centric

▪ Computer Architecture: Design pipelined processor in Verilog

▪ Operating Systems: Implement sample portions of operating system

▪ Compilers: Write compiler for simple language

▪ Networking: Implement and simulate network protocols

 Our Course is Programmer-Centric

▪ By knowing more about the underlying system, you can be more effective
as a programmer:

▪ Write programs that are more reliable and efficient

▪ Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

▪ There is material in this course that you won’t see elsewhere

▪ We bring out the hacker in everyone!

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

It’s Important to Understand How Things
Work
 Why do I need to know this stuff?

▪ Abstraction is good, but don’t forget reality

 Most CS courses emphasize abstraction

▪ (CE courses less so)

▪ Abstract data types

▪ Asymptotic analysis

 These abstractions have limits

▪ Especially in the presence of bugs

▪ Need to understand details of underlying implementations

▪ Sometimes the abstract interfaces don’t provide the level of control or
performance you need

 Important foundation for downstream courses, industry, etc.

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Components
 Lectures

▪ Higher level concepts

▪ In-class quizzes could tilt you to a higher grade if borderline

 Labs (8)

▪ 1-2+ weeks each

▪ Provide in-depth understanding of an aspect of systems

▪ Programming and measurement

▪ Done via Autolab

 Weekly Assignments (drop lowest two)

▪ Done via Canvas

▪ Reinforce concepts

▪ Take-home midterm exam counts as a double homework

 Final Exam

▪ Test your understanding of concepts & mathematical principles

▪ Covers content from the whole semester

 Small student groups (weekly)

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Role within CS/ECE Curriculum CS 122
Imperative
Programming

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

CS Systems
• 15-319 Cloud Computing
• 15-330 Computer Security
• 15-410 Operating Systems
• 15-411 Compiler Design
• 15-415 Database Applications
• 15-418 Parallel Computing
• 15-440 Distributed Systems
• 15-441 Computer Networks
• 15-445 Database Systems

ECE Systems
• 18-349 Computer Security
• 18-349 Intro to Embedded Systems
• 18-441 Computer Networks
• 18-447 Computer Architecture
• 18-452 Wireless Networking
• 18-451 Cyberphysical Systems

CS Graphics
• 15-462 Computer Graphics
• 15-463 Comp. Photography

213/513
/613

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie MellonCarnegie Mellon

Getting Help

 Class Web pages:

http://www.cs.cmu.edu/~18213 for 18-213/18-613

▪ Complete schedule of lectures, exams, and assignments

▪ Copies of lectures, assignments, exams, solutions

▪ FAQ

 Piazza

▪ Best place for questions about assignments

▪ We will fill the FAQ and Piazza with answers to common questions

▪ Be careful about public posts: Remember the AIV policy

 Canvas

▪ Recorded lectures

▪ In-class quizzes

▪ Written assignments

http://www.cs.cmu.edu/~18213

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie MellonCarnegie Mellon

Getting Help

 Email

▪ Send email to individual instructors or TAs only to schedule appointments
▪ (Kesden is the exception, and you can feel free to email or call, he is sometimes hard to reach otherwise)

 Office hours

▪ TAs: Sun-Thurs 6-10 pm

▪ Instructor: https://www.andrew.cmu.edu/~gkesden/schedule.html

 1:1 Appointments

▪ You can schedule 1:1 appointments with any of the teaching staff

https://www.andrew.cmu.edu/~gkesden/schedule.html

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Small Student Groups
 Replaces recitation

 Begins next week during scheduled recitation time

 Goal: Descale the course, making it more personal and
personally supportive

▪ Also taming office hours, which could get crazy at times in the past.

 Groups of 5 students + 1 TA facilitator

▪ Meet for 1 hour each week (Mandatory)

▪ Maintain a group chat (Slack, GroupMe, Hangouts, WeChat, whatever)

▪ Try to develop a good social bond, like 5 friends going through class

▪ And a TA who really knows you and how to support you

▪ TAs have time reserved for helping their group members, hopefully
reducing dependency upon global office hours

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

TA Office Hours
 6-10pm, Sundays – Thursdays

▪ Plus special office hours for CMU-SV students at the CMU-SV campus

▪ 6-8pm, Local or Remote; 8-10pm, Remote (via Zoom) only

▪ Starts soon, standby for announcement

 No queue, sign up for time in 15 minute intervals

▪ Can sign up for as many as you’d like

▪ But you can only have one outstanding appointment at a time

▪ Once you finish the appointment, you can make another.

▪ Often times slots are immediately available

▪ Even on busy days, it seems to take less than 45minutes

▪ Sign-ups open at a random time in the morning.

▪ Don’t sign up “just in case”.

 Local: Ansys A050

▪ Need to reserve a slot; don’t stalk TAs.

 Remote: https://office-hours-01.andrew.cmu.edu:4443/

▪ Via Zoom. Link in OH Page.

▪ Will be in waitroom until TA is ready

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Textbooks

 Randal E. Bryant and David R. O’Hallaron,

▪ Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),
Pearson, 2016

▪ http://csapp.cs.cmu.edu

▪ This book really matters for the course!

▪ How to solve labs

▪ Practice problems typical of exam problems

▪ Electronic editions available (Don’t get paperback version!)

▪ On reserve in Sorrells Library

 Brian Kernighan and Dennis Ritchie,

▪ The C Programming Language, Second Edition, Prentice Hall, 1988

▪ Still the best book about C, from the originators

▪ Even though it does not cover more recent extensions of C

▪ On reserve in Sorrells Library

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Autolab (https://autolab.andrew.cmu.edu)

 Labs are provided by the CMU Autolab system

▪ Project page: http://autolab.andrew.cmu.edu

▪ Developed by CMU faculty and students

▪ Key ideas: Autograding and Scoreboards

▪ Autograding: Providing you with instant feedback.

▪ Scoreboards: Real-time, rank-ordered, and anonymous summary.

▪ Used by over 3,000 students each semester

 With Autolab you can use your Web browser to:

▪ Download the lab materials

▪ Handin your code for autograding by the Autolab server

▪ View the class scoreboard

▪ View the complete history of your code handins, autograded results,
instructor’s evaluations, and gradebook.

▪ View the TA annotations of your code for Style points.

http://autolab.cs.cmu.edu/

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Facilities

 Labs will use the Intel Computer Systems Cluster

▪ The “shark machines”

▪ linux> ssh shark.ics.cs.cmu.edu

▪ 21 servers donated by Intel for 213/513/613

▪ 10 student machines (for student logins)

▪ 1 head node (for instructor logins)

▪ 10 grading machines (for autograding)

▪ Each server: Intel Core i7: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1

▪ Rack-mounted in Gates machine room

▪ Login using your Andrew ID and password

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Policies: Grading

 Labs (50%): weighted according to effort

 Final Exam (25%)

 Written Assignments (20%): drop lowest 2

 Small group participation (5%)

 Final grades based on a straight scale (90/80/70/60)

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Timeliness
 Grace days

▪ 5 grace days for the semester

▪ Limit of 0, 1, or 2 grace days per lab used automatically

▪ Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

 Lateness penalties

▪ Once grace day(s) used up, get penalized 15% per day

▪ No handins later than 3 days after due date (See lab page for details)

 Catastrophic events

▪ Major illness, death in family, …

▪ Formulate a plan (with your academic advisor) to get back on track

 Advice

▪ Once you start running late, it’s really hard to catch up

▪ Try to save your grace days until the last few labs

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description

 http://www.cs.cmu.edu/~18213/academicintegrity.html

 What is NOT cheating?

▪ Explaining how to use systems or tools

▪ Helping others with high-level design issues

▪ High means very high

▪ Using code supplied by us

▪ Starter code, class examples

▪ Using code from the CS:APP web site

 Attribution Requirements

▪ Starter code: No

▪ Other allowed code (course, CS:APP): Yes

▪ Indicate source, beginning and end

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Some Concrete Examples:
 This is Cheating:

▪ Searching the internet with the phrase 15-213, 15213, 213, 18213,
malloclab, etc.

▪ That’s right, just entering it in a search engine

▪ Looking at someone’s code on the computer next to yours

▪ Giving your code to someone else, now or in the future

▪ Posting your code in a publicly accessible place on the Internet, now or in
the future

▪ Hacking the course infrastructure

 This is OK (and encouraged):

▪ Googling a man page for fputs

▪ Asking a friend for help with gdb (but not with your code)

▪ Asking a TA or course instructor for help, showing them your code, …

▪ Using code examples from book (with attribution)

▪ Talking about a (high-level) approach to the lab with a classmate

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating: Consequences
 Penalty for cheating:

▪ Best case: -100% for assignment

▪ You would be better off to turn in nothing

▪ Worst case: Removal from course with failing grade

▪ This is the default

▪ Permanent mark on your record

▪ Loss of respect by you, the instructors and your colleagues

▪ If you do cheat – come clean asap!

 Detection of cheating:
▪ We have sophisticated tools for detecting code plagiarism

▪ In Fall 2015, 20 students were caught cheating and failed the course.

▪ Some were expelled from the University

▪ In January 2016, 11 students were penalized for cheating violations that occurred as far back as
Spring 2014.

▪ In May 2019, we gave an AIV to a student who took the course in Fall 2018 for unauthorized
coaching of a Spring 2019 student. His grade was changed retroactively.

 Don’t do it!
▪ Manage your time carefully

▪ Ask the staff for help when you get stuck

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why It’s a Big Deal

 This material is best learned by doing

▪ Even though that can, at times, be difficult and frustrating

▪ Starting with a copy of a program and then tweaking it is very different
from writing from scratch

▪ Planning, designing, organizing a program are important skills

 We are the gateway to other system courses

▪ Want to make sure everyone completing the course has mastered the
material

 Industry appreciates the value of this course

▪ We want to make sure anyone claiming to have taken the course is
prepared for the real world

 Working in teams and collaboration is an important skill

▪ But only if team members have solid foundations

▪ This course is about foundations, not teamwork

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How to Avoid AIVs

 Start early

 Don’t rely on marathon programming sessions

▪ Your brain works better in small bursts of activity

▪ Ideas / solutions will come to mind while you’re doing other things

 Plan for stumbling blocks

▪ Assignment is harder than you expected

▪ Code doesn’t work

▪ Bugs hard to track down

▪ Life gets in the way

▪ Minor health issues

▪ Unanticipated events

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Analog Computers
 Before digital computers there were analog computers.

 Consider a couple of simple analog computers:

▪ A simple circuit can allow one to adjust voltages using variable
resistors and measure the output using a volt meter:

▪ A simple network of adjustable parallel resistors can allow one to
find the average of the inputs.

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-
Summer-Calculator.phtml

https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-
without-a-transistor-op-amp-and-any-external-supply

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Needing Less Accuracy, Precision is Better
 We don’t try to measure exactly

▪ We just ask, is it high enough to be “On”, or

▪ Is it low enough to be “Off”.

 We have two states, so we have a binary, or 2-ary, system.

▪ We represent these states as 0 and 1

 Now we can easily interpret, communicate, and duplicate signals well enough to know
what they mean.

0.0V

0.2V

0.9V

1.1V

0 1 0

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Binary Representation
 Binary representation leads to a simple binary, i.e. base-2,

numbering system

▪ 0 represents 0

▪ 1 represents 1

▪ Each “place” represents a power of two, exactly as each place in our
usual “base 10”, 10-ary numbering system represents a power of 10

 By encoding/interpreting sets of bits in various ways, we
can represent different things:

▪ Operations to be executed by the processor, numbers, enumerable
things, such as text characters

 As long as we can assign it to a discrete number, we can
represent it in binary

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Binary Representation:
Simple Numbers
 For example, we can count in binary, a base-2 numbering

system

▪ 000, 001, 010, 011, 100, 101, 110, 111, …

▪ 000 = 0*22 + 0*21 + 0*20 = 0 (in decimal)

▪ 001 = 0*22 + 0*21 + 1*20 = 1 (in decimal)

▪ 010 = 0*22 + 1*21 + 0*20 = 2 (in decimal)

▪ 011 = 0*22 + 1*21 + 1*20 = 3 (in decimal)

▪ Etc.

 For reference, consider some base-10 examples:

▪ 000 = 0*102 + 0*101 + 0*100

▪ 001 = 0*102 + 0*101 + 1*100

▪ 357 = 3*102 + 5*101 + 7*20

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Hexadecimal and Octal

 Writing out numbers in binary takes too many digits

 We want a way to represent numbers more densely such that
fewer digits are required

▪ But also such that it is easy to get at the bits that we want

 Any power-of-two base provides this property

▪ Octal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our
familiar base-10.

▪ Each has been used by “computer people” over time

▪ Hexadecimal is often preferred because it is denser.

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Hexadecimal
 Hexadecimal 0016 to FF16

▪ Base 16 number representation

▪ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Consider 1A2B in Hexadecimal:

▪ 1*163 + A*162 + 2*161 + B*160

▪ 1*163 + 10*162 + 2*161 + 11*160 = 6699 (decimal)

▪ The C Language prefixes hexadecimal numbers with “0x”
so they aren’t confused with decimal numbers

▪ Write FA1D37B16 in C as

▪ 0xFA1D37B

▪ 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15213: 0011 1011 0110 1101

3 B 6 D

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Boolean Algebra
 Developed by George Boole in 19th Century

▪ Algebraic representation of logic

▪ Encode “True” as 1 and “False” as 0

And
◼ A&B = 1 when both A=1 and B=1

Or
◼ A|B = 1 when either A=1 or B=1

Not
◼ ~A = 1 when A=0

Exclusive-Or (Xor)
◼ A^B = 1 when either A=1 or B=1, but not both

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

General Boolean Algebras

 Operate on Bit Vectors

▪ Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Example: Representing & Manipulating Sets

 Representation

▪ Width w bit vector represents subsets of {0, …, w–1}

▪ aj = 1 if j ∈ A

▪ 01101001 { 0, 3, 5, 6 }

▪ 76543210

▪ 01010101 { 0, 2, 4, 6 }

▪ 76543210

 Operations

▪ & Intersection 01000001 { 0, 6 }

▪ | Union 01111101 { 0, 2, 3, 4, 5, 6 }

▪ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

▪ ~ Complement 10101010 { 1, 3, 5, 7 }

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C

▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF

▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41

▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D

▪ 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 1011 11100xBE~010000012 → 101111102

▪ ~0x00 → 1111 11110xF~000000002 → 1111112

▪ 0x69 & 0x55: 0x69 | 0x55:

0110 1001 0110 1001

& 0101 0101 | 0101 0101

----------------- -----------------

0100 0001011010 0111 1101011010012 012 & 010101012 → 010000012

0x7D

▪ 011010012 | 010101012 → 011111012

Bit-Level Operations in C

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Contrast: Logic Operations in C

 Contrast to Bit-Level Operators

▪ Logic Operations: &&, ||, !

▪ View 0 as “False”

▪ Anything nonzero as “True”

▪ Always return 0 or 1

▪ Early termination

 Examples (char data type)
▪ !0x41 → 0x00

▪ !0x00 → 0x01

▪ !!0x41→ 0x01

▪ 0x69 && 0x55 → 0x01

▪ 0x69 || 0x55 → 0x01

▪ p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
Super common C programming pitfall!

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Shift Operations

 Left Shift: x << y

▪ Shift bit-vector x left y positions

– Throw away extra bits on left

▪ Fill with 0’s on right

 Right Shift: x >> y

▪ Shift bit-vector x right y positions

▪ Throw away extra bits on right

▪ Logical shift

▪ Fill with 0’s on left

▪ Arithmetic shift

▪ Replicate most significant bit on left

 Undefined Behavior

▪ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Binary Number Lines
 In binary, the number of bits in the data type size

determines the number of points on the number line.

▪ We can assign the points any meaning we’d like

 Consider the following examples:

▪ 1 bit number line

0 1

▪ 2 bit number line

00 01 10 11

▪ 3 bit number line

000 001 010 011 100 101 110 111

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Some Purely Imaginary Examples

 3 bit number line

-1/16 -1/8 -1/4 0 1/16 1/8 1/4 1/2

0 1 2 3 4 5 6 7

-4 -3 -2 -1 0 1 2 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5

A B C D E F G H

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Overflow

 Let’s consider a simple 3 digit number line:

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

 What happens if we add 1 to 7?

▪ In other words, what happens if we add 1 to 111?

 111+ 001 = 1 000

▪ But, we only get 3 bits – so we lose the leading-1.

▪ This is called overflow

 The result is 000

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Modulus Arithmetic

 Let’s explore this idea of overflow some more

▪ 111 + 001 = 1 000 = 000

▪ 111 + 010 = 1 001 = 001

▪ 111 + 011 = 1 010 = 010

▪ 111 + 100 = 1 011 = 011

▪ …

▪ 111 + 110 = 1 101 = 101

▪ 111 + 111 = 1 110 = 110

 So, arithmetic “wraps around” when it gets “too positive”

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Unsigned and Non-Negative Integers

 We’ll use the term “ints” to mean the finite set of integer
numbers that we can represent on a number line enumerated
by some fixed number of bits, i.e. bit width.

 We normally represent unsigned and non-negative int using
simple binary as we have already discussed

▪ An “unsigned” int is any int on a number line, e.g. of a data type, that
doesn’t contain any negative numbers

▪ A non-negative number is a number greater than or equal to (>=) 0 on a
number line, e.g. of a data type, that does contain negative numbers

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How represent negative Numbers?
 We could use the leading bit as a sign bit:

▪ 0 means non-negative

▪ 1 means negative

000 001 010 011 100 101 110 111

0 1 2 3 -0 -1 -2 -3

 This has some benefits

▪ It lets us represent negative and non-negative numbers

▪ 0 represents 0

 It also has some drawbacks

▪ There is a -0, which is the same as 0, except that it is different

▪ How to add such numbers 1 + -1 should equal 0

▪ But, by simple math, 001 + 101 = 110, which is -2?

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A Magic Trick!
 Let’s just start with three ideas:

▪ 1 should be represented as 1

▪ -1 + 1 = 0

▪ We want addition to work in the familiar way, with simple rules.

 We want a situation where “-1” + 1 = 0

 Consider a 3 bit number:

▪ 001 + “-1” = 0

▪ 001 + 111 = 0

▪ Remember 001 + 111 = 1 000, and the leading one is lost to
overflow.

 “-1” = 111

▪ Yep!

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Negative Numbers

 Well, if 111 is -1, what is -2?

▪ -1 - 1

▪ 111 – 001 = 110

 Does that really work?

▪ If it does -2 + 2 = 0

▪ 110 + 010 = 1 000 = 000

 -2 + 5 should be 3, right?

▪ 110 + 101 = 1 011 = 011

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Finding –x the easy way

 Given a non-negative number in binary, e.g. 5, represented
with a fixed bit width, e.g. 4

▪ 0101

 We can find its negative by flipping each bit and adding 1

▪ 0101 This is 5

▪ 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped

▪ 1011 This is the “twos complement of 5”, e.g. 5 with the bits
flipped and 1 added

▪ 0101 + 1011 = 1 0000 = 0000

▪ -x = ~x+1

 Because of the fixed width, the “two’s complement” of a
number can be used as its negative.

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why Does This Work?
 Consider any number and its (ones) complement:

▪ 0101

▪ 1010

 They are called complements because complementary bits
are set. As a result, if they are added, all bits are necessarily
set:

▪ 0101 + 1010 = 1111

 Adding 1 to the sum of a number and its complement
necessarily results in a 0 due to overflow

▪ (0101 + 1010) + 1 = 1111 + 1 = 1 0000 = 0000

 And if x + y = 0, y must equal –x

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why Does This Work? Cont.

 If x + y = 0

▪ y must equal –x

 So if x + (Complement(x) + 1) = 0

▪ Complement(x) + 1 must equal –x

 Another way of looking at it:

▪ if x + (Complement(x) + 1) = 0

▪ x + Complement(x) = -1

▪ x = -1 - Complement(x)

▪ -x = 1 + Complement(x)

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Visualizing Two’s Complement

 Numbers “wrap around” with -1 at the very end

000 001 010 011 100 101 110 111

0 1 2 3 -4 -3 -2 -1

 A few things to note:

▪ All negative numbers start with a ”1”

▪ E.g. 100 is “-4”

▪ You can view the leading “1” as introducing a “-4”

▪ E.g. 101 = 1*-4+0*2+1*1= -3

▪ But 010 = 0*-4+1*2+0*1 = 2

▪ -4 is missing a positive partner

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Complement & Increment Examples

 Decimal Hex Binary
x -32768 80 00 10000000 00000000

~x 32767 7F FF 01111111 11111111

~x+1 -32768 80 00 10000000 00000000

x = Tmin (The most negative two’s complement number)

 Decimal Hex Binary
0 0 00 00 00000000 00000000

~0 -1 FF FF 11111111 11111111

~0+1 0 00 00 00000000 00000000

x = 0

Canonical counter example

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Encoding Integers: Dense Form

short int x = 15213;

short int y = -15213;

 C does not mandate using two’s complement

▪ But, most machines do, and we will assume so

 C short 2 bytes long

 Sign Bit

▪ For 2’s complement, most significant bit indicates sign

▪ 0 for nonnegative

▪ 1 for negative

B2T (X) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2

B2U(X) = xi 2
i

i=0

w−1

Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

y -15213 C4 93 11000100 10010011

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Numeric Ranges
 Unsigned Values

▪ UMin = 0

000…0

▪ UMax = 2w – 1

111…1

 Two’s Complement Values

▪ TMin = –2w–1

100…0

▪ TMax = 2w–1 – 1

011…1

▪ Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Quiz Time!

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mapping Signed Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
 2’s Comp. → Unsigned

▪ Ordering Inversion

▪ Negative → Big Positive

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Signed vs. Unsigned in C

 Constants

▪ By default are considered to be signed integers

▪ Unsigned if have “U” as suffix

0U, 4294967259U

 Casting

▪ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

▪ Implicit casting also occurs via assignments and procedure calls

tx = ux; int fun(unsigned u);

uy = ty; uy = fun(tx);

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0 0U == unsigned

-1 0 < signed

-1 0U > unsigned

2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned

-1 -2 > signed

(unsigned) -1 -2 > unsigned

2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

▪ If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

▪ Including comparison operations <, >, ==, <=, >=

▪ Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

2147483647 -2147483647-1

2147483647U -2147483647-1

-1 -2

(unsigned)-1 -2

2147483647 2147483648U

2147483647 (int) 2147483648U

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
▪ int is cast to unsigned!!

Summary
Casting Signed ↔ Unsigned: Basic Rules

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Sign Extension

 Task:

▪ Given w-bit signed integer x

▪ Convert it to w+k-bit integer with same value

 Rule:

▪ Make k copies of sign bit:

▪ X’ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X’
• • • • • •

• • •

w

wk

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 =

Positive number Negative number

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Truncation

 Task:

▪ Given k+w-bit signed or unsigned integer X

▪ Convert it to w-bit integer X’ with same value for “small enough” X

 Rule:

▪ Drop top k bits:

▪ X = xw–1 , xw–2 ,…, x0

• • •

• • •X‘

w

X • • • • • •

wk

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)

▪ Unsigned: zeros added

▪ Signed: sign extension

▪ Both yield expected result

 Truncating (e.g., unsigned to unsigned short)

▪ Unsigned/signed: bits are truncated

▪ Result reinterpreted

▪ Unsigned: mod operation

▪ Signed: similar to mod

▪ For small (in magnitude) numbers yields expected behavior

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Unsigned Addition

 Standard Addition Function

▪ Ignores carry output

 Implements Modular Arithmetic

s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001

+ 1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

223

+ 213

446

190

unsigned char

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior

▪ Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

▪ Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001

+ 1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

-23

+ -43

-66

-66

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing “True Sum” Integer Addition

 Integer Addition

▪ 4-bit integers u, v

▪ Compute true sum
Add4(u , v)

▪ Values increase linearly
with u and v

▪ Forms planar surface

Add4(u , v)

u

v

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

 Wraps Around

▪ If true sum ≥ 2w

▪ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

 Values

▪ 4-bit two’s comp.

▪ Range from -8 to +7

 Wraps Around

▪ If sum 2w–1

▪ Becomes negative

▪ At most once

▪ If sum < –2w–1

▪ Becomes positive

▪ At most once

TAdd4(u , v)

u

v

PosOver

NegOver

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Multiplication
 Goal: Computing Product of w-bit numbers x, y
▪ Either signed or unsigned

 Result: Same as computing ideal, exact result x*y and keeping
w lower bits.

 Ideal,exact results can be bigger than w bits

▪ Worst case is up to 2w bits

▪ Unsigned, because all bits are magnitude

▪ Signed, but only for Tmin*Tmin, because anything added to Tmin
reduces its magnitude and Tmax is less than Tmin.

 So, maintaining exact results…

▪ would need to keep expanding word size with each product computed

▪ Impossible in hardware (at least without limits), as all resources are finite

▪ In practice, is done in software, if needed

▪ e.g., by “arbitrary precision” arithmetic packages

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Power-of-2 Multiply with Shift

 Operation
▪ u << k gives u * 2k

▪ Both signed and unsigned

 Examples
▪ u << 3 == u * 8

▪ (u << 5) – (u << 3) == u * 24

▪ Most machines shift and add faster than multiply

▪ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
▪ u >> k gives u / 2k

▪ Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k •••Result:

.

Binary Point

0

0 0 0•••0

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Signed Power-of-2 Divide with Shift
 Quotient of Signed by Power of 2
▪ x >> k gives x / 2k

▪ Uses arithmetic shift

▪
Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a
bias).

0 0 1 0 0 0•••

x

2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary
x -15213 -15213 C4 93 11000100 10010011

x >> 1 -7606.5 -7607 E2 49 11100010 01001001

x >> 4 -950.8125 -951 FC 49 11111100 01001001

x >> 8 -59.4257813 -60 FF C4 11111111 11000100

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Round-toward-0 Divide
 Quotient of Negative Number by Power of 2
▪ Want x / 2k (Round Toward 0)

▪ Compute as (x+(2k-1))/ 2k

▪ In C: (x + (1<<k)-1) >> k

▪ Biases dividend toward 0

Case 1: No rounding

Divisor:

Dividend:

0 0 1 0 0 0•••

u

2k/

 u / 2k

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Byte Ordering

 So, how are the bytes within a multi-byte word ordered in
memory?

 Conventions

▪ Big Endian: Sun (Oracle SPARC), PPC Mac, Internet

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and Linux

▪ Least significant byte has lowest address

 Becomes a concern when data is communicated

▪ Over a network, via files, etc.

 Important notes

▪ Bits are not reversed, as the low order bit is the reference point.

▪ Doesn’t affect chars, or strings (arrays of chars), as chars are only one byte

81Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Byte Ordering Example

 Example

▪ Variable x has 4-byte value of 0x01234567

▪ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

82Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Address Instruction Code Assembly Rendition

8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

 Disassembly

▪ Text representation of binary machine code

▪ Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
▪ Value: 0x12ab

▪ Pad to 32 bits: 0x000012ab

▪ Split into bytes: 00 00 12 ab

▪ Reverse: ab 12 00 00

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thanks!

 Questions?

▪ See you for office hours!

▪ https://www.andrew.cmu.edu/~gkesden/schedule.html

