

Course Overview + From Bits to Integers

18-213/18-613
Introduction to Computer Systems
$1^{\text {st }}$ Lecture, Jan 18, 2022
Instructor

Greg Kesden

Scope:
 (Systems) Knowledge is Power!

■ Scope

- Computer organization (instruction-set architecture and assembly programming, etc)
- Software development tool chain (ABI, compilers, linkers, debuggers, etc)
- Memory hierarchy (types of memory, locality, caching)
- Virtual memory
- Processes and process management
- Exceptions, signals, and other exceptional control flow
- Files, File systems, and File I/O
- Networking and Network programming
- Concurrency and concurrency control (synchronization)

Course Perspective

■ Most Systems Courses are Builder-Centric

- Computer Architecture: Design pipelined processor in Verilog
- Operating Systems: Implement sample portions of operating system
- Compilers: Write compiler for simple language
- Networking: Implement and simulate network protocols

■ Our Course is Programmer-Centric

- By knowing more about the underlying system, you can be more effective as a programmer:
- Write programs that are more reliable and efficient
- Incorporate features that require hooks into OS
- E.g., concurrency, signal handlers
- There is material in this course that you won't see elsewhere
- We bring out the hacker in everyone!

It's Important to Understand How Things Work

■ Why do I need to know this stuff?

- Abstraction is good, but don't forget reality

■ Most CS courses emphasize abstraction

- (CE courses less so)
- Abstract data types
- Asymptotic analysis

■ These abstractions have limits

- Especially in the presence of bugs
- Need to understand details of underlying implementations
- Sometimes the abstract interfaces don't provide the level of control or performance you need
■ Important foundation for downstream courses, industry, etc.

Course Components

- Lectures
- Higher level concepts
- In-class quizzes could tilt you to a higher grade if borderline
- Labs (8)
- 1-2+ weeks each
- Provide in-depth understanding of an aspect of systems
- Programming and measurement
- Done via Autolab
- Weekly Assignments (drop lowest two)
- Done via Canvas
- Reinforce concepts
- Take-home midterm exam counts as a double homework
- Final Exam
- Test your understanding of concepts \& mathematical principles
- Covers content from the whole semester
- Small student groups (weekly)

Role within CS/ECE Curriculum

Foundation of Computer Systems Underlying principles for hardware, software, and networking

CS Systems

- 15-319 Cloud Computing
- 15-330 Computer Security
- 15-410 Operating Systems
- 15-411 Compiler Design
- 15-415 Database Applications
- 15-418 Parallel Computing
- 15-440 Distributed Systems
- 15-441 Computer Networks
- 15-445 Database Systems

213/513

/613

ECE Systems

- 18-349 Computer Security
- 18-349 Intro to Embedded Systems
- 18-441 Computer Networks
- 18-447 Computer Architecture
- 18-452 Wireless Networking
- 18-451 Cyberphysical Systems

CS Graphics

- 15-462 Computer Graphics
- 15-463 Comp. Photography

Getting Help

■ Class Web pages:
http://www.cs.cmu.edu/~18213 for 18-213/18-613

- Complete schedule of lectures, exams, and assignments
- Copies of lectures, assignments, exams, solutions
- FAQ
- Piazza
- Best place for questions about assignments
- We will fill the FAQ and Piazza with answers to common questions
- Be careful about public posts: Remember the AIV policy

■ Canvas

- Recorded lectures
- In-class quizzes
- Written assignments

Getting Help

■ Email

- Send email to individual instructors or TAs only to schedule appointments
- (Kesden is the exception, and you can feel free to email or call, he is sometimes hard to reach otherwise)

■ Office hours

- TAs: Sun-Thurs 6-10 pm
- Instructor: https://www.andrew.cmu.edu/~gkesden/schedule.html

■ 1:1 Appointments

- You can schedule 1:1 appointments with any of the teaching staff

Small Student Groups

■ Replaces recitation
■ Begins next week during scheduled recitation time
■ Goal: Descale the course, making it more personal and personally supportive

- Also taming office hours, which could get crazy at times in the past.

■ Groups of 5 students + 1 TA facilitator

- Meet for 1 hour each week (Mandatory)
- Maintain a group chat (Slack, GroupMe, Hangouts, WeChat, whatever)
- Try to develop a good social bond, like 5 friends going through class
- And a TA who really knows you and how to support you
- TAs have time reserved for helping their group members, hopefully reducing dependency upon global office hours

TA Office Hours

■ 6-10pm, Sundays - Thursdays

- Plus special office hours for CMU-SV students at the CMU-SV campus
- 6-8pm, Local or Remote; 8-10pm, Remote (via Zoom) only
- Starts soon, standby for announcement
- No queue, sign up for time in 15 minute intervals
- Can sign up for as many as you'd like
- But you can only have one outstanding appointment at a time
- Once you finish the appointment, you can make another.
- Often times slots are immediately available
- Even on busy days, it seems to take less than 45 minutes
- Sign-ups open at a random time in the morning.
- Don't sign up "just in case".

■ Local: Ansys A050

- Need to reserve a slot; don't stalk TAs.

■ Remote: https://office-hours-01.andrew.cmu.edu:4443/

- Via Zoom. Link in OH Page.
- Will be in waitroom until TA is ready

Textbooks

■ Randal E. Bryant and David R. O'Hallaron,

- Computer Systems: A Programmer's Perspective, Third Edition (CS:APP3e), Pearson, 2016
- http://csapp.cs.cmu.edu
- This book really matters for the course!
- How to solve labs
- Practice problems typical of exam problems
- Electronic editions available (Don't get paperback version!)
- On reserve in Sorrells Library

■ Brian Kernighan and Dennis Ritchie,

- The C Programming Language, Second Edition, Prentice Hall, 1988
- Still the best book about C, from the originators
- Even though it does not cover more recent extensions of C
- On reserve in Sorrells Library

Autolab (https://autolab.andrew.cmu.edu)

■ Labs are provided by the CMU Autolab system

- Project page: http://autolab.andrew.cmu.edu
- Developed by CMU faculty and students
- Key ideas: Autograding and Scoreboards
- Autograding: Providing you with instant feedback.
- Scoreboards: Real-time, rank-ordered, and anonymous summary.
- Used by over 3,000 students each semester

■ With Autolab you can use your Web browser to:

- Download the lab materials
- Handin your code for autograding by the Autolab server
- View the class scoreboard
- View the complete history of your code handins, autograded results, instructor's evaluations, and gradebook.
- View the TA annotations of your code for Style points.

Facilities

■ Labs will use the Intel Computer Systems Cluster

- The "shark machines"
- linux> ssh shark.ics.cs.cmu.edu
- 21 servers donated by Intel for 213/513/613
- 10 student machines (for student logins)
- 1 head node (for instructor logins)
- 10 grading machines (for autograding)
- Each server: Intel Core i7: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1
- Rack-mounted in Gates machine room
- Login using your Andrew ID and password

Policies: Grading

■ Labs (50\%): weighted according to effort

■ Final Exam (25\%)

■ Written Assignments (20\%): drop lowest 2

■ Small group participation (5\%)

■ Final grades based on a straight scale (90/80/70/60)

Timeliness

■ Grace days

- 5 grace days for the semester
- Limit of 0,1 , or 2 grace days per lab used automatically
- Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

■ Lateness penalties

- Once grace day(s) used up, get penalized 15% per day
- No handins later than 3 days after due date (See lab page for details)

■ Catastrophic events

- Major illness, death in family, ...
- Formulate a plan (with your academic advisor) to get back on track

■ Advice

- Once you start running late, it's really hard to catch up
- Try to save your grace days until the last few labs

Cheating/Plagiarism: Description

■ http://www.cs.cmu.edu/~18213/academicintegrity.html
$■$ What is NOT cheating?

- Explaining how to use systems or tools
- Helping others with high-level design issues
- High means very high
- Using code supplied by us
- Starter code, class examples
- Using code from the CS:APP web site

■ Attribution Requirements

- Starter code: No
- Other allowed code (course, CS:APP): Yes
- Indicate source, beginning and end

Some Concrete Examples:

■ This is Cheating:

- Searching the internet with the phrase 15-213, 15213, 213, 18213, malloclab, etc.
- That's right, just entering it in a search engine
- Looking at someone's code on the computer next to yours
- Giving your code to someone else, now or in the future
- Posting your code in a publicly accessible place on the Internet, now or in the future
- Hacking the course infrastructure

■ This is OK (and encouraged):

- Googling a man page for fputs
- Asking a friend for help with gdb (but not with your code)
- Asking a TA or course instructor for help, showing them your code, ...
- Using code examples from book (with attribution)
- Talking about a (high-level) approach to the lab with a classmate

Cheating: Consequences

- Penalty for cheating:

- Best case: - 100% for assignment
- You would be better off to turn in nothing
- Worst case: Removal from course with failing grade
- This is the default
- Permanent mark on your record
- Loss of respect by you, the instructors and your colleagues
- If you do cheat - come clean asap!
- Detection of cheating:
- We have sophisticated tools for detecting code plagiarism
- In Fall 2015, 20 students were caught cheating and failed the course.
- Some were expelled from the University
- In January 2016, 11 students were penalized for cheating violations that occurred as far back as Spring 2014.
- In May 2019, we gave an AIV to a student who took the course in Fall 2018 for unauthorized coaching of a Spring 2019 student. His grade was changed retroactively.
- Don't do it!
- Manage your time carefully
- Ask the staff for help when you get stuck

Why It's a Big Deal

■ This material is best learned by doing

- Even though that can, at times, be difficult and frustrating
- Starting with a copy of a program and then tweaking it is very different from writing from scratch
- Planning, designing, organizing a program are important skills
$■$ We are the gateway to other system courses
- Want to make sure everyone completing the course has mastered the material
■ Industry appreciates the value of this course
- We want to make sure anyone claiming to have taken the course is prepared for the real world
$■$ Working in teams and collaboration is an important skill
- But only if team members have solid foundations
- This course is about foundations, not teamwork

How to Avoid AIVs

■ Start early
■ Don't rely on marathon programming sessions

- Your brain works better in small bursts of activity
- Ideas / solutions will come to mind while you're doing other things

■ Plan for stumbling blocks

- Assignment is harder than you expected
- Code doesn't work
- Bugs hard to track down
- Life gets in the way
- Minor health issues
- Unanticipated events

Bits, Bytes, and Integers

■ Representing information as bits
■ Bit-level manipulations
■ Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

■ Byte Ordering

Analog Computers

$■$ Before digital computers there were analog computers.

■ Consider a couple of simple analog computers:

- A simple circuit can allow one to adjust voltages using variable resistors and measure the output using a volt meter:
- A simple network of adjustable parallel resistors can allow one to find the average of the inputs.

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-
Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-
without-a-transistor-op-amp-and-any-external-supply

Needing Less Accuracy, Precision is Better

- We don't try to measure exactly
- We just ask, is it high enough to be "On", or
" Is it low enough to be "Off".

■ We have two states, so we have a binary, or 2-ary, system.

- We represent these states as 0 and 1

■ Now we can easily interpret, communicate, and duplicate signals well enough to know what they mean.

Binary Representation

■ Binary representation leads to a simple binary, i.e. base-2, numbering system

- 0 represents 0
- 1 represents 1
- Each "place" represents a power of two, exactly as each place in our usual "base 10", 10-ary numbering system represents a power of 10
■ By encoding/interpreting sets of bits in various ways, we can represent different things:
- Operations to be executed by the processor, numbers, enumerable things, such as text characters
■ As long as we can assign it to a discrete number, we can represent it in binary

Binary Representation: Simple Numbers

■ For example, we can count in binary, a base-2 numbering system

- 000, 001, 010, 011, 100, 101, 110, 111, ...
- $000=0^{*} 2^{2}+0^{*} 2^{1+} 0^{*} 2^{0}=0$ (in decimal)
- $001=0^{*} 2^{2}+0^{*} 2^{1+} 1^{*} 2^{0}=1$ (in decimal)
- $010=0^{*} 2^{2}+1^{*} 2^{1+} 0^{*} 2^{0}=2$ (in decimal)
- $011=0^{*} 2^{2}+1^{*} 2^{1+} 1^{*} 2^{0}=3$ (in decimal)
- Etc.

■ For reference, consider some base-10 examples:

- $000=0 * 10^{2}+0 * 10^{1+} 0 * 10^{0}$
- $001=0 * 10^{2}+0 * 10^{1+} 1^{*} 10^{0}$
- $357=3^{*} 10^{2}+5^{*} 10^{1+} 7^{*} 2^{0}$

Hexadecimal and Octal

■ Writing out numbers in binary takes too many digits

■ We want a way to represent numbers more densely such that fewer digits are required

- But also such that it is easy to get at the bits that we want

■ Any power-of-two base provides this property

- Octal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our familiar base-10.
- Each has been used by "computer people" over time
- Hexadecimal is often preferred because it is denser.

Hexadecimal

■ Hexadecimal $\mathbf{0 0}_{16}$ to FF_{16}

- Base 16 number representation
- Use characters ' 0 ' to ' 9 ' and ' A ' to ' F '

■ Consider 1A2B in Hexadecimal:

- $1^{*} 16^{3}+A^{*} 16^{2}+2^{*} 16^{1}+B^{*} 16^{0}$
- $1^{*} 16^{3}+10^{*} 16^{2}+2^{*} 16^{1}+11^{*} 16^{0}=6699$ (decimal)
- The C Language prefixes hexadecimal numbers with " $0 x$ " so they aren't confused with decimal numbers
- Write FA1D37B ${ }_{16}$ in C as

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

- 0xFA1D37B

Today: Bits, Bytes, and Integers

■ Representing information as bits
■ Bit-level manipulations
■ Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Byte Ordering

Boolean Algebra

■ Developed by George Boole in 19th Century

- Algebraic representation of logic
- Encode "True" as 1 and "False" as 0

And

Or

- $A \& B=1$ when both $A=1$ and $B=1$
- ~A = 1 when $\mathrm{A}=0$

\sim	
0	1
1	0

- $A^{\wedge} B=1$ when either $A=1$ or $B=1$, but not both

\wedge	0	1
0	0	1
1	1	0

General Boolean Algebras

■ Operate on Bit Vectors

- Operations applied bitwise

	01101001	01101001		01101001		
\&	01010101	01010101	\wedge	01010101		01010101
	01000001	01111101		00111100		10101010

■ All of the Properties of Boolean Algebra Apply

Example: Representing \& Manipulating Sets

- Representation
- Width w bit vector represents subsets of $\{0, \ldots, w-1\}$
- $a_{j}=1$ if $j \in A$
- 01101001
$\{0,3,5,6\}$
- 76543210
- $01010101 \quad\{0,2,4,6\}$
- 76543210

■ Operations

- \&	01000001	$\{0,6\}$
- \| Untersection	01111101	$\{0,2,3,4,5,6\}$
- \wedge	Symmetric difference	00111100
- ~	Complement	10101010

Bit-Level Operations in C

■ Operations \& , |, ~, ^ Available in C

- Apply to any "integral" data type
- long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

■ Examples (Char data type)

- ~0x41 \rightarrow
- ~0x00 \rightarrow
- 0x69 \& 0x55 \rightarrow

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

- $0 \times 69 \mid 0 \times 55 \rightarrow$

Bit-Level Operations in C

■ Operations \& ${ }^{1}$, ~, ^ Available in C

- Apply to any "integral" data type
- long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise
- Examples (Char data type)

- 0x69 \& 0x55:	0x69 \| 0x55:
01101001	01101001
\& 01010101	\| 01010101
01000001	01111101

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Contrast: Logic Operations in C

■ Contrast to Bit-Level Operators

- Logic Operations: \&\&, ||, !
- View 0 as "False"
- Anything nonzero as "True"
- Always return 0 or 1
- Early termination

■ Examples (char data type)

- !0x41 \rightarrow 0x00

Watch out for \& \& vs. \& (and || vs. |)... Super common C programming pitfall!

- ! $0 x 00 \rightarrow 0 \times 01$
- !!0x41 \rightarrow 0x01
- 0x69 \&\& 0x55 $\rightarrow 0 \times 01$
- 0x69 || 0x55 $\rightarrow 0 \times 01$
- p \&\& *p (avoids null pointer access)

Shift Operations

■ Left Shift: $x \ll y$

- Shift bit-vector \mathbf{x} left \mathbf{y} positions
- Throw away extra bits on left
- Fill with 0's on right

■ Right Shift: x >> Y

Argument \mathbf{x}	01100010
$\ll 3$	00010000
Log. >> 2	00011000
Arith. >> 2	00011000

- Shift bit-vector \mathbf{x} right \mathbf{y} positions
- Throw away extra bits on right
- Logical shift
- Fill with o's on left
- Arithmetic shift
- Replicate most significant bit on left

Argument \mathbf{x}	10100010
$\ll 3$	00010000
Log. >> 2	00101000
Arith. >> 2	11101000

■ Undefined Behavior

- Shift amount < 0 or \geq word size

Today: Bits, Bytes, and Integers

■ Representing information as bits
■ Bit-level manipulations
■ Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

Binary Number Lines

■ In binary, the number of bits in the data type size determines the number of points on the number line.

- We can assign the points any meaning we'd like

■ Consider the following examples:

- 1 bit number line

- 2 bit number line

- 3 bit number line

$$
000001010011100101110111
$$

Some Purely Imaginary Examples

■ 3 bit number line

Overflow

- Let's consider a simple 3 digit number line:

■ What happens if we add 1 to $\mathbf{7}$?

- In other words, what happens if we add 1 to 111 ?

■ 111+ 001 = 1000

- But, we only get 3 bits - so we lose the leading-1.
- This is called overflow

■ The result is 000

Modulus Arithmetic

■ Let's explore this idea of overflow some more

- $111+001=1000=000$
- $111+010=1001=001$
- $111+011=1010=010$
- $111+100=1011=011$
- $111+110=1101=101$
- $111+111=1110=110$

■ So, arithmetic "wraps around" when it gets "too positive"

Unsigned and Non-Negative Integers

■ We'll use the term "ints" to mean the finite set of integer numbers that we can represent on a number line enumerated by some fixed number of bits, i.e. bit width.

■ We normally represent unsigned and non-negative int using simple binary as we have already discussed

- An "unsigned" int is any int on a number line, e.g. of a data type, that doesn't contain any negative numbers
- A non-negative number is a number greater than or equal to (>=) 0 on a number line, e.g. of a data type, that does contain negative numbers

How represent negative Numbers?

$■$ We could use the leading bit as a sign bit.

- 0 means non-negative
- 1 means negative

$■$ This has some benefits
- It lets us represent negative and non-negative numbers
- 0 represents 0
- It also has some drawbacks
- There is a -0 , which is the same as 0 , except that it is different
- How to add such numbers $1+-1$ should equal 0
- But, by simple math, $001+101=110$, which is -2 ?

A Magic Trick!

■ Let's just start with three ideas:

- 1 should be represented as 1
- $-1+1=0$
- We want addition to work in the familiar way, with simple rules.

■ We want a situation where "-1" +1 = 0

■ Consider a 3 bit number:

- 001 + "-1" = 0
- $001+111=0$
- Remember $001+111=1000$, and the leading one is lost to overflow.

■"-1" = 111

- Yep!

Negative Numbers

\square Well, if 111 is $\mathbf{- 1}$, what is -2?

- -1 - 1
- $111-001=110$

■ Does that really work?

- If it does $-2+2=0$
- $110+010=1000=000$

■ - $\mathbf{2}+\mathbf{5}$ should be $\mathbf{3}$, right?

- 110 + 101 = 1011 = 011

Finding -x the easy way

■ Given a non-negative number in binary, e.g. 5, represented with a fixed bit width, e.g. 4

- 0101
- We can find its negative by flipping each bit and adding 1
- 0101 This is 5
- 1010 This is the "ones complement of 5", e.g. 5 with bits flipped
- 1011 This is the "twos complement of 5 ", e.g. 5 with the bits flipped and 1 added
- $0101+1011=10000=0000$
- $-x={ }^{\sim} x+1$

■ Because of the fixed width, the "two's complement" of a number can be used as its negative.

Why Does This Work?

- Consider any number and its (ones) complement:
- 0101
- 1010

■ They are called complements because complementary bits are set. As a result, if they are added, all bits are necessarily set:

- $0101+1010=1111$

■ Adding 1 to the sum of a number and its complement necessarily results in a 0 due to overflow

- $(0101+1010)+1=1111+1=10000=0000$

■ And if $x+y=0, y$ must equal $-x$

Why Does This Work? Cont.

- If $x+y=0$
- y must equal -x
\square So if $x+(\operatorname{Complement}(x)+1)=0$
- Complement(x) + 1 must equal $-x$

■ Another way of looking at it:

- if $\mathrm{x}+(\operatorname{Complement}(\mathrm{x})+1)=0$
- $\mathrm{x}+$ Complement(x) $=-1$
- $\mathrm{x}=-1$ - Complement(x)
- -x = $1+$ Complement(x)

Visualizing Two’s Complement

■ Numbers "wrap around" with -1 at the very end

■ A few things to note:

- All negative numbers start with a "1"
- E.g. 100 is "-4"
- You can view the leading " 1 " as introducing a "-4"
- E.g. $101=1^{*}-4+0^{*} 2+1^{*} 1=-3$
- But $010=0 *-4+1^{*} 2+0 * 1=2$
- -4 is missing a positive partner

Complement \& Increment Examples

$\mathrm{x}=0$

	Decimal	Hex	Binary	
0	0	00 00	0000000000000000	
~ 0	-1	FF FF	111111111111111	
$\sim 0+1$	0	0000	000000000000000	

$x=$ Tmin (The most negative two's complement number)

	Decimal	Hex	Binary	
\mathbf{x}	-32768	80 00	1000000000000000	
$\sim \mathbf{x}$	32767	$7 F$	FF	
$\sim x+1$	-32768	80	00	
\sim	10000000	00000000		

Canonical counter example

Encoding Integers: Dense Form

Unsigned
$\operatorname{B2U}(X)=\sum_{i=0}^{w-1} x_{i} \cdot 2^{i}$

$$
\begin{aligned}
& \text { short int } x=15213 \\
& \text { short int } y=-15213
\end{aligned}
$$

Two's Complement

$$
\begin{aligned}
& B 2 T(X)=-x_{w-1} \cdot 2^{w-1}+\sum_{i=0}^{w-2} x_{i} \cdot 2^{i} \\
& 3 ;
\end{aligned}
$$

Sign

- C does not mandate using two's complement
- But, most machines do, and we will assume so
- C short 2 bytes long

	Decimal	Hex	Binary	
\mathbf{x}	15213	3B 6D	$00111011 \quad 01101101$	
\mathbf{y}	-15213	C4 93	11000100 10010011	

■ Sign Bit

- For 2's complement, most significant bit indicates sign
- 0 for nonnegative
- 1 for negative

Numeric Ranges

■ Unsigned Values

- UMin $=0$
000... 0
- UMax $=\quad 2^{w}-1$
111... 1

■ Two's Complement Values

- TMin $\quad=\quad-2^{w-1}$ 100... 0
- TMax $=\quad 2^{w-1}-1$ 011... 1
- Minus 1
111... 1

Values for $W=16$

	Decimal	Hex	Binary	
UMax	65535	FF FF	1111111111111111	
TMax	32767	$7 F$ FF	01111111	11111111
TMin	-32768	80 00	10000000	00000000
-1	-1	FF FF	11111111	11111111
0	0	00 00	00000000	00000000

Quiz Time!

- canvas.cmu.edu/courses/24241/quizzes

Today: Bits, Bytes, and Integers

■ Representing information as bits
■ Bit-level manipulations
■ Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Byte Ordering

Mapping Signed \leftrightarrow Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
$+/-16$
2
3
4
5
6
7
8
9
10
12
13
14
15

Relation between Signed \& Unsigned

Two's Complement

Large negative weight becomes

Large positive weight

Conversion Visualized

- 2's Comp. \rightarrow Unsigned
- Ordering Inversion
- Negative \rightarrow Big Positive
2's Complement $\left[\begin{array}{ccc}T M a x \\ \text { Range } \\ \text { TMin }\end{array}\right.$

Signed vs. Unsigned in C

■ Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix OU, 4294967259U

■ Casting

- Explicit casting between signed \& unsigned same as U2T and T2U int tx, ty; unsigned ux, uy; tx $=$ (int) $u x$; uy $=$ (unsigned) ty;
- Implicit casting also occurs via assignments and procedure calls

$$
\begin{aligned}
& t x=u x \\
& u y=t y
\end{aligned}
$$ int fun(unsigned u);

$u y=f u n(t x) ;$

Casting Surprises

■ Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations $<,>,==,<=,>=$
- Examples for $W=32$: TMIN $=-2,147,483,648$, TMAX $=2,147,483,647$

■ Constant ${ }_{1}$
0
-1
-1
2147483647
2147483647 U
-1
(unsigned)-1
2147483647
2147483647

Constant ${ }_{2}$
OU
0
$0 U$
$-2147483647-1$
$-2147483647-1$
-2
-2
$2147483648 U$
(int) $2147483648 U$

Relation
Evaluation

$==$	unsigned
$<$	signed
$>$	unsigned
$>$	signed
$<$	unsigned
$>$	signed
$>$	unsigned
$<$	unsigned
$>$	signed

Summary Casting Signed 4 Unsigned: Basic Rules

■ Bit pattern is maintained

- But reinterpreted

■ Can have unexpected effects: adding or subtracting $2^{\mathbf{w}}$

■ Expression containing signed and unsigned int

- int is cast to unsigned!!

Today: Bits, Bytes, and Integers

■ Representing information as bits
■ Bit-level manipulations
■ Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

■ Byte Ordering

Sign Extension

■ Task:

- Given w-bit signed integer x
- Convert it to $w+k$-bit integer with same value

■ Rule:

- Make k copies of sign bit:
- $X^{\prime}=x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_{0}$

Sign Extension: Simple Example

Positive number

$10=$| -16 | 8 | 4 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 0 | 1 | 00

Negative number

$-10=$| -16 | 8 | 4 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 1 | 0 |
| | 10 | | | |

Truncation

■ Task:

- Given k+w-bit signed or unsigned integer X
- Convert it to w-bit integer X^{\prime} with same value for "small enough" X

■ Rule:

- Drop top k bits:
- X 回 $=x_{w-1}, x_{w-2}, \ldots, x_{0}$

Truncation: Simple Example

Summary: Expanding, Truncating: Basic Rules

■ Expanding (e.g., short int to int)

- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result

■ Truncating (e.g., unsigned to unsigned short)

- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small (in magnitude) numbers yields expected behavior

Today: Bits, Bytes, and Integers

■ Representing information as bits
■ Bit-level manipulations
■ Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

■ Byte Ordering

Unsigned Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

$\mathrm{UAdd}_{w}(u, v)$

■ Standard Addition Function

- Ignores carry output

■ Implements Modular Arithmetic

$$
s=\operatorname{UAdd}_{w}(u, v)=u+v \bmod 2^{w}
$$

$$
\begin{aligned}
& \text { unsigned char } \\
& \begin{array}{rr}
11101001 \\
+\quad 11010101 \\
\hline 110111110 \\
\hline 10111110
\end{array} \quad \begin{array}{r}
\mathrm{E} 9 \\
+\quad \mathrm{D} 5 \\
\hline 1 \mathrm{BE} \\
\mathrm{BE}
\end{array} \quad \begin{array}{r}
223 \\
+213 \\
\hline 446 \\
\hline 190
\end{array}
\end{aligned}
$$

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Two's Complement Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

$\operatorname{TAdd}_{w}(u, v)$ \square

■ TAdd and UAdd have Identical Bit-Level Behavior

- Signed vs. unsigned addition in C:

```
        int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
```

- Will give $s==t$

$$
\begin{array}{r}
11101001 \\
+\quad 11010101 \\
\hline 110111110 \\
\hline 10111110
\end{array} \quad \begin{array}{r}
\mathrm{E} 9 \\
\hline \mathrm{D} 5 \\
\hline \mathrm{BE}
\end{array} \quad \begin{array}{r}
-23 \\
\frac{-43}{-66} \\
\hline-66
\end{array}
$$

Visualizing "True Sum" Integer Addition

■ Integer Addition

- 4-bit integers u, v
- Compute true sum $\operatorname{Add}_{4}(u, v)$
- Values increase linearly with u and v
- Forms planar surface
$\operatorname{Add}_{4}(u, v)$

Visualizing Unsigned Addition

■ Wraps Around

- If true sum $\geq 2^{w}$
- At most once

True Sum

Modular Sum

Overflow

Visualizing 2's Complement Addition

■ Values

- 4-bit two's comp.
- Range from -8 to +7

■ Wraps Around

- If sum $\geq 2^{w-1}$
- Becomes negative
- At most once
- If sum $<-2^{w-1}$
- Becomes positive
- At most once

Multiplication

$■$ Goal: Computing Product of \boldsymbol{w}-bit numbers $\boldsymbol{x}, \boldsymbol{y}$

- Either signed or unsigned
$■$ Result: Same as computing ideal, exact result $x^{*} y$ and keeping w lower bits.
■ Ideal,exact results can be bigger than wbits
- Worst case is up to 2 w bits
- Unsigned, because all bits are magnitude
- Signed, but only for Tmin*Tmin, because anything added to Tmin reduces its magnitude and Tmax is less than Tmin.
■ So, maintaining exact results...
- would need to keep expanding word size with each product computed
- Impossible in hardware (at least without limits), as all resources are finite
- In practice, is done in software, if needed
- e.g., by "arbitrary precision" arithmetic packages

Power-of-2 Multiply with Shift

■ Operation

- $u \ll k$ gives $u * 2^{k}$
- Both signed and unsigned

Operands: w bits
k

* 2^{k} 0 0 ••• 0110 ••• 010

Discard k bits: w bits $\operatorname{UMult}_{w}\left(u, 2^{k}\right)$
$\operatorname{TMult}_{w}\left(u, 2^{k}\right)$

Examples

- u $\ll 3==u$ * 8
- (u \ll 5) - (u $\ll 3$) $==\quad u * 24$
- Most machines shift and add faster than multiply
- Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

■ Quotient of Unsigned by Power of 2

- u >> k gives $\left\lfloor u / 2^{k}\right\rfloor$
- Uses logical shift

| | Division | Computed | Hex | Binary |
| :--- | ---: | ---: | ---: | ---: | :--- |
| \mathbf{x} | 15213 | 15213 | 3B 6D | 00111011 01101101 |
| $\mathbf{x ~ \gg ~ 1 ~}$ | 7606.5 | 7606 | 1D B6 | 0001110110110110 |
| $\mathbf{x ~ \gg ~ 4 ~}$ | 950.8125 | 950 | 03 B6 | 0000001110110110 |
| $\mathbf{x ~ \gg ~ 8 ~}$ | 59.4257813 | 59 | 00 3B | 0000000000111011 |

Signed Power-of-2 Divide with Shift

■ Quotient of Signed by Power of 2

- x >> k gives $\left\lfloor\mathbf{x} / \mathbf{2}^{k}\right\rfloor$
- Uses arithmetic shift
- Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a bias).

Operands:

Result: \quad RoundDown $\left(x / 2^{k}\right)$

	Division	Computed	Hex	Binary	
x	-15213	-15213	C4 93	11000100	10010011
x >> 1	-7606.5	-7607	E2 49	11100010	01001001
x x >> 4	-950.8125	-951	FC 49	11111100	01001001
x >> 8	-59.4257813	-60	FF C4	11111111	11000100

Round-toward-0 Divide

■ Quotient of Negative Number by Power of 2

- Want $\left\lceil\mathbf{x} / 2^{k}\right\rceil$ (Round Toward 0)
- Compute as $\left\lfloor\left(x+\left(2^{k}-1\right)\right) / 2^{k}\right\rfloor$
- In C: $(x+(1 \ll k)-1) \gg k$
- Biases dividend toward 0

Case 1: No rounding
Dividend:

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding
Dividend:

Incremented by 1
Biasing adds 1 to final result

Today: Bits, Bytes, and Integers

■ Representing information as bits
■ Bit-level manipulations
■ Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

■ Byte Ordering

Byte Ordering

■ So, how are the bytes within a multi-byte word ordered in memory?
■ Conventions

- Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
- Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Linux
- Least significant byte has lowest address

■ Becomes a concern when data is communicated

- Over a network, via files, etc.

■ Important notes

- Bits are not reversed, as the low order bit is the reference point.
- Doesn't affect chars, or strings (arrays of chars), as chars are only one byte

Byte Ordering Example

■ Example

- Variable x has 4-byte value of 0x01234567
- Address given by $\& x$ is $0 x 100$

Big Endian
$0 \times 100 \quad 0 \times 101 \quad 0 \times 102 \quad 0 \times 103$

		01	23	45	67		

Little Endian
$0 \times 100 \quad 0 \times 1010 \times 1020 \times 103$

		67	45	23	01		

Reading Byte-Reversed Listings

■ Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

■ Example Fragment

Thanks!

■ Questions?

- See you for office hours!
- https://www.andrew.cmu.edu/~gkesden/schedule.html

